
Special Issue: CCDSC 2022

The International Journal of High
Performance Computing Applications
2023, Vol. 0(0) 1–29
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/10943420231178537
journals.sagepub.com/home/hpc

Abisko: Deep codesign of an architecture
for spiking neural networks using novel
neuromorphic materials

Jeffrey S. Vetter1, Prasanna Date1, Farah Fahim2, Shruti R. Kulkarni1,
Petro Maksymovych1, A. Alec Talin3, Marc Gonzalez Tallada1, Pruek Vanna-iampikul4,
Aaron R. Young1, David Brooks5, Yu Cao2, Wei Gu-Yeon6, Sung Kyu Lim4, Frank Liu1,
Matthew Marinella6, Bobby Sumpter1 and Narasinga Rao Miniskar1

Abstract
The Abisko project aims to develop an energy-efficient spiking neural network (SNN) computing architecture and software
system capable of autonomous learning and operation. The SNN architecture explores novel neuromorphic devices that
are based on resistive-switching materials, such as memristors and electrochemical RAM. Equally important, Abisko uses a
deep codesign approach to pursue this goal by engaging experts from across the entire range of disciplines: materials,
devices and circuits, architectures and integration, software, and algorithms. The key objectives of our Abisko project are
threefold. First, we are designing an energy-optimized high-performance neuromorphic accelerator based on SNNs. This
architecture is being designed as a chiplet that can be deployed in contemporary computer architectures and we are
investigating novel neuromorphic materials to improve its design. Second, we are concurrently developing a productive
software stack for the neuromorphic accelerator that will also be portable to other architectures, such as field-
programmable gate arrays and GPUs. Third, we are creating a new deep codesign methodology and framework for
developing clear interfaces, requirements, and metrics between each level of abstraction to enable the system design to be
explored and implemented interchangeably with execution, measurement, a model, or simulation. As a motivating ap-
plication for this codesign effort, we target the use of SNNs for an analog event detector for a high-energy physics sensor.

Keywords
microelectronics, codesign, spiking neural networks, neuromorphic materials, LLVM, chiplets

Introduction

Experts predict that computing systems will become more
specialized over the coming years (Hennessy and Patterson
2019; Ang et al., 2021; Li et al., 2020a; Dally et al., 2020;
Schulte et al., 2015; Vetter et al., 2018), and we are already
seeing evidence of this trend within computing architectures
for high performance, machine learning, and mobile sys-
tems. As this specialization happens, the coordinated de-
velopment of hardware, software, and algorithms—or
codesign—is critical to achieving the main goals of im-
proved power, performance, size, and effectiveness (Ang
et al., 2021).

To explore the concept of codesign, we are executing the
Abisko project to engage every level of the computing
hierarchy—from materials up through algorithms. The
overarching goal of this Abisko project is to develop an
energy-efficient spiking neural network (SNN) computing

architecture and software system. To this end, we are ex-
ploring novel neuromorphic devices that are based on
resistive-switching materials, such as tantalum oxide and
electrochemical RAM (ECRAM), for implementing these
SNN architectures. Taken together, Abisko is engaging
experts from across the entire range of disciplines:

1Oak Ridge National Laboratory, Oak Ridge, Tennessee
2Fermi National Accelerator Laboratory, Batavia, Illinois
3Sandia National Laboratories, Livermore, California
4Georgia Institute of Technology, Atlanta, Georgia
5Harvard University, Cambridge, Massachusetts
6Arizona State University, Tempe, Arizona

Corresponding author:
Jeffrey S. Vetter, Oak Ridge National Laboratory, One Bethel Valley
Road, Oak Ridge 37831-2008, USA.
Email: vetter@computer.org

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/10943420231178537
https://journals.sagepub.com/home/hpc
https://orcid.org/0000-0002-2449-6720
mailto:vetter@computer.org
http://crossmark.crossref.org/dialog/?doi=10.1177%2F10943420231178537&domain=pdf&date_stamp=2023-06-22

materials, devices, circuits, architectures, packaging, soft-
ware, and algorithms.

Our efforts consist of three key objectives. First, we are
designing an energy-optimized high-performance neuro-
morphic accelerator based on SNNs by using new materials.
This architecture is being designed as a chiplet that can be
deployed in contemporary computer architectures. Second,
we are concurrently developing a productive software stack
for the neuromorphic accelerator that will also be portable to
other architectures, such as field-programmable gate arrays
and GPUs. Third, we are creating a new deep codesign
methodology and framework for developing clear inter-
faces, requirements, and metrics between each level of
abstraction to enable the system design to be explored and
implemented interchangeably with execution, measure-
ment, a model, or simulation.

As a motivation, our effort will examine multiple real-
world uses of SNNs. Here, we will describe one of our
major design targets: using an SNN as an analog event
detector for a high-energy physics (HEP) sensor.

Spiking neural networks

The computational paradigm of neuromorphic computing
with SNNs offers the opportunity to realize machine
learning (ML) operations in hardware with orders of
magnitude improvements in energy efficiency when com-
pared with the current state-of-the-art digital hardware
(Tavanaei et al., 2019). SNNs are a bio-plausible version of
artificial neural networks (ANNs), in which the compute
units—or neurons—communicate by using binary-valued
spikes. A typical SNN has parameters for the neuron (e.g.,
firing threshold, leak) and parameters for the synapse (e.g.,
weight, delay). These SNN features provide the opportunity
to explore various material, device, and circuit properties
that align with the neuron and synapse dynamics. To fully
exploit the benefits of this computational paradigm for real-
world applications, the entire compute stack must be re-
defined for neuromorphic computing. Although there is a
tremendous amount of research on the development of
devices and materials for neuromorphic computers, this
research is often focused on one portion of the computing
stack and does not connect to applications, algorithms, or
even architectures, in some cases. Without the context of
higher levels of the compute stack, it is difficult to evaluate
the impact of these new materials and devices on the
performance of a full neuromorphic implementation.

Abisko overview

Our approach has been to assemble experts from each level
of the computing stack to design a specific hardware and
software system for a chiplet that provides the computa-
tional capability of a SNN. Our team will be organized into

six research thrusts along layers of the computing stack (See
Table 1): algorithms, software, architectures and integration,
devices and circuits, and materials. The algorithms thrust
will identify computational motifs for SNN algorithms and
tailor those motifs for our software and hardware interfaces
for SNN implementation. The software thrust will extend
the LLVM compiler ecosystem to create a compiler inter-
mediate representation for SNN execution and an asyn-
chronous instruction set architecture for general
neuromorphic computing. The architecture and integration
thrust will design a conceptual SNN chiplet, including the
models and tools needed to integrate it into contemporary
packaging technologies. The devices and circuits thrust will
model and simulate a range of neuromorphic devices and
interconnects by using computer-aided design simulation
and TCAD (Stettler et al., 2021) models to provide a
standard library of modules to the higher levels. The ma-
terials thrust will investigate new resistive-switching ma-
terials for energy-efficient neuromorphic devices that offer
scalability, CMOS compatibility, and good radiation char-
acteristics while simultaneously investigating more ag-
gressive molecular-based materials and ferroelectric
semiconductors. It will also identify new pathways to ab-
stract material performance to the device level by using
numerical compact modeling coupled with ML.

As shown, it is clear that each layer can be refined and
optimized internally; however, our deep codesign frame-
work is trying to formalize the abstractions and interfaces
across this design space and allow us to drive this process
automatically with experiment, simulation, and AI, which is
described in the Codesign section.

Motivating problem: Pixel detectors for
high-energy physics collider experiments

The HEP community is actively searching for a new par-
adigm to replace the standard model. After the discovery of
the Higgs boson in 2012 at the Large Hadron Collider
(LHC) (Aad et al., 2012; Chatrchyan et al., 2012), many
fundamental questions are still left unanswered, and signals
of long-sought new physics have not yet been observed. In
preparation for the High Luminosity Large Hadron Collider
(HL-LHC), the LHC detectors are undergoing major up-
grades, which include the replacement of the tracking
systems and the insertion of new subsystems for precision
timing to disentangle hard collisions from the background
of inelastic interactions per bunch crossing (pileup). The
pileup will dramatically increase in the HL-LHC—from an
average of 33 up to 200 events. The HEP community is also
planning to construct an electron-positron collider for op-
eration soon after the end of the HL-LHC, followed by a
hadron collider on a longer time scale. Higgs factories,
which can produce the Higgs boson for precision

2 The International Journal of High Performance Computing Applications 0(0)

measurements, are also being discussed as tools to discover
new physics (of Particles and of the American Physical
Society 2021).

