
RL-CCD: Concurrent Clock and Data Optimization using
Attention-Based Self-Supervised Reinforcement Learning

Yi-Chen Lu1, Wei-Ting Chan2, Deyuan Guo3, Sudipto Kundu3, Vishal Khandelwal2, and Sung Kyu Lim1

1School of ECE, Georgia Institute of Technology, Atlanta, GA
2Synopsys Inc., Hillsboro, OR; 3Synopsys Inc., Mountain View, CA

{yclu, limsk}@gatech.edu; {wei-ting.chan, deyuan.guo, sudipto.kundu, vishal.khandelwal}@synopsys.com;

Abstract—Concurrent Clock and Data (CCD) optimization is a well-
adopted approach in modern commercial tools that resolves timing
violations using a mixture of clock skewing and delay fixing strategies.
However, existing CCD algorithms are flawed. Particularly, they fail
to prioritize violating endpoints for different optimization strategies
correctly, leading to flow-wise globally sub-optimal results. In this paper,
we overcome this issue by presenting RL-CCD, a Reinforcement Learning
(RL) agent that selects endpoints for useful skew prioritization using the
proposed EP-GNN, an endpoint-oriented Graph Neural Network (GNN)
model, and a Transformer-based self-supervised attention mechanism.
Experimental results on 19 industrial designs in 5−12nm technologies
demonstrate that RL-CCD achieves up to 64% Total Negative Slack
(TNS) reduction and 66.5% number of violating endpoints (NVE)
improvement over the native implementation of a commercial tool.

I. INTRODUCTION

Modern Physical Design (PD) tools interleave clock skewing and
delay (logic) fixing strategies to perform timing optimization, which
is often termed as Concurrent Clock and Data (CCD) optimization.
In general, CCD aims to find an optimal balance between “clock”
and “logic” optimization so as to resolve violating timing endpoints
in a flow-wise globally optimized manner. However, existing CCD
algorithms fail to achieve this goal, mainly because they neglect the
following vital fact:

• Not all violating endpoints are equal. Different violating end-
points have distinct sensitivity for various optimization strate-
gies. To truly achieve global optimal results, some of them are
better to be “fixed more” by clock-path optimization (i.e., a
larger portion of their slack values should be resolved by clock
fixing), while others are better to be “fixed more” by data-
path amendment. However, existing CCD algorithms have no
intelligence on weighing the balance between different strategies
in endpoint level, leading to flow-wise sub-optimal results.

In this paper, we overcome this critical issue by presenting RL-
CCD, a Reinforcement Learning (RL) agent that performs intelli-
gent endpoint prioritization. RL-CCD is built upon a customized
Graph Neural Networks (GNNs) named EP-GNN for endpoint en-
coding, and an attention-based encoder-decoder network using self-
supervised learning [9]. Prior to CCD optimization, RL-CCD selects a
subset of violating endpoints that should be prioritized for clock-path
optimization using useful skew (rather than data-path optimization
using buffering, sizing, restructuring etc.), to achieve flow-wise
globally optimal Power, Performance, and Area (PPA) metrics.

The goal of this work is to unleash the true power of CCD opti-
mization in commercial tools using RL. Note that modern PD tools
preform CCD optimization throughout the entire PD flow. To demon-
strate the effectiveness of our RL-CCD framework, we specifically
focus on improving the timing quality of CCD optimization at the
placement stage, where the goal is to achieve better Total Negative
Slack (TNS) values at the end of the entire placement optimization,
which involves CCD and other optimization techniques. In this work,
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Fig. 1: Default tool flow vs. our RL-enhanced flow that performs endpoint
prioritization using graph learning and self-supervised attention [9].

we take an industry-leading commercial PD tool as our reference
tool, Synopsys IC Compiler II (ICC2), and demonstrate that RL-CCD
significantly improves the tool’s native implementation flow.

Figure 1 highlights the innovations of our framework and the key
differences over the native implementation of the reference commer-
cial tool. Given a globally placed netlist, unlike the default tool flow
that has no intelligence on balancing CCD optimization techniques
via endpoint prioritization, our RL agent selects a group of violating
endpoints that should be prioritized for clock-path optimization using
useful skew. Note that the total optimization steps between the left
flow (default) and the right flow (ours) are exactly the same. Except
for endpoint prioritization using margin (which is removed after
useful skew), RL-CCD is not taking any additional optimization step.