Specifically, the pixel detectors currently planned for
the HL-LHC experiments include approximately
145,000 pixels per chip and read out an effective 11 bits
per hit at 750 kHz, which results in data rates of nearly
3 Gbps in the innermost chips, and nearly 400 pixels are
read out per event (Calligaris, 2020) (see Figure 1).

Fermi National Accelerator Laboratory is developing
next-generation pixel detectors with high spatial and tem-
poral resolution for future experiments in which data rates
will increase by orders of magnitude relative to the HL-
LHC. Some approximate numbers are listed here:

· Hit rates in the innermost tracking layers are expected
to increase from 3 GHz/cm2 at the HL-LHC to 10
GHz/cm2 at a future 100 TeV pp collider (Fleming
et al., 2019) (a 3× increase).

· Consequently, detector granularity will also need to
increase by a similar factor with pixel areas going
from 2500 µm2 to 625 µm2 (a 4× increase).

· Reading out precise time information for each pixel in
addition to the charge would increase data per pixel
from about 4 bits to 16 bits (a 4× increase for data
payload).

· Including full tracking information in the readout or
trigger would require an increase in readout rate from
750 kHz to 40 MHz (a 20× increase).

The eventual solution to this incredible data challenge
will involve a carefully optimized combination of many
strategies:

AI-enabled on-chip clustering that allows readout of
reduced cluster-level information rather than raw pixel-level
information; AI-enabled lossy data compression; and
physics-inspired, in-pixel data filtering.

The power consumption and area of the circuits for readout
and data processing must be kept manageable despite the
tendency for these to increase with detector resolution and
granularity. Strategies for managing power consumption and
area include using low-power smaller-geometry technology

nodes, power- and area-efficient circuit design, and using
novel beyond-CMOS structures, including the memristors
described in this work. The competing needs for significant on-
detector data processing and minimal power consumption
inspire the use of neuromorphic, reconfigurable AI/ML net-
works for local data processing. Themethods and technologies
developed to solve the problemwill have an impact on various
industrial applications that require compact, low-power sen-
sors with edge computing capabilities (e.g., autonomous
driving, edge IoT, industry 4.0).

Algorithms

Neuromorphic computers perform computations by using
neurons and synapses. An SNN is a network of these
neurons connected to each other via synapses. Compared
with ANNs used in deep learning applications, SNNs more
closely emulate biological neurons and synapses (Schuman
et al., 2017). In particular, time is an inherent component of
the computation for SNNs, unlike ANNs, in which time has
no such significance. In an SNN, neurons can leak charge
over time, and it takes time for information to travel from
one neuron to another along a synapse; this latency is re-
alized as either synaptic or axonal delay. These temporal
characteristics can differ from synapse to synapse and from
neuron to neuron. They can therefore add additional di-
mensions to the processing capability of an SNN.

Unlike deep learning approaches in which back propa-
gation and stochastic gradient descent have been popular
training algorithms, a single best training algorithm has not
been developed for SNNs. Instead, there are a wide variety
of different training algorithms, including those inspired by
back propagation but adapted for SNNs (Bohte et al., 2000),
evolutionary approaches (Schuman et al., 2016), reservoir
computing or liquid state machines (Schliebs et al., 2011),
and synaptic plasticity mechanisms, such as Hebbian
learning (Ferrari et al., 2008) and spike-timing-dependent
plasticity (Caporale and Dan 2008). The types of algorithms
most suitable for a given neuromorphic implementation
depend on the underlying architecture, devices, and ma-
terials of the implementation. Each training and learning
approach has its own requirements for the neuromorphic

Table 1. Codesign layers and interfaces for Abisko.

Layer Description

Application Design applications using SNN as a fundamental computing paradigm
Algorithms Develop suite of algorithmic motifs for neuromorphic computing; develop simulations of candidate application solutions
Software Develop meuromorphic programming abstractions implemented as C++ embedded DSL on LLVM/MLIR
Architecture Design neuromorphic chiplet as integrated in 2.5D or 3D with classic computing components
Devices Study Neuromorphic devices and circuits as (modified) TCAD models, simulations, and experimental data
Materials Perform atomic characterization of neuromorphic materials including resistive switching, electrochemical, and more

aggressive molecular-based candidates

Vetter et al. 3

implementation, such as dense, feed-forward connectivity
for back propagation-like algorithms and sparse, recurrent
connectivity for reservoir computing.

The neuromorphic algorithms developed in this work
leverage the model of neuromorphic computing proposed
by Date et al. (2022b). The neurons in this model are leaky
integrate and fire (LIF) neurons that have two parameters:
threshold and leak. Each neuron also has an internal state in
which signals from incoming synapses are accumulated
over time. The neuron leaks value from its internal state
based on its leak parameter. A zero leak implies that the
neuron instantaneously leaks all of its internal state, and an
infinite leak implies that the neuron never leaks its internal
state (i.e., it remembers its internal state until it spikes). If at
some point the internal state of a neuron exceeds the neuron
threshold, then the neuron spikes. After spiking, the internal
state of the neuron is set to the reset state, which is an
optional configurable neuron parameter. The spike, con-
sidered to be a binary value, is then propagated to all
outgoing synapses of the neuron. Each synapse has two
parameters: weight and delay. Each synapse multiplies the
incoming signal (spike) by its weight, stalls for a time
denoted by its delay, and deposits the signal into its post-
synaptic neuron. Several applications leverage this model of
neuromorphic computing in the literature, including neu-
romorphic graph algorithms (Kay et al., 2020, 2021;
Hamilton et al., 2020b), sparse binary matrix multiplication
(Schuman et al., 2021), spiking graph neural networks
(Cong et al., 2022), autonomous vehicles (Patton et al.,
2021), epidemiological simulations (Hamilton et al.,
2020a), classifying supercomputer failures (Date et al.,
2018), and many others (Aimone et al., 2022).

Spiking neural network classification

In this work, we employ the Evolutionary Optimization for
Neuromorphic Systems (EONS) algorithm to train SNNs

for the HEP application (Schuman et al., 2016). EONS
considers the parameters of the underlying hardware during
the training process, thereby making it quite promising for
this neuromorphic codesign effort. Apart from EONS,
several other evolutionary algorithms have also been
demonstrated for training SNNs (Parsa et al., 2021). EONS
begins by evaluating a number of sparse randomly con-
nected SNNs (population of networks), followed by se-
lection and reproduction operations, which include
introducing genetic changes (e.g., mutation and crossover)
to create the networks (called offsprings) for the next
generation of evaluation. The selection operation is deter-
mined by the overall fitness score obtained during the
evaluation phase, which in a classification task is typically
the accuracy measure. This sequence of steps proceeds until
the desired fitness score is reached.

As a motivating application, our interest in this algorithm
is how it can be applied to a pixel detector for the HEP
collider experiment as a demonstration of the neuromorphic
codesign effort. With this particular application, we would
benchmark the neuromorphic solutions for algorithmic and
architecture design requirements for an edge scenario.
Although the motivating problem (pixel detector) is from
HEP, the methods presented here would be applicable to a
broader class of problems that deal with temporal data. The
algorithmic approaches developed would inform the un-
derlying software and hardware architecture for an opti-
mized codesign approach.

As discussed in the previous section on pixel detection
for the HEP experiments, one of the tasks involves in-pixel
filtering: classifying the incoming sensor data into clusters
of high- or low-transverse momentum (pT) such that it
reduces the overall data transferred to off-pixel processors
by retaining and transferring only the high pT clusters.

The pixel detector’s simulated dataset consists of charge
values (in electrons) of the detected clusters. Each cluster is
a sequence of arrays of 13 × 21 pixels for 20 timestamps

Figure 1. End-to-end in-pixel filtering of particle charge clusters into high pT or low pT samples. Each real-valued incoming signal from
the 13 × 21 array is converted into spike streams. The inter-spike times are related to the rise and fall time of the signal waveform.
There are two input spike channels per sensor waveform: one corresponding to the rising edge (in brown) and another for the falling
edge (in cyan).

4 The International Journal of High Performance Computing Applications 0(0)

every 200ns. The dataset consists of over 4 million clusters,
with pT labels in the range [�4.9, 4.9]. The goal of the
classification task is to classify the clusters into high pT
(> 0:2 or <� 0:2), low positive [0,0.2] and low negative
[�0.2, 0] clusters. For our initial analysis, we consider only
the positive samples (i.e., pT ≥0). The dataset that we use is
not balanced in the two classes. Hence, for the training
process, we use only a subset of the high-pT samples equal
in number to the low-pT samples.

SNNs operate on binary valued events (or spikes)
sparsely distributed in time. As a preprocessing step of the
pixel detector dataset, each pixel waveform (real-valued) is
translated into temporal spike trains, with the inter-spike
interval proportional to the rising or falling time of the
waveform. The translation of data into streams of binary
events (spikes) would eventually be carried out by the front-
end electronics of the pixel. Figure 1 shows the overall
scheme of preprocessing the sensor data and classifying it
into high- or low-pT clusters with SNNs.

The original dataset provided has charge arrays for each
cluster at every 200ps. To convert the waveform into spike
trains, we perform an up-sampling of the original data to
capture the timing of the spikes as accurately as possible.
The time resolution of the encoding process can be set as a
hyperparameter in the classification process. The finer the
resolution, the more accurately the data is encoded as spike
trains; however, that also results in a higher number of time
steps for the SNN simulation. To begin with, we choose
50ps as the time step size to perform the encoding. Our
encoding process results in two spike trains per pixel, with
one that encodes the rising points and the other that encodes
the falling points in the waveform. There are many details
on how the physical pixels generate these rising and falling
points. These details can be expressed as parameters to the
simulated data encoding process, and through the codesign
effort, simulators can be used to evaluate the effect these
parameters have on the algorithm and neuromorphic
hardware.

After the encoding of real-valued signals into spike
trains, each input sample has 273 × 2 channels (for both
rising and falling edges). So, the SNN that we train has
546 input neurons and 2 output neurons. The training phase
has several hyperparameters (e.g., EONS configuration
parameters, number of epochs, number of time steps for
SNN simulation). The key EONS hyperparameters that we
consider in our study are population size of the solutions,
randomization fraction, and the starting number of hidden
nodes and edges within each network. As EONS training
proceeds, the networks can potentially grow or shrink de-
pending on the fitness of each generation. The optimization
across the entire hyperparameter space is conducted with the
Data-efficient Exploration Framework (DEFFE). Our initial
EONS training results are shown in Figure 2. Here, we ran
the training process for 10,000 epochs with a population

size of 100 networks and a randomization fraction of 0.1.
The training accuracy on the balanced dataset reaches 70%.
The trained SNN consists of about 700 neurons and
1000 synapses.

As next steps, we are exploring the possibility of further
reducing the number of input channels passed to the SNN.
We noted that the overall number of spikes required to
represent each of the signal waveforms is quite sparse, with
each channel having at most 4 spikes. Hence, we are
studying the secondary encoding process by looking at only
the rows or columns of the original sensor charge arrays.
This exploration will be carried out using the DEFFE
framework.

Spiking neural network regression

The next level of processing for the LHC detectors would
require the sensor values to be converted into physics in-
formation, such as the particle position and angle, which are
real-valued entities. This task will require regression al-
gorithms in which the learning model outputs real-valued
data. Although the neurons in an SNN can receive real-
valued inputs, their outputs can only be binary. So, the
current SNN models cannot return real-valued outputs as
required in a regression task. To effectively perform a re-
gression task, an SNN must be able to (1) encode real-
valued numbers up to a certain precision efficiently, (2) add
real-valued numbers up to a certain precision efficiently, and
(3) multiply real-valued numbers up to a certain precision
efficiently.

To address the encoding and the addition functionalities
above, we introduce the concept of the virtual neuron, which
allows a spike-based neuromorphic computing platform to
operate on and output rational-valued data. The virtual
neuron is a spatial encoding mechanism that leverages the
binary representation of numbers to encode rational num-
bers on neuromorphic computers. The virtual neuron is also
an adder, which takes two rational numbers as input and
returns their sum as output. Structurally, the virtual neuron is
composed of a group of LIF neurons and synapses that are
connected in a particular way. Functionally, the virtual
neuron mimics the behavior of an artificial neuron with
identity activation. The virtual neuron is an encoding
mechanism as well as an adder. It performs the addition
operation similar to a ripple carry adder.

Figure 3 shows a virtual neuron that takes two 2-bit
numbers X (x1, x0) and Y (y1, y0) as inputs on the left and
returns their sum Z (z2, z1, z0), a 3-bit number, on the right.
The output is simply read as a binary-encoded number. For
instance, if (z2, z1, z0) equals (1,0,1), then the output can be
interpreted as the number 5 because (1,0,1) is the binary
representation of 5. Although other neuromorphic encoding
approaches (e.g., rate-based encoding, time-based encod-
ing, binning) take exponential time, exponential space, or

Vetter et al. 5

exponential energy to encode rational numbers exactly, the
virtual neuron takes constant time ðOð1ÞÞ to encode
numbers exactly (Date et al., 2022a). For adding two
numbers exactly, the virtual neuron takes linear ðOðNÞÞ
time, whereas other neuromorphic approaches take either
exponential time, space, or energy or are incapable of
adding two rational numbers exactly.

We tested the performance of the virtual neuron on 8-,
16- and 32-bit rational numbers and verified that the virtual
neuron was able to correctly encode and add two rational
numbers (Date et al., 2022a). While the virtual neuron is an
essential component for neuromorphic regression, it can
also facilitate other applications. Figure 4 shows how the
virtual neuron can be used to implement the multiply
by �1 function on a neuromorphic computer. Figure 5
shows how a collection of OðN logNÞ virtual neurons can
be used to add N rational numbers in OðN logNÞ time. The
virtual neuron is also used to implement a few μ-recursive
functions in Date et al. (2022a). Finally, the virtual neuron
will be a vital component of neuromorphic compilers and
can be easily implemented in any neuromorphic language/
compiler, as shown in Figures 6 and 7.

Although the virtual neuron facilitates encoding and
addition, we still need an efficient way to multiply two
rational numbers exactly on a neuromorphic computer.
Multiplication will be the last piece of the neuromorphic
regression puzzle. To this extent, our future work consists of
developing the virtual synapse, which will be an efficient
method of multiplying two rational numbers exactly on a
neuromorphic computer. The virtual neuron and the virtual
synapse will allow us to perform regression tasks efficiently
on the neuromorphic processor. This will allow ML models
that run on a neuromorphic computer to output real-valued
outputs (e.g., particle position, angle, momentum) as re-
quired by the HEP application.

DEFFE (data-efficient exploration framework)

Domain-specific computing is a viable solution to meet the
performance and energy requirements of current and future
computing workloads. These computing cores provide
several runtime tunable knobs and lead to a co-optimization
problem to find the optimal set of architecture knobs for the
given workload and workload parameters. One of the
challenges of such a co-optimization approach is the size of
the search space. By some estimates, the combined search
space can easily exceed 100,000 samples.

DEFFE (Liu et al., 2020) addresses this challenge from
both methodology and infrastructure perspectives. The ML
model in DEFFE can exploit the correlation among different
workloads. By casting the performance estimation as
transfer learning tasks in ML, the modeling method in
DEFFE can drastically reduce the number of samples
needed when constructing the performance model of a new
workload kernel. On the infrastructure side, DEFFE pro-
vides a scalable computing platform to further reduce the
run time needed for performance estimation by harnessing
the parallelism of HPC clusters. The net outcome is that the
run time of a typical performance modeling task, which
could take a few months on a single-node computer, is
reduced to a few days by using the ML-learning method and
further reduced to a few hours when the simulation is ex-
ecuted on a 20-node cluster.

In a codesign environment like the Abisko project, there are
many design parameters that are driven by different levels of
the design stack. DEFFE automates the process of analyzing
these design parameters, thereby extending our ability to
explore the trade-offs of various design options. For example,
in the case of exploring SNN classification, DEFFE is con-
figured with adjustments for the conversion of the simulated
dataset’s charge values to spike pulses, adjustments for the
hyperparameters for the EONS training process, and adjust-
ments for the design and configuration of the neuromorphic
processor. Then, the DEFFE infrastructure can evaluate and
collect relevant metrics for each of these configurations by
calling our modeling tools with each configuration and then
parsing the output to collect metrics from that configuration.
DEFFE evaluates the specific configurations in parallel and
collects the results into a single table. By using DEFFE, the
setup of experiments is simplified. The DEFFE configuration
file specifies the adjustments that can be tuned and the metrics
to be collected. Scripts are added and used by DEFFE to take a
specific configuration and evaluate it. DEFFE then handles the
launching of each job on an HPC cluster to explore the design
space.

General-purpose computing outlook

Although most algorithms for neuromorphic computers are
ML approaches that determine an SNN to perform a

Figure 2. EONS Training curve for the positive pT clusters. In
this training simulation, we used only the positive pT samples
from the dataset with an equal number of high-pT and low-pT
clusters.