The outcome of our effort is a universal (i.e., generalize to
any design and technology) RL-based framework, which drastically
improves the CCD optimization quality of an industry-leading com-
mercial tool. Our main contributions are as follows:

• We discover a new PD problem and demonstrate its importance.
That is, finding a balance between clock-path and data-path
optimization through endpoint prioritization in commercial tool
flows so as to reach flow-wise globally optimal results.

• We present RL-CCD, the first-ever endpoint prioritization frame-
work that focuses on improving timing quality of CCD optimiza-
tion in commercial tools. RL-CCD achieves up to 64% TNS
improvements (avg. 23%), and up to 66% number of violating
endpoints (NVE) reduction (avg.19%) on 19 industrial designs
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Fig. 2: High-level overview of our framework. At each RL time step (training iteration), our agent selects one endpoint at a time and mask out other
endpoints based on overlapping calculation. The selection process completes when all violating endpoints are either masked or selected. Then, with
the RL-selected endpoints, we apply margin to worsen their timing to design Worst Negative Slack (WNS) prior to the useful skew optimization so
that they can be “over-fixed” by clock arrival adjustments. The applied margins are removed before entering the remaining placement optimization
steps, which involves optimization techniques such as buffering, sizing, logic restructuring, legalization etc. Finally, the achieved TNS value is taken
as the RL reward of the current trajectory to update framework parameters using a policy gradient-based algorithm named REINFORCE [12].

in advanced technologies (5nm,7nm,12nm).
• RL-CCD facilitates transfer learning and self-supervised learn-

ing, which makes it generalizable to any design or technology.
A pre-trained RL-CCD agent can significantly improve the
optimization results with only few iterations of training.

II. RELATED WORKS

A. Predictive Useful Skew

Useful skew is a well-known technique that improves design
timing by adjusting clock arrival time. However, as pointed out
in [11], computed skew adjustments often require redo synthesis
or placement to truly realize timing benefits. To break the chicken-
egg problem (i.e., iterative back annotation of skew), the authors
of [1] proposed a “predictive” useful skew technique for one-pass
timing optimization, where the TNS value can be improved by up to
5%. In this paper, since commercial PD tools have well-integrated
useful skew techniques into CCD optimization and reach considerable
success, we are not focusing on improving the native useful skew
implementation in tools. Our specific focus is to balance clock-path
and data-path optimization techniques offered by commercial tools
via endpoint prioritization, which is an under-researched problem.

B. Learning-Driven Timing Prediction

Fast and accurate timing prediction methods are essential to
improve design productivity. Previous work [7] presented a tree-
based technique to predict the time-consuming post-route path-based
timing analysis (PBA) results from pre-route graph-based analysis
(GBA) data. Another work [2] presented a timing engine inspired
GNN-based framework for slack and arrival time prediction on
timing endpoints. Recently, the authors of [8] explored the use of
Transformer [9] to perform gate sizing for timing optimization, where
a 1400x speed up is achieved in obtaining tool-accurate sizing moves
on unseen netlists. Nonetheless, in this paper, we are not comparing
RL-CCD with above methods as the focus of RL is to improve
optimization quality rather than prediction accuracy.

C. RL in EDA: Going Beyond Commercial Tool Quality

As the benefit of scaling saturates, leading-edge commercial tools
are seeking more powerful methods for PPA optimization even at the
cost of runtime. RL thus becomes a promising solution as it does
not require any labeled data and has been demonstrated to achieve
never-seen, high-quality optimization results in many fields [12]. In
PD, the authors of [6] developed an RL agent for floorplanning,
which generates superhuman floorplans that human labor is not
able to achieve. Another work [5] proposed RL-Sizer to tackle the
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Fig. 3: Illustration of endpoint fan-in cone overlapping. Note that the
fan-in cone tracing of an endpoint stops at its previous startpoints. The
overlapping ratio is calculated as dividing the number of overlapped cells
by the total number of fan-in cone cells.