6 The International Journal of High Performance Computing Applications 0(0)

particular task, there is also an opportunity to leverage the
underlying computational characteristics of neuromorphic
systems to perform more general-purpose computation.
Neuromorphic computers are inherently massively parallel,
perform event-driven computation, and have colocated
processing and memory. These characteristics are useful for
solving a variety of other types of problems, including graph
algorithms, such as shortest path (Schuman et al., 2019;
Aimone et al., 2020); modeling epidemics (Hamilton et al.,
2020a); constraint satisfaction (Yakopcic et al., 2020); and
generating Markov random walks (Severa et al., 2018a).
However, the lack of programming abstraction for more
general-purpose uses of neuromorphic computing has
contributed to the lack of work in this area.

In recent years, several advancements have been made
toward the general-purpose applications of neuromorphic
computing. First, the Turing-completeness of neuromorphic
computing has been proven—this provides a compelling
theoretical argument that neuromorphic computers are capable
of general-purpose computation (Date et al., 2022b). In fact,
from a theoretical standpoint, neuromorphic computers can
perform all those operations that today’s computers can per-
form. The interesting question along this line of research is as
follows: if a neuromorphic computer is made to do everything
that today’s CPUs/GPUs can do, then does it retain its energy
advantage? The second advancement toward general-purpose
neuromorphic computing has been the development of the
computational complexity theory for neuromorphic algorithms
(Date et al., 2021). This allows us to compare neuromorphic
algorithms to their conventional counterparts in the most
theoretically fair manner possible. Some efforts have also been
made toward developing the theory of energy complexity
(Kwisthout and Donselaar 2020) and benchmarking the en-
ergy consumption and latency of neuromorphic systems
(Kösters et al., 2022). These efforts, along with a strong focus
on developing a neuromorphic programming language, a
neuromorphic compiler, and a neuromorphic runtime system,
are critical to fully realizing the potential of general-purpose
neuromorphic computing.

Software

The Abisko software aims to implement a powerful system-
level C++ neuromorphic programming infrastructure that

Figure 3. A virtual neuron that takes two 2-bit numbers as input (X and Y) and returns their sum, a 3-bit number, as output (Z).

Figure 4. Multiply by �1 function enabled by the virtual neuron.

Vetter et al. 7

enables the integration of conventional and neuromorphic
compute architectures. At the same level, the Abisko
software has a strong focus on HPC technologies. One
objective for the Abisko software stack is to scale the main
neuromorphic processes (e.g., data encoding and decoding,
SNN training and inference, and structural analysis of
SNNs) to leverage their optimization at HPC scales as an
effort to deploy an HPC framework for neuromorphic
computing development.

Neuromorphic programming language

Within Abisko, the program specification is based on a
domain-specific language—the Aurora programming lan-
guage. The Aurora language is a functional and declarative
language implemented by using the Embedded Compiler
Construction (eCC) framework (Gonzalez-Tallada et al.,
2022). This framework enables the embedding of domain
specific languages within the C++ programming language.
Aurora is defined with the eCC API, and the language is
embedded in C++ and reuses all the existing C++ infra-
structure. This strategy has proven extremely useful in

Figure 5. Adding N rational numbers using OðNlogNÞ virtual neurons in OðNlogNÞ time. Each circle in the figure represents a virtual
neuron.

Figure 6. Extract of Virtual Neuron graph specification in Aurora.
Layers are defined and combined with Range type variables,
which generates Views of the nodes in the graph layers. Usage of
Connect operator to connect elements in the graph. Usage of
Synapse type, which is a derived type from EdgeType native type
in Aurora.

Figure 7. Aurora definition of a function to generate a LIF instance
and update internal parameters of the LIF data model.

8 The International Journal of High Performance Computing Applications 0(0)

heterogeneous programming because it enables domain-
specific compiler technology (e.g., ML (Jin et al., 2020),
quantum computing (McCaskey and Nguyen 2021), tensor
algebra (mli 2023)).

The Aurora language is designed to specify the com-
putation as an SNN. The network is described as a graph
composed of nodes that correspond to neuromorphic
computing elements such as neurons and synapses. Edges in
the graph represent connections among these computing
elements. This program representation is widely used across
common neuromorphic programming systems. In general,
these systems originated from neusoscience frameworks
(e.g., Brian (Stimberg et al., 2019), NEST (Gewaltig and
Diesmann 2007), Arbor (Abi Akar et al., 2019), Nengo
(Sharma et al., 2016), and Rasmussen (2018)) or even from
deep learning frameworks (e.g., PyTorch (Paszke et al.,
2019), TensorFlow (Chien et al., 2019)), which have been
adapted or extended to provide support for neuromorphic
computing. Additionally, these neuromorphic systems rely
on application-level languages (e.g., Python) that target
vendor-specific coprocessor types, thereby limiting
benchmarking and portability. The Aurora language was
designed to incorporate the advances from all these past
experiences. For example, the Aurora language includes
graph data types and operators (e.g., Node, NodeSet, Layer)
to specify the nodes in the graph and native types (e.g.,
Edge, EdgeType) to represent connections. Aurora also
includes specific native types and operators to define data
models associated to the elements of the graph (i.e., nodes
and edges). Within Aurora, both aspects are kept totally
separate. In this regard, Aurora follows a similar approach
as followed by Kozloski and Wagner (2011).

The code in Figure 6 shows an extract of the Virtual
Neuron specification. Several layers are defined (lines 1–2),
and then a 1D view is used to create the neurons in each
layer (lines 4–7). Data views are generated when a Layer is
used with operator []. The View data type is introduced
to define a logical grid organization of the nodes within a
layer. In this case, the 1D view is only used to describe how
the nodes in the layers must be created. But when using a
view, no data layout in memory is assumed. The compiler
will later derive which data layout is optimal for the final
graph implementation. Aurora also includes the Range data
type to represent value ranges of primitive types such as
natural, integer numbers. Ranges become useful when
describing data views. In the example, nodes in layers are
connected with edges (lines 8–9). Ranges appear in a 2D
view. In frameworks based on application-level languages
(e.g., Python), this would require the use of iterative
structures in which in each iteration of the graph elements
would have been connected. Moreover, this would usually
determine the memory layout to implement the graph. In
Aurora, data views remove all of this, and the code is not
used to implement the graph; instead, it is used to describe

the graph and allow the compiler to find an optimal im-
plementation. Aurora includes specific constructs and op-
erators to connect the elements in the graph. For example,
the Connect operator connects a pair of nodes (lines 10–11).
A 2D view and a Range are combined to relate the nodes
from two layers (e.g., x_pos and bits_pos). The nodes
correspond to Neurons generated in the create_neuron
function. The edges correspond to Synapses. In both cases,
these two types correspond to data models and are com-
pletely orthogonal to the actual graph structure.

Data models in Aurora follow a similar approach as in
NEST. Figure 7 shows the code for the function in which a
Neuron is created. The Neuron corresponds to the LIF data
model. A model instance is generated with a variable of type
LIF. The data members of the LIF model are updated by
using dictionary-based access methods (Figure 7). This is a
common feature used in many previous neuromorphic
frameworks, and Aurora includes it. A data model speci-
fication is divided into three sections (Figure 8). The first
two sections correspond to constants and global variables
associated with the model, which are shared by all instances
of the model. Section Data corresponds to values for each
instance of the model (i.e., per each Neuron in the example).
The Aurora data models allow the compiler to identify read-
only data, data shared among all model instances, and per-
instance data. This is essential to enabling optimal data
layouts (e.g., Struct-of-Arrays instead of using Array-of-
Structs) or using specific memory levels within the memory
hierarchy (i.e., map constant values to GPU-specific
memory components such as constant and texture mem-
ory and data values to shared memory). In general, data
models in Aurora allow for introducing any neuromorphic
functionality (e.g., spike recorders, encoding and decoding
schemes). These can be introduced as data models and
instantiate them within the graph as layers connected with
other elements such as neurons and synapses. These
functionalities and others are supported as libraries that
contain data models similar to how high-level programming
languages support data type abstractions (e.g., vectors, lists,
queues, STL in C++, modules in Python).

In Aurora, the computations associated with a data
model are specified as Phases. A Phase identifies a com-
putation that by default is totally parallel among the in-
stances of the data model. In the case of the LIF model, the
update phase includes the code that describes the dynamic
of this neuron type (we omit its code for brevity). Similarly,
the Synapse model includes its computations as phases.
Aurora includes for all operators to indicate the exe-
cution of a phase across a subset of graph elements (e.g., a
NodeSet, a Layer, or a single Node). Consequently, the
computation of an Aurora program corresponds to the
execution of a sequence of phases over the graph elements.
Each phase activates a set of graph elements in parallel. The
Aurora language deploys a massively parallel execution

Vetter et al. 9

model that matches the inherent parallelism in SNNs. This
makes it possible for common tasks within the neuro-
morphic domain (e.g., data encoding and decoding, infer-
ence and training processes) to be accelerated with HPC
technologies. Abisko targets the acceleration of existing
optimization algorithms (e.g., EONS (Schuman et al.,
2020), Spike Timing-Dependent Plasticity (Caporale and
Dan 2008)) or back propagation–based training algorithms
(e.g., Slayer (Shrestha and Orchard 2018), Whetstone
(Severa et al., 2018b)).

Overall, Aurora presents two main advances within the
neuromorphic computing domain. First, its declarative
approach totally decouples the graph and model descrip-
tions from their actual implementation. The memory layout
of graphs and models and when memory is actually allo-
cated is never under the programmer’s control. Second, its
massively parallel execution model makes explicit the
available parallelism inherent in SNNs. With these two

features, it is possible to design the necessary compiler
technology for high-performance neuromorphic computing.

Neuromorphic compiler

The Abisko compiler, nmhpc, targets a distributed-memory
heterogeneous architecture composed of nodes with con-
ventional processors (i.e., CPUs, GPUs) and neuromorphic
coprocessors. For the former case, nmhpc implements
analysis, optimization, and code generation phases for three
main tasks. nmhpc must analyze the graph that represents
the neuromorphic Aurora program to generate an optimal
memory layout for the graph implementation. Second, the
nmhpc compiler must generate code for all computational
kernels associated with model phases described within the
neuromorphic program. Finally, the nmhpc compiler must
elaborate the graph cuts to distribute the graph computations
across the computational resources. This work distribution
happens at two levels: between the nodes and then inside the
node, thereby distributing work between the conventional
processors and coprocessors. The graph cutting process
implies the use of performance models to estimate both the
weight of computations and the communications. The de-
sign of the nmhpc compiler follows a strategy based on
targeting different runtime systems. The Abisko runtime
systems (1) implement the required functionalities to in-
stantiate the graph that represents the program, (2) operate
with it (e.g, allocate the graph, deploy a namespace for
nodes and edges and primitives to access the data models),
and (3) support the execution of phases (e.g, threading,
SIMD, GPU acceleration), message passing primitives for
communication across the graph cuts, and graph cut al-
gorithms based on performance models.

The Abisko compilation process is shown in Figure 9.
The actual Aurora embedding happens in steps 1, 2, and 3 in
Figure 9, where C++ libraries implement the Aurora lan-
guage as an API. Aurora code (step 4 in Figure 9) is
compiled with the C++ standard compiler to generate an
executable that links with the libraries that implement the
Aurora language. Its execution instantiates the neuro-
morphic program representation by using a multilevel in-
termediate representation (IR) similar to that of the MLIR
(Lattner et al., 2021) compiler infrastructure. Program
verification is based on this IR (step 5 in Figure 9), which is
later lowered for optimization and final code generation
(step 6 in Figure 9). After the program is verified, nmhpc is
designed to allow two paths within the compilation process.
One option is to target the MLIR/LLVM infrastructure for
optimization and final binary generation. For this purpose,
nmhpc includes a back-end code generation phase that
emits MLIR code and allows the output of nmhpc to enter
the MLIR compiler infrastructure. This makes it possible to
implement lowering stages of the nmhpc IR to reach a
program representation using the MLIR LLVM dialect (path

Figure 8. Aurora example of a model specification for a LIF
neuron type. Constants, global variables, and per-neuron data
are separated in different sections.

10 The International Journal of High Performance Computing Applications 0(0)

6.1 in Figure 9). It is also possible to lower the nmhpc IR to
reach an MLIR-based representation by using other dialects
located at higher levels of abstraction within MLIR (path
6.2 in Figure 9). Finally, nmhpc includes code generators
that target C++ (path 6.3 in Figure 9).

When targeting a neuromorphic coprocessor, the main
task of the nmhpc compiler is to generate bit streams from
the actual program representation in Aurora. These bit
streams conform to the specifications of the neuromorphic
architecture. The nmhpc compiler must generate configu-
ration bit streams or packets to configure the neuromorphic
coprocessor. Similary, the nmhpc compiler generates
packets that result from encoding/decoding processes to be
sent to and from the neuromorphic coprocessor. The nmhpc
also targets a runtime system in which the primitives for
configuring and operating the neuromorphic coprocessor
are implemented. In this regard, the neuromorphic copro-
cessor is treated as a conventional coprocessor, meaning that
the Abisko software includes similar functionalities as
CUDA/HIP to move data to and from the host and device
and to activate and offload a computation.

Architectures

One hallmark of contemporary microelectronics research is
heterogeneous integration. By allowing different semi-
conductor technologies (e.g., digital, analog, DRAM, car-
bon nanotube) to be closely integrated by 2.5D (e.g., silicon
bridge and interposer) or 3D (e.g., TSV, hybrid bonding),
heterogeneous integration can achieve better performance at
a lower cost compared with monolithic integration. Our
objective in this task is to use heterogeneous integration to
realize an agile codesign platform. More specifically, we
plan to use 3D integration to implement traditional von
Neumann processing cores (e.g., open-source RISC-V
cores) with neuromorphic coprocessors. At a high level, our
heterogeneous integration approach has the following
distinct advantages: (1) it enables rapid feedback between

the realistic applications and the material and device re-
search choices, (2) it enables the intelligent design-of-
experiment to explore novel material science and device
research by leveraging intelligent ML sampling techniques,
and (3) as a demonstration vehicle of neuromorphic com-
puting, the traditional von Neumann cores can perform
crucial data prepossessing tasks for neuromorphic training
in real time.

The architecture task is positioned in the middle of the
codesign stack and ties together the higher-level neuro-
morphic algorithms thrust with the lower-level neuro-
morphic circuits thrust. The architecture thrust takes the
circuit-level implementation of a neuromorphic element and
is tasked with defining the architecture for how multiple
core circuits will be structured to build up a complete
neuromorphic chip. There are many ways a neuromorphic
chip could be designed when considering impacts on the
operation of the devices and algorithmically how the system
can be used. As part of the codesign effort, the architectures
thrust will evaluate different architectural decisions con-
cerning the design choices in the software stack, circuit
design, and device properties. We are leveraging modern
tools (e.g., SIAM (Krishnan et al., 2021)) and high-level
design languages (e.g., high-level synthesis and Chisel) to
rapidly evaluate and prototype architecture design options.
Additionally, we are leveraging DEFFE to further automate
and accelerate design space exploration.

Multiple neuromorphic architectures exist, including
mixed-analog architectures (e.g., Neurogrid (Benjamin
et al., 2014), Braindrop (Neckar et al., 2019), and Brain-
ScaleS (Schemmel et al., 2010)) and digital neuromorphic
designs (e.g., TrueNorth (Akopyan et al., 2015) and Loihi
(Davies et al., 2018)). However, the Abisko architecture
effort is novel based on the codesign integration with a
unique software compiler, the exploration of new neuro-
morphic devices, and the exploration of new microelec-
tronic design trends and standard interfaces. Specifically,
the architecture thrust is exploring three main fronts in the

Figure 9. Abisko compilation process. Abisko is embedded in C++ using the eCC framework. Aurora programmers do the actual
programming using the C++ API that implements the Aurora language within C++.

Vetter et al. 11

design of a neuromorphic processor: (1) the use of chiplets,
(2) the interface between the neuromorphic and traditional
von Neumann processors, and (3) the benefits of new 3D
chip processes. The following sections elaborate further on
each of the research fronts.

Chiplet-based design

A chiplet-based design uses smaller functional dies, called
chiplets, that are built independently and then are connected
together with an interposer to form a single 2.5D or 3D
chip. As highlighted by Stark (2019), there are many
benefits to a chiplet-based design, including reduced in-
vestment costs, lower cost of specialization, lower pro-
duction costs, shorter time-to-market, lower supply risks for
OEMs, and simpler architectural partitioning. Many of these
benefits come from the reusability and functional parti-
tioning that chiplets provide. The ability to use mixed-
process nodes is of great benefit to reduce cost and for
novel device designs, which benefit from specialized pro-
cess nodes. Mixed-process nodes also provides additional
benefit in the Abisko project as we explore various neu-
romorphic devices and materials, which can be far less
mature than traditional semiconductor devices.