VLSI gate sizing problem, a traditional EDA optimization task. It
is shown that RL-Sizer can outperform the default sizing algorithms
in a commercial tool although it adopts a fundamentally different
approach. With the above success stories, in this paper, we decide
to continue the research of RL in PD, aiming at going beyond what
state-of-the-art commercial tools are able to achieve.

III. RL-CCD FRAMEWORK

Given a globally placed netlist G = (V,E), the ultimate goal of
RL-CCD is to select a group of violating endpoints V ′ ∈ V to be
prioritized for useful skew optimization, such that the TNS value after
the proceeding placement optimization steps can be optimized. Note
that V ′ is an empty set in the native implementation of the reference
commercial tool. In this paper, we demonstrate that by selecting
proper V ′, the achieved TNS value can be drastically improved.

A. Overview and Reinforcement Learning Formulation

Figure 2 shows a high-level overview of our RL endpoint selection
process. As aforementioned, the goal of our RL agent, RL-CCD, is
to select the endpoints (colored in red) that should be prioritized for
clock-path optimization, The key idea behind is to let the useful skew
engine “over-fix” the timing of the RL-selected endpoints so that
the proceeding delay (logic) optimization techniques can spend less
effort on them, which together result in flow-wise optimal solutions.
We understand another route may also work (i.e., useful skew “under-
fix”), however, we empirically observe that the proposed method (i.e.,
useful skew “over-fix”) works significantly better.

Our endpoint prioritization problem is a combinatorial optimization
problem. In this paper, we choose to formulate it as a Markov
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Fig. 4: Illustration of RL-CCD endpoint selection process. At each time step t, RL-CCD first leverages the proposed EP-GNN model to obtain
endpoint embeddings F

(t)
EP = {Fe,∀e ∈ EP}, which is considered as the RL state st. Then, based on the embeddings, a LSTM network is utilized as

an encoder to encode past actions {at−1} sequentially. Its final hidden vector ht is taken as the query vector qt for the downstream attention-based
decoder network. Using a self-supervised attention mechanism [9], the decoder takes the query vector qt and current endpoint embeddings F

(t)
EP

as inputs and outputs a probability vector Pt ∈ R|EP | which is used to sample one endpoint (i.e., action at) at current iteration. An overlapping
calculation is followed to mask out other endpoints whose fan-in cones have an overlapping ratio higher than a pre-defined threshold ρ with the
selected endpoint (Figure 3). The features (Table I) are updated accordingly and the loop continues until all endpoints are either selected or masked.

Decision Process (MDP) and use RL algorithms to solve it. Below,
we formally describe the formulation in key MDP terminologies:

• States (s): A state st represents the status of the endpoint set
EP ∈ V in the netlist graph G = (V,E), which is encoded by
the proposed EP-GNN framework via fan-in cone aggregation.

• Actions (a): An action at refers to the endpoint being selected.
• State Transition: By taking an action at in a state st, the

probability distribution over the next state st+1.
• Reward (r): In our settings, the rewards are zero for intermediate

actions {a1..aT−1} except for the last action aT , which repre-
sents the final achieved TNS value after the entire placement
optimization, including CCD and other optimization techniques.

• Trajectory (τ ): A trajectory τ refers to a complete selection
process from time step t = 1 to t = T , where at each time step
t, there is a corresponding state st, action at, and reward rt pair
denoted as (st, at, rt).

The ultimate goal of our RL agent, RL-CCD, is to obtain an optimal
policy π that maximizes the expected return J at the end of a
trajectory R(τ), which can be denoted as:

max
θ

J(πθ) = Eτ∼πθ [R(τ)], (1)

where πθ denotes the policy parameterized by θ which represents all
trainable parameters of the RL-CCD framework.