As part of the Abisko architecture effort, we explore how
a neuromorphic architecture could benefit from the use of
chiplets. From a high-level perspective, there are three main
chiplet types that constitute a chip (as illustrated in
Figure 10): traditional von Neumann chiplet(s), neuro-
morphic chiplet(s), and memory chiplet(s). The von Neu-
mann chiplet manages the operation of the neuromorphic
chiplet and could be used to configure networks, interface
with traditional computers and sensors, and implement
more advanced on-chip learning algorithms. The memory
chiplet provides shared storage for the von Neumann and
neuromorphic chiplets.

As shown in Figure 11, the neuromorphic chiplet
evaluates the SNN and is built from digital or mixed-signal
circuits that implement the neurons and synapses. There are
other chiplets that could also be included in the design. For
example, a hardened I/O interface could directly convert a
data stream into spikes to be fed directly into the neuro-
morphic chiplet, thereby bypassing slower software-based
spike conversion by the von Neumann processor.

There are many open questions that we are addressing in
this effort, including how the neuromorphic chiplet should
be structured. The new devices are used to build neuro-
morphic circuits, then the circuits are used to construct a
neural core that implements some number of neurons, and
finally the cores must be connected together to form the
chiplet. There are also scalability questions. How many
neurons and synapses should a chiplet implement? How can
networks scale to multiple chiplets on a chip? How about
across multiple chips in an accelerator? Once the chip is

built, how will the software stack compile code to be
mapped onto the hardware? We plan to answer these
questions by modeling different architectural designs and
analyzing the designs for power, area, scalability, and
performance.

Interface and communication

There are multiple challenges with designing the interfaces
between chiplets and between traditional and neuromorphic
processors and still more challenges with communication at
multiple scales within the neuromorphic processor.

Chiplets are still emerging as a standard in chip design,
and multiple chiplet interfaces and standards are being
proposed, including UCIe (Sharma 2022), BoW (Ardalan
et al., 2020), AIB (Kehlet et al., 2017), OpenHBI (McLellan
2020), and Cadence Ultra-Link. As part of the chiplet-based
design, we are evaluating if one of the emerging standards
can be used to connect the chiplets or if a custom neuro-
morphic interface would be better suited for spike-based
communication. For each chiplet in the complete design, the
physical interface between the components must be defined.
The interface will impact the number of vias required to
make the connection and the bandwidth and latency
available over the link.

There are also multiple options on how to interface
between a von Neumann and a neuromorphic processor.
One commonly used method is to define a packet structure
and have the traditional processor generate configuration,
input, and execution packets. These packets are then sent to
the neuromorphic processor, which parses and executes the
packets and generates output fire packets and status packets.
A DMA engine is commonly used to send commands stored
in memory as packets to the neuromorphic processor.
Another method would be to treat the neuromorphic pro-
cessor as a memory-mapped accelerator with addresses
defined to control the operation of the accelerator. A third
method could be adding custom instructions to the von
Neumann processor and having these instructions directly
executed on the neuromorphic processor for a very tight
integration.

There is also the challenge of how to route the native
spiking packets at different scales, internally within the
chiplet, between chiplets, and between chips as the design is
scaled. Spike-based communication is different from tra-
ditional communication (Young et al., 2019). The challenge
comes both from the large number of messages that contain
a small amount of data and from the time-sensitive nature of
the spike packets. SNNs rely on binary fire events, which
must be routed to potentially thousands of destinations per
fire event. These spikes are typically encoded into packets
through Address-Event Representation (AER). Traditional
AER packets only store the address or destination of the
event, and the presence of the packet represents a fire.

12 The International Journal of High Performance Computing Applications 0(0)

Neuromorphic communication systems can be categorized
by the network structure of the routers and by the infor-
mation used to route packets, as shown in Figure 12. The
most common router structures are grid and hierarchical tree
routers. Packets can then be routed based on a source ad-
dress or a destination address. Some neuromorphic systems
have combinations of these options with different levels of
routing using different network structures or routing
methods. The challenge for the Abisko design is how to
handle spike packet routing within a chiplet, between
chiplets, and between chips as the scale of the network
increases.

Benefits of face-to-face 3D integration

As a preliminary study, we evaluate the benefit of face-to-
face die bonding. To demonstrate the benefits of codesign,
we implement a digital convolutional neural network
(CNN) model from a pixel detector used in HEP experi-
ments. The top-level of the CNN implementation is a five-
stage pipeline, in which each stage implements a CNN layer
as shown in Figure 13. The implemented CNN model has a
fixed network structure, but the weights can be configured at
run time via a scan chain. The implementation target is a

28 nm CMOS technology that uses a customized design
flow. In the 2D case, only six metal layers are used. In the
3D case, face-to-face bonding is used, as illustrated in
Figure 14.

An in-house model generator is implemented in Python,
and it flattens a pretrained CNN model and generates high-
level synthesis (HLS) code for each layer. The generated
HLS code is then synthesized with the HLS tool to gen-
erate the RTL for the ASIC design. Commercial tools from
Synopsys and Cadence are used for logic synthesis and
physical design. To explore the benefits between 2D and
3D design flows, we use the pseudo-3D partitioning ap-
proach (Park et al., 2020). The partitioning step uses the
same RTL, which generated the tier location. For 2D
design, this step is simply skipped. Figure 15 shows the
placement results of the 2D and 3D design flows. Notably,
for the 2D flow, the SRAM components are placed on the
sides of the logic. For the 3D design, the SRAM arrays are
placed on the top tier. The comparison of the routine is
shown in Figure 16. The performance comparison between
2D and 3D cases are tabulated in Table 2. In addition to
simple metrics such as wire length, leakage, and switching
power, we also list comprehensive metrics such as PDP
(power delay product) and EDP (energy delay product).

Figure 10. Overview of Abisko chiplet design.

Vetter et al. 13

Figure 11. Abisko chiplet design with novel neuromorphic materials.

14 The International Journal of High Performance Computing Applications 0(0)

The comprehensive results show that the 3D design ap-
proach achieved 30%–40% improvements over the 2D
implementation.

Devices

Neural network inference and training based on analog in-
memory computing (AIMC) can achieve energy efficiency
(i.e., performance per watt) 2 orders of magnitude beyond
what is possible with digital CMOS (Xiao et al., 2022b).
This is made possible by implementing common matrix
operations (e.g., vector matrix multiply [VMM]) with a
technique that is more natively matched to this operation
than traditional von Neumann approaches (see Figure 17).
In this technique, the neural network weights are stored in
an analog array of tunable resistors. The VMM operation
requires a multiply, which is accomplished using ohm’s law,
and a sum over each column, which is provided by
Kirchoff’s current law, as illustrated in Figure 17(b). A
complete VMM operation can be accomplished in a single
parallel step, thereby avoiding the complex data shuttling

between registers and execution units that is required by von
Neuman systems.

One of the key challenges for AIMC is that accuracy is
typically degraded compared to a digital processor because
analog tunable resistors in Figure 17(b) must be programmed
to a conductance that represents a corresponding 8-bit weight
in the neural network. However, it is typically not possible to
program a large array of memory devices precisely to
256 discrete levels. Instead, devices are programmed to
conductance values that represent the weight as closely as
possible but include an error tolerance that is a function of
device attributes (e.g., stochasticity and short-term drift). This
programming error depends on the specific device being use
for neural network weight storage (sometimes referred to as a
synaptic device). Despite this programming error, it is possible
to obtain high inference accuracy even on modern deep CNNs
that use AIMC circuits thanks to the averaging over many
values in each column. The accuracy possible for a particular
CNN and dataset (e.g., ImageNet running on ResNet-50)
depends on the details of the device being used to represent the
weight and the error at a given conductance (Xiao et al., 2021b,
2022b).

Figure 12. Graphical summary of neuromorphic hardware communication systems. The top half of this figure summarizes the routing
schemes used by the neuromorphic systems, and the bottom half summarizes the routing methods (Young et al., 2019).

Vetter et al. 15

Resistive random access memory (ReRAM) (Marinella
et al., 2018), phase-change memory (PCM) (Burr et al.,
2010; Raoux et al., 2008), and SONOS (Xiao et al., 2022b)
are the most mature in-production nonvolatile memory
devices being considered as the tunable resistor in
Figure 17(b). The programming error of each of these
devices is typically characterized as a function of con-
ductance, which is plotted in Figure 18 for ReRAM, SO-
NOS, and PCM. The SONOS (green curve) has the lowest
error at low conductance, and this is ideal behavior and
provides the highest CNN inference accuracy (Xiao et al.,
2021b, 2022b). A drawback of SONOS is the slow drift of

the state following initial programming, but this can be
significantly accelerated under modest ionizing radiation
(Xiao et al., 2021a). Metal-oxide based ReRAM is generally
robust to ionizing radiation (Marinella 2021) but has a
higher programming error, especially at low conductances
(blue and violet points in Figure 18). Notably, this type of
programming error benchmarking is in early stages and
does not yet represent the full potential of ReRAM. As part
of the Abisko project, we are investigating new write-verify
and filament-forming techniques that are expected to reduce
the programming error and enable radiation-hard AIMC.

SONOS stores analog states as a charge trapped in the
nitride layer between the channel and gate of a MOSFET, as
shown in Figure 19(b). SONOS is particularly attractive due
to its technological maturity and CMOS compatibility.
Motivated by these factors, high accuracy inference on
40 nm SONOS arrays was recently demonstrated at 8 bits
(Agarwal et al., 2019). However, exposure of these arrays to
a total ionizing dose (TID) of 10–100 krad(Si) can degrade
the accuracy of ANNs from >90% to <10% due to shifts in
the SONOS MOSFET threshold voltage and therefore the
channel conductance, as shown in Figure 19(c) (Xiao et al.,
2022a). The reason for state loss and accuracy degradation
stems from TID being very effective at generating charge in
the trap layer, particularly holes, and this forces the
MOSFET threshold voltage in the program 0 state to mi-
grate toward lower values.

The sensitivity of SONOS to relatively low levels of
radiation render it and other charge-trapping memory
(CTM) variants (e.g., flash) as unlikely candidates for in-
sensor data processing for high-radiation environments.
Nevertheless, developing and experimentally validating a
compact model for SONOS represents a valuable
knowledge-generating activity for modeling other three-
terminal analog nonvolatile memories such as ECRAM.
To this end, we have recently developed a well-poised
physics-based compact model for a SONOS analog syn-
aptic element in collaboration with Yi et al. (2022). The
model contains a nonvolatile memristor with the state
variable QM to represent the memristor charge under the
gate of the three-terminal element. By incorporating the
exponential dependence of the memristance on QM and the
applied bias V for the gate, the compact model agrees
quantitatively with the results from Technology CAD
simulations as well as experimental measurements for the
drain current (Figure 19(d)). This compact model can now
be used for design of analog ANNs based on CTMs.

In addition to ReRAM, PCRAM, and SONOS, other
device types have been investigated as potential solutions to
enable energy-efficient analog ANNs, including electro-
chemical metallization cells (Valov et al., 2011; Liu et al.,
2013; Barbera et al., 2015) and ferroelectric memristive
devices (Chanthbouala et al., 2012; Yang et al., 2013).
Performance limitations that currently prevent these

Figure 13. Topology of the CNN model. The numbers in each
module indicate the number of weights, and the numbers
between each component indicate the sizes of I/O tensors. The
CNN model is implemented as a five-stage pipeline.

16 The International Journal of High Performance Computing Applications 0(0)

technologies from challenging digital solutions include
excessive write noise (Yang et al., 2013; Terai et al., 2010;
Close et al., 2010), write nonlinearities (Strukov and
Williams 2009; Menzel et al., 2011; Athmanathan et al.,
2016; Chen et al., 2015b; Burr et al., 2015), high switching
voltages and currents (Wong et al., 2010; Kim et al., 2010;
Chen et al., 2015a), and, most problematically, high read
currents (Marinella et al., 2018). A promising avenue to
address these challenges is to add a third electrode, the gate,
to decouple the read and write operations. Two prominent
examples of three-terminal nonvolatile analog memory
devices are SONOS CTM (Agarwal et al., 2019) and
ECRAM (Talin et al., 2022). ECRAM was pioneered by
Talin and colleagues at Sandia National Laboratories with
the demonstration of the Li-ion synaptic transistor in
2017 and has emerged as another promising platform for

neuromorphic computing (Talin et al., 2022). In ECRAM, a
gate is used to drive defects (e.g., Li ions, protons, or
oxygen vacancies) from a reservoir layer in and out of a
channel to control its electronic properties (Figure 20(a)).
An electronically insulating solid-state electrolyte that al-
lows only the motion of the mobile defects is what separates
the channel and the reservoir. Just like SONOS, ECRAM
decouples the read and write operations to enable linear,
symmetric switching with low read and write currents. A
principle advantage of ECRAM compared to a CTM is the
much higher charge density available for tuning analog
states. Our recent analysis of SONOS reveals a charge trap
density of ≈ 1019/cm3, or approximately 1 out of every
1000 atoms2. For ECRAM based on transition metal oxide
channels (e.g., LixCoO2, TiOx, or WO3-x), every transition
metal in the lattice, or ≈ 1022/cm3, is capable of changing its

Figure 14. Cross-sectional view of the material stack.

Figure 15. Placement comparison between 2D and 3D designs. SRAM arrays are placed on the sides in 2D and on the top tier in the 3D
case. The modules are colored as conv0 (red), pool (yellow), conv1 (blue), dense0 (green), and dense1 (white).

Vetter et al. 17

redox state and is thus available for tuning and storing
analog states (Talin et al., 2022). Long-term retention,
however, remains a major challenge for ECRAM.We define
true retention as measured at 85°C with the gate grounded
(or shorted to the source). Previously, we demonstrated a
retention of ≈3 h for TiOx ECRAM that utilizes YSZ solid
electrolyte (Li et al., 2020b). More recently, we demon-
strated in collaboration with Y. Li’s group at the University
of Michigan that a retention of ≈10 years is feasible for
WO3-x/YSZ ECRAM, as shown in Figure 20 (Kim et al.,
2022).

Materials

Neuromorphic algorithms can be implemented by a com-
bination of nonlinear conductance with time-retention
(memory) that can be further programmed with voltage
waveforms (Di Ventra and Traversa 2018; Yang et al.,
2013). By contrast, semiconductors in ideal circum-
stances exhibit no memory effects. Although a fairly large
number of devices that exhibit both nonlinearity and
memory have been demonstrated, the descriptive and
predictive understanding of the enabling phenomena is not
on the same mature level of semiconductor physics (Nili
et al., 2020b; Brown et al., 2022). Given that codesign of
modern semiconductor circuitry presently occurs across all
contributing length scales (i.e., from atoms to architectures
(Stettler et al., 2021)), the argument in favor of fundamental
understanding of material mechanism that can best im-
plement specific neuromorphic functions is very compel-
ling. However, the intrinsic challenge is that both nonlinear
and memory functions imply that the desired properties
originate from non-equilibrium behavior (generally tran-
sient, metastable, and temporal), so that many trusted
methodologies for materials design will, at best, have
limited applicability to the neuromorphic paradigm. Some
of the specific challenges that arise from incomplete un-
derstanding of nonlinear device mechanisms include the
limited level of reproducibility and predictability over re-
sistive switching devices, the challenge of long-term re-
tention of their programmed characteristics, and even well-
defined, physics-based compact models that abstract the

Figure 16. Top-level shape comparison between 2D and 3D designs. The 3D layout includes two metal layers of the bottom tier to
illustrate 3D nets (in red), when compared with 2D nets (in yellow).

Table 2. Full-chip power, performance, and area comparison.
The percentage values in the last column indicate the
improvements with the 3D design.

Design Full-chip design

2D 3D Imp. 3D, %

Effective freq. (MHz) 742 881 18.7
Footprint (mm2) 3.9 1.7 56.4
No. of cells 892K 806 K 10.0
Wire length (m) 64.7 40.6 37.2
Total power (mW) 1954 1549 20.7
→ Internal power (mW) 995.9 826 17.1
→ switching power (mW) 957.5 688 28.1
→ Leakage power (mW) 40.7 34 16.4
PDP 2633 1758 33.2
EDP 3549 1996 43.8

18 The International Journal of High Performance Computing Applications 0(0)

device properties for further integration with computing
architectures (Gao et al., 2021; Dao and Koch 2020;
Hamdioui et al., 2017; Brown et al., 2022).