B. Detailed Architecture

RL-CCD consists of three main components: (1) a GNN module
that generates endpoint embeddings, (2) a Long Short-Term Memory
(LSTM) [3] network for past actions encoding, and (3) a self-
supervised attention module to decode actions from probabilities.
Note that each of them is hardly independent of each other. Figure 4
depicts the details of how they function together in one RL time step
t, forming a circular selection loop. Below, we describe each main
component in detail:

1) Netlist Encoding using GNNs: GNNs have shown promising
results in advancing many traditional PD tasks thanks to their ability
to perform effective graph representation learning [4]. In this paper,
we present EP-GNN, an endpoint-oriented GNN framework that

TABLE I: Initial node features for EP-GNN endpoint encoding. Note that
the first attribute “RL masked” will be updated in each RL training itera-
tion based on the selection of new endpoint and overlapping calculation.

name # dim. description
RL masked 1 is selected or masked by RL-CCD

locations 2 cell (x,y) location in global placement
outNet cap 1 output net capacitance
load cap 1 sum of driving load capacitance
cell cap 1 cell input capacitance

cell power 2 cell internal power and leakage power
net power 1 output net switching power

max toggle 1 maximum toggle rate at output pin
wst slack 1 worst slack of paths through cell

wst output slew 1 worst output transition
wst input slew 1 worst input transition

focuses on generating node embeddings of timing path endpoints
through iterative neighborhood and fan-in cone aggregation.

Prior to the actual graph learning, we first construct GNN message
passing edges using the netlist transformation technique proposed
in [4]. Then, for each node in the transformed graph, we hand-craft a
comprehensive list of features as shown in Table I, which include
timing, power, and physical attributes. With the message passing
edges and the initial features defined, we leverage the proposed EP-
GNN framework to obtain endpoint embeddings.

Our EP-GNN framework has three graph convolution layers and
one fully-connected (FC) layer. All graph convolution layers have
the same hidden dimension, and each of them transforms the node
features {fv,∀v ∈ V } from layer l−1 to layer l as follows:

f l
v = σ

γf l−1
v ·Θproj+(1−γ)·Θagg

 1

|N(v)|
∑

j∈N(v)

f l−1
j

,

(2)
where σ denotes sigmoid function, N(v) denotes the local neighbor-
hood of node v, γ denotes the trainable parameter that weighs the im-
portance between the self-projection and neighborhood-aggregation
operations that are parameterized by Θproj and Θagg respectively,
which are both realized by neural networks. After completing the
graph convolution, a FC layer ΘFC is followed to compute the final



representations of each endpoint e among the endpoint set EP as:

fe = ΘFC

f l=3
e +

∑
j∈cone(e)

f l=3
j

, (3)

where cone(e) denotes the fan-in cone of the endpoint e. In our
implementation, the graph convolution layer has a dimension of 32,
and the final FC layer has a dimension of 16. Hence, the generated
endpoint embeddings are in 16 dimensions.

Since the masking mechanism based on overlapping calculation
change some node features (i.e., “RL masked” in Table I) after
each selection, the graph learning by EP-GNN is conducted in every
RL time step t, where the computed endpoint embeddings F

(t)
EP =

{f (t)
e ,∀e ∈ EP} are considered as the RL state st. These endpoint

embeddings are taken as the inputs to the downstream LSTM-based
encoder network and the self-supervised attention module to decide
the next endpoint to select (i.e., RL action at).

2) Past Actions Encoding using LSTM: Our encoder-decoder
structure as shown in Figure 4 is inspired by the renowned Trans-
former architecture proposed in [9]. In this paper, we customize the
renowned architecture to solve our specific problem by replacing the
encoder with a LSTM network to encode the past RL actions, and
by simplifying the attention mechanism to focus on generating the
probability distribution of RL actions. Our effort significantly reduces
the number of parameters required for training, making the framework
fully applicable to industrial designs with millions of instances.

At each time step t, the goal of our LSTM-based encoder is to
generate a query vector qt for the proceeding decoder network by
sequentially encoding the past actions taken in all previous time steps
(i.e., a1 to at−1). The rationale behind using LSTM [3], a renowned
sequence encoding network, for past actions encoding is that the
decision of each selection is made sequentially, and each of them
should not be independent of each other. Hence, at each training
iteration, our LSTM network takes the EP-GNN node embeddings of
the previously selected endpoints {fat−1} and the previous hidden
vector ht−1 as inputs, and outputs a new hidden vector ht that is
taken as the query vector qt to the decoder as:

it = σ(Wi ·[ht−1,at−1]+bi), ft = σ(Wf ·[ht−1,at−1]+bf ),

ot = σ(Wo ·[ht−1,at−1]+bo), c̃t = tanh(Wc[ht−1,xt]+bc),

ct = ft⊙ct−1+it⊙c̃t, ht = ot⊙tanh(ct), qt = ht,
(4)

where i, f , o, c the input gate, forget gate, output gate, cell gate,
respectively, {W} denotes the trainable weights. Note that the hidden
vector ht is passed to both the decoder network at the current time
step t and the LSTM-encoder itself in the next time step t+1.

3) Current Action Decoding using Self-Supervised Attention:
The goal of the decoder network is to generate a probability vector
Pt ∈ R|EP |, where each element P

(i)
t represents the probability

of an endpoint i being selected at the current time step t. To
efficiently consider all endpoints at once for the selection, in this
paper, we leverage a self-supervised attention mechanism [9] to build
the decoder network. Inspired from from pointer networks [10], given
a query vector qt and GNN embeddings F

(t)
EP ∈ R|EP |x16 of all

endpoints in the design {fe,∀e ∈ EP}, each element A
(i)
t in the

final attention vector At ∈ R|EP | is computed as:

A
(i)
t =

{
vT tanh

(
W1 ·F (t)

EP +W2 ·qt
)

if ep-i is valid

−∞ otherwise,
(5)

where v, W1, and W2 are the learning parameters of the self-
supervised attention module, and the condition “valid” denotes not

Algorithm 1 RL-CCD training methodology. We use ρ = 0.3 as default.
Input: Netlist G = (V,E), Initial EP-GNN parameters θgnn, Initial

LSTM encoder parameters θLSTM , Initial attention-based decoder
parameters θattn, Overlapping threshold ρ, Violating endpoints EP

Output: RL-CCD parameters {θgnn,θLSTM ,θattn}
1: t← 0 ▷ RL time step
2: Randomly initialize all training parameters {θgnn,θLSTM ,θattn}
3: h0 ← 0, Fa0 ← 0 ▷ initialize LSTM inputs with zero vectors
4: selected endpoints← {}
5: while not all violating endpoints are masked or selected do
6: {FEP } ← EP-GNN encoding(G,EP |θgnn) ▷ Equations 2, 3
7: ht ← LSTM

(
Fat−1 ,ht−1

∣∣θLSTM ) ▷ at−1 is prior chosen ep
8: qt ← ht ▷ take LSTM hidden vector as attention query vector
9: Pt ← Attention(FEP ,qt|θattn) ▷ Equations 5, 6

10: at ← sample one endpoint from Pt ▷ selected ep
11: G,EP ← overlap masking(G,EP,at,ρ) ▷ fan-in cone
12: selected endpoints← add at to selection set
13: t← t+1 ▷ total time steps will vary by design
14: Use margin to worsen timing of all selected endpoints to WNS
15: Run clock-path optimization using useful skew
16: Remove all added margins in Line 12, continue remaining place opt.
17: R← final TNS after completing entire placement optimization
18: REINFORCE update ∇θπ

∑
tR·logπ(at|{θgnn,θLSTM ,θattn})

19: Repeat from Line 2 until TNS is optimized

being previously selected or masked. As aforementioned, the query
vector qt is the hidden vector ht of the LSTM encoder network.
Basically, Equation 5 aims to find the weight matrices that jointly
quantify the importance of all endpoints EP in the design. With
a higher attention score A

(i)
t , an endpoint i will have a higher

probability of being chosen at the current time step t.
To compute the probability P

(i)
t of each endpoint i being selected

at time step t, we use softmax to transform attention scores into
probabilities as:

P
(i)
t = softmax(A

(i)
t ) =

eA
(i)
t∑

kA
(k)
t

,∀i ∈ EP. (6)

Note that for the endpoints that are not valid in current iteration,
their probabilities of being selected will be zero as they all have an
attention score equal to −∞ from Equation 5. Finally, based on the
distribution Pt ∈ R|EP |, at each iteration t, we perform sampling
to select one endpoint for useful skew prioritization. Note that the
entire attention-based action decoding process is preformed in a self-
supervised manner. That is, we are not using any pre-defined label
or guidance as many other supervised frameworks. Hence, RL-CCD
is generalizable to any design or technology as the entire selection
process is purely based on design characteristics.

C. Fan-in Cone Overlap Masking and the Rationale Behind

As shown in Figure 4, RL-CCD selects endpoints sequentially and
the selection process completes when all endpoints in the design are
either masked or selected. Our masking strategy is as follows: at
each time step t, we mask out the endpoints whose fan-in cones
have an overlapping ratio higher than a pre-defined threshold ρ
with the selected endpoint at. The ratio calculation is described
in Figure 3. The rationale behind is two-fold: (1) from design
knowledge, successive endpoints are better not to be prioritized at the
same time, otherwise it may cause ping-pong effect on clock arrival
adjustments [7], and (2) for different designs, our strategy allows the
RL agent to decide the total number of endpoints to select by either
aggressively selecting highly-overlapped endpoints to mask out the
rest faster or vice versa based on design characteristics.



D. Training Methodology

In this paper, we leverage REINFORCE [12], a renowned policy
gradient algorithm, to train our RL-CCD framework. The objective
of our RL agent is defined in Equation 1, which is to maximize the
expected return J(πθ) of each trajectory τ , where π represents the
entire RL-CCD framework and θ denotes all parameters involved.
To maximize the objective J , we perform gradient descent on the
parameters of the entire framework {θgnn,θLSTM ,θattn}, and it is
shown in [12] that the gradient of the objective J can be derived as:

∇θJ(πθ) = Eτ∼πθ

[
T∑

t=0

R(τ)∇θ logπθ (at|st)

]
, (7)

where in our settings, R(τ) is the achieved TNS value after com-
pleting the entire placement optimization. Equation 7 denotes that
the gradient of the objective is equivalent to the expected sum of the
gradients of the log probabilities of the taken actions, weighted by
the achieved reward at the end of the trajectory.

Algorithm 1 illustrates the end-to-end training process of our RL-
CCD framework. We first initialize the inputs of the LSTM encoder
to zero vectors in Line 3. Then, in Lines 5–13, we sequentially
determine an action at, which denotes the endpoint to be selected
at each RL time step t. Note that an overlap masking is performed
in Line 11 to mask out the endpoints whose fan-in cones have an
overlapping ratio greater than ρ = 0.3 with the selected endpoint.
When the selection process completes, in Line 14, we worsen the
timing of all selected endpoints to design WNS before entering
the useful skew optimization (Line 15). These added margins are
removed after the clock-path optimization (Line 16). Finally, we run
through the remaining placement optimization steps and obtain the
final achieved TNS value in Line 17, which is taken as the RL reward.
With the reward, all parameters are jointly updated in Line 18, and
the whole process repeats until the reward (TNS) is optimized.

IV. EXPERIMENTAL RESULTS

In the experiments, we validate RL-CCD on 19 commercial designs
(renamed due to confidentiality) in advanced technologies 5−12nm.
RL-CCD is integrated with an industry-leading commercial PD tool
(name will be disclosed upon acceptance). The goal of RL-CCD is
to find an optimal balance between clock-path and data-path (i.e.,
CCD) optimization through endpoint prioritization, so as to optimize
design timing in terms of TNS. To perform fair and apple-to-apple
comparison as shown in Figure 1, we use the same seed in each run to
completely remove non-deterministic run-to-run variation. Also, RL-
CCD does not leverage any additional optimization step other than
the original ones used in the default tool flow (i.e., exact same recipe
is used for both RL-CCD and the tool’s native implementation).
Finally, the runtime of both RL-CCD and the commercial tool is
measured on the same farm machine without GPU support. RL-
CCD is implemented using Python and TCL (no internal C++ code
needed). Below, we clearly demonstrate that RL-CCD significantly
improves the optimization quality of the reference commercial tool.

A. Single-Design Optimization Results

Table II demonstrates the optimization results achieved by training
Algorithm 1 from scratch. Both reference tool and RL-CCD take the
same global placements as inputs, where their attributes are reported
in the left-most column. In the middle and right-most columns, it is
shown that RL-CCD consistently outperforms the default tool flow
(without endpoint prioritization) across all benchmarks, where we
observe significant timing improvements in TNS by up to 64.4%
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(with an average improvement of 24%), and in NVE by up to
66.5% (with an average improvement of 19.4%). Figure 5 further
demonstrates the prioritization impact of RL-CCD in terms of clock
arrival adjustments on clock pins. It is shown that by intelligently
prioritizing 74 critical endpoints out of the entire design (block11
with 180K cells), RL-CCD is able to efficiently affect the behaviour
of the underlying useful skew engine to perform better optimization.

We believe the significant timing improvements achieved are not
coming from the sacrifice of power, because RL-CCD is not de-
grading the power quality in general as reported by the sophisticated
reference tool. In fact, although power is not an explicit objective, RL-
CCD still achieves an average of 0.2% improvement via intelligent
endpoint prioritization. Nonetheless, as different skewing solutions
may impact downstream clock networks, we agree that the most
accurate approach to justify power impact is to run through the entire
PD flow, which, however, would easily take weeks to accomplish with
our commercial benchmarks. Hence, in this paper, we specifically
focus on improving the CCD optimization quality at the placement
stage to demonstrate the effectiveness of the proposed RL framework.

Finally, the training of RL-CCD is achieved using multi-processing
on CPU-only farm machines. Particularly, for each design, we launch
8 parallel processes to train the framework parameters. The training is
terminated when the TNS value no longer improves in 3 consecutive
iterations. For both reference tool and RL-CCD, we enable 16 threads
to perform the entire placement optimization, including CCD and
other optimization techniques. We understand that the runtime of RL-
CCD may be prohibitive for other industrial designs in the real-world.
Hence, we leverage transfer learning to further improve it as follows.

B. Transfer Learning on Unseen Designs

The key idea of transfer learning is to reuse pre-trained parameters
in unseen domains, so that a framework that is trained upon certain
samples can reach faster convergence in the unseen ones. In this
paper, RL-CCD facilitates transfer learning by reusing the proposed
EP-GNN model which is responsible for generating endpoint embed-
dings. Particularly, we first use the same EP-GNN model to perform
RL training on different designs in the same technology (note that the
encoder-decoder frameworks are distinct as the number of available
endpoints varies by design). Then, after the training is completed,
we load the weights and biases of the pre-trained EP-GNN model
(with a new encoder-decoder framework) to perform RL training
(Algorithm 1) on “unseen” designs. Figure 6 shows the transfer
learning results on block19 (922K cells). It is shown that with transfer
learning, RL-CCD can quickly converge to comparable optimization



TABLE II: Optimization results comparison between RL-CCD and the native implementation of an industry-leading commercial tool. RL-CCD is
trained to minimize design TNS by selectively prioritizing critical endpoints. The unit for timing is ns and for power is mW . Runtime is normalized
by default tool flow. Note that we use the same seed across all experiments to completely remove non-deterministic run-to-run variation.

design begin (post global place) default tool flow (16 threads) RL-CCD enhanced (ours)

(# cells) WNS TNS #vio. total WNS TNS #vio. total run- WNS TNS #vio. total run-
EPs power (goal) EPs power time (goal) EPs power time

block1 (577K) -0.24 -2009.98 33785 482.92 -0.16 -97.2 4296 1114.33 1.00 -0.16 -84.0 (-14.1%) 3603 1116.48 16
block2 (1.3M) -0.18 -1104.03 40091 761.41 -0.05 -2.93 540 764.13 1.00 -0.07 -2.56 (-12.6%) 443 763.98 36
block3 (353K) -0.26 -2966.04 36265 468.06 -0.17 -149.28 4119 474.72 1.00 -0.18 -87.45 (-41.42%) 1942 473.80 29
block4 (370K) -0.46 -4590.85 38943 297.19 -0.11 -20.78 1258 322.48 1.00 -0.12 -7.40 (-64.4%) 421 321.97 31
block5 (194K) -0.27 -1165.33 9708 199.45 -0.14 -162.45 4271 205.50 1.00 -0.14 -59.99 (-63.1%) 2081 204.95 39
block6 (195K) -0.30 -1382.51 8704 102.03 -0.16 -69.90 1424 120.03 1.00 -0.16 -50.31 (-28.03%) 1146 119.50 20
block7 (416K) -0.34 -2108.89 14086 121.56 -0.15 -41.47 1149 134.25 1.00 -0.16 -39.98 (-3.6%) 1009 134.35 21
block8 (135K) -0.15 -1186.14 21272 348.10 -0.10 -72.18 2796 349.427 1.00 -0.10 -61.32 (-15.0%) 2314 349.56 42
block9 (162K) -0.11 -50.90 1784 113.35 -0.02 -0.28 75 114.61 1.00 -0.01 -0.11 (-60.7%) 44 114.55 8
block10 (84K) -0.43 -4428.41 29951 90.60 -0.26 -205.47 3669 90.70 1.00 -0.25 -189.92 (-7.6%) 3603 90.69 45
block11 (180K) -0.29 -793.53 10658 266.72 -0.12 -5.67 149 276.96 1.00 -0.09 -4.04 (-28.8%) 135 276.79 32
block12 (243K) -0.32 -1720.92 18465 78.72 -0.19 -102.90 2223 27.83 1.00 -0.18 -79.9 (-22.4%) 1794 27.83 46
block13 (507K) -0.12 -375.08 12987 63.48 -0.06 -39.37 3779 64.95 1.00 -0.06 -33.72 (-14.4%) 3291 64.80 10
block14 (816K) -0.16 -1913.75 44044 333.60 -0.06 -51.43 4260 340.07 1.00 -0.06 -48.89 (-4.9%) 3915 340.00 7
block15 (821K) -0.18 -331.51 11002 66.17 -0.11 -40.55 2116 66.72 1.00 -0.11 -37.78 (-6.83%) 1861 66.71 20
block16 (432K) -0.18 -374.15 9228 27.18 -0.07 -32.24 2586 28.09 1.00 -0.05 -24.89 (-22.8%) 2149 28.09 16
block17 (507K) -0.14 -226.09 8860 407.69 -0.07 -46.22 2472 412.26 1.00 -0.06 -33.05 (-28.5%) 2361 412.21 35
block18 (412K) -0.41 -2787.22 51675 583.88 -0.10 -6.14 123 1183.46 1.00 -0.10 -5.81 (-5.4%) 124 1182.23 26
block19 (922K) -0.16 -383.69 8009 98.66 -0.09 -19.01 667 218.38 1.00 -0.06 -13.71 (-27.9%) 626 218.33 47

avg. -24% avg. -19% avg. -0.2%
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Fig. 6: Transfer learning on block19 (922K cells) by using a pre-trained
EP-GNN model, where comparable optimization results is achieved in a
much faster convergence rate.

results compared with training the entire framework (i.e., EP-GNN +
encoder-decoder) from scratch as in Table II. The key rationale behind
our transfer learning approach is that GNN netlist encoding should be
universal (at least in the same technology). Hence, starting from more
accurate embeddings, RL-CCD should be able to reach optimized
solutions in faster convergence, which is proved in Figure 6.

C. Discussion: Why Does RL-CCD Work?

The development of RL-CCD is strongly motivated by the fact that
commercial tools are ignoring endpoint sensitivity “across different
optimization strategies”. They adopt the same sequence of optimiza-
tion steps to fix timing, however, they fail to make use of the fact that
different endpoints react to various strategies distinctly (e.g., some
are easier fixed from clock-path, while others, datapath). This is the
key information that RL-CCD is learning, which eventually brings
tremendous success. Finally, we attribute part of our success to the
proposed fan-in cone overlap masking technique, which efficiently
prunes out the action space, while allowing the RL agent to decide
the total number of endpoints to pick subject to design characteristics.

V. CONCLUSION AND FUTURE WORK

In this paper, we discover a new problem of balancing clock-path
and data-path optimization in commercial tool flows, and solve it by

using endpoint prioritization with RL. The proposed framework, RL-
CCD, significantly improves the timing optimization quality of an
industry-leading commercial tool across 19 commercial benchmarks
in advanced technologies 5−12nm. This work shall demonstrate the
importance of the observed problem, and the strength of using RL
algorithms to solve it. In the future, we aim to expand RL-CCD
for full-flow optimization, so as to improve the overlap masking
technique and quantify its impact on the achieved PPA values.
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