In the Abisko project, we are pursuing a multimodal
approach to observe nanoscale processes in candidate
neuromorphic materials and connect the observation to
device performance and eventually device models. The first
task is to develop a combination of quantifiable nanoscale
characterization techniques that can directly reveal the
connection between conductance and material structure
with nanoscale spatial resolution. The most promising
emerging experimental techniques for this task are scanning
microwave impedance microscopy, cathodoluminescence
microscopy, and spatially resolved time-of-flight secondary
ion mass spectroscopy. Notably, these techniques have not
been extensively applied to neuromorphic materials, par-
ticularly in combination. However, their advantages stem
from the ability to gain complementary signals with high
spatial resolution and the ability to quantify the observed
signals.

Microwave microscopy directly measures local con-
ductance with nanoscale resolution while minimizing the
effects of poor contact resistance (Barber et al., 2022; Chu
et al., 2020). Some teams have successfully applied this
methodology for quantitative measurements of local

domain wall conductivity in ferroelectric materials (Burns
et al., 2022; Tselev et al., 2016). From the functional point of
view, the locally conductive domain walls in ferroelectrics
and filamentary structures in resistive switching materials
are reminiscent of each other, including their characteristic
nanoscale dimensions, two-terminal nonlinear conductance,
and memory effects. Meanwhile, cathodoluminescence
enables direct characterization of electronic structure, de-
fects, and trap states (Coenen and Haegel 2017). Inves-
tingating the electronic structure of most practically relevant
materials, including amorphous solids, dirty semiconduc-
tors, and even metal-insulator systems, has been a chal-
lenging goal for a very long time, and any new insights will
be highly relevant for neuromorphic applications. Finally,
another technique called Time-of-Flight Secondary Ion
Mass Spectrometry (TOF-SIMS) complements the above
measurements with direct chemical sensitivity to ionic
diffusion and elemental modification (Belianinov et al.,
2018).

As candidate model systems, the Abisko project is
pursuing resistive switching in TaOx, electrochemical
switching in VOx devices, and also the search for new
materials, which could offer distinct advantages over binary
oxides in terms of energy efficiency and architectural design
for accelerated feedback between materials and device
levels. For example, molecular-based materials and ferro-
electric semiconductors could avoid costly and stochastic
filamentary mechanisms while enabling multilevel, tem-
poral, and scalable switching properties.

A crucial ingredient that will enable connecting mi-
croscopy observations to electronic properties relevant for
neuromorphic properties is the long-sought ability to control
electronic effects uniformly across active volume of the
material. The filamentary conductors ubiquitous in mem-
ristor devices are notoriously difficult to observe directly
because stochastic and highly energetic processes behind
electroforming are fundamentally localized due to the high
local energy density required for chemical transformation
into an electronically conducting state. To this end, we are

Figure 17. (a) Mathematical and (b) electrical vector matrix multiplication (Marinella et al., 2022).

Figure 18. Normalized error versus conductance for SONOS,
PCM, HfO2, and TaOx/HfOx ReRAM.

Vetter et al. 19

pursuing the methods of ionic modification of materials,
whether by high ion irradiation or low-energy ion inter-
calation, in an attempt to create electroforming-free control
over material conductance and therefore enable both ef-
fective characterization and prospectively on-demand
control over electroresistive properties.

On the device level, successful control of resistive
switching by ion irradiation has been demonstrated (Vogel
et al., 2022), including by several members of the Abisko
team (Marinella et al., 2012; Jacobs-Gedrim et al., 2019).
Meanwhile, the fundamental mechanism of ionic transport
across interfaces is pursued within Abisko as the acting
principle behind ECRAM devices (Talin et al.), with an
implicit assumption of largely uniform transformations
within the active volume of the material. Electronic
characterization of ionically modified materials forms one
of the central codesign links between the device and
materials teams. Figure 21 demonstrates preliminary re-
sults of cathodoluminescence and microwave imaging of
the He-irradiated amorphous TaOx films. Figure 21(a)
shows the CL spectrum with discrete signatures of

oxygen vacancy states in the amorphous lattice (red ar-
rows). The energies of these defect states can be mapped
onto the structures using state-of-the-art first-principles
calculations of large amorphous unit-cells. Inset shows
the schematic of the tantalum oxide film, involving the
TaOx active layer, Ta and TiN metallic contact layers, all
grown atop silicon wafer. Figure 21(b) shows the spectral
decomposition of the hyperspectral array of cath-
odoluminescence spectra carried out with non-negative
matrix factorization (NMF). The maps shows the spatial
intensity of each matrix factor component (H1 and H2),
while the plots at the top show the components themselves.
NMF analysis very clearly reveals the square region of the
He-irradiated film, as well as other defect sites in the film.
Note that the modification due to He-ion is remarkably
subtle. The components only contribute to about 2–5% of
the luminescence intensity (see also the error bars in (a)),
and the matrix factors themselves are quite noisy. Yet the
patterns and defects are very clear due to effectiveness of
NMF (and similar) techniques, enabling structural modi-
fication and concomitant electronic analysis of

Figure 19. SONOS Device. (a) A SONOS memory array can store a matrix of weights for one layer of a DNN. (b) Memory cell
consisting of a SONOS transistor and an access transistor. When exposed to ionizing radiation (red arrows), the state of the SONOS
cells may be perturbed. (c) Measured VT distribution of the SONOS test chips at varying levels of TID. Reproduced with permission
(Xiao et al., 2021a). Copyright 2021, IEEE. (d) Memristance, M, as a function of voltage. Upward and downward triangles represent the
memristance values at two extremes (see ref. for details). Adapted with permission (Yi et al., 2022). Copyright 2017, Wiley.

20 The International Journal of High Performance Computing Applications 0(0)

neuromorphic materials. The eventual goal of these studies
is to identify reproducible paths to electroforming-free
activation and subsequent control of film conductance
using ion-beam irradiation.

Both techniques successfully reveal the irradiated areas
through both electronic and capacitive signatures. Remarkably,
the filmsmaintain a high local resistivity even at comparatively
large He-irradiation doses, likely owing to their amorphous
structures. Meanwhile, by using TOF-SIMS, we unambigu-
ously detected the signatures of ionic redistribution within
TaOx under specific action of local electric fields applied from
an atomic force microscopy tip. The measurements of local
resistive switching characteristics of TaOx as a function of ion
irradiation and localized field-induced electrochemical modi-
fication are currently under way.

The second goal of the materials thrust is to abstract
the experimental observations from spatially resolving
microscopy techniques into a compact representation.
Fulfilling this task will enable effective multimodal

analysis of the experimental observations. Even more
intriguing is the prospect of deriving data-driven low-
dimensional device and compact models (Messaris et al.,
2018; Nili et al., 2020a) by using heterogeneous nano-
scale measurements. Indeed, microscopy techniques are
intrinsically data rich. The aforementioned analysis of
He-ion irradiation demonstrates how well-established
methods of statistical data analysis (e.g., non-negative
matrix factorization) are sensitive to even the slightest
signatures of He-ion irradiation. Such methods are widely
applicable to hyperspectral datasets and will enable us to
derive statistically meaningful trends from all the spa-
tially resolving techniques, including chemical imaging
and electronic and conductive measurements. Data-
driven modeling may bridge the critical gap between
material and device and, in turn, enable an effective
codesign strategy, even in the absence of a detailed
physical understanding of the mechanisms behind field-
induced properties of neuromorphic devices.

Figure 20. ECRAM device. (a) Schematic and cross-section TEM of WO3-x ECRAM cell. (b) Analog switching characteristics that
demonstrate high state density. (c) ECRAM retention characteristics when the gate and channel are shorted at 200°C. (d) Comparison
of retention times of WO3-x ECRAM with filament-based ReRAM and past TiOx-based ECRAM. (Kim et al., 2022). Copyright 2022,
Wiley.

Vetter et al. 21

Codesign

As described in Abisko Overview, codesign is an over-
arching goal of Abisko. Our motivating example will be the

abstractions and interfaces presented in Table 1. For true
codesign, we need a vertically integrated codesign frame-
work that helps to systematize relationships among layers
beyond informal correspondence and interaction. More

Figure 21. Cathodoluminescence (CL) probe of amorphous tantalum oxide, and the effects of He-ion irradiation measured at the
Center for Nanophase Materials Sciences utilizing the films grown at Sandia National Laboratory. (a) CL spectrum showing discrete
signatures of oxygen vacancy states in the amorphous lattice (red arrows). (b) Spectral decomposition of the hyperspectral array of
cathodoluminescence spectra.

22 The International Journal of High Performance Computing Applications 0(0)

specifically, this codesign activity cross-cuts the computing
stack (Table 1) and we are working to capture the overall
design by extending existing modeling tools (e.g., ASPEN/
FLAME) to specify interfaces for each layer as well their
interfaces across this stack. This representation will facil-
itate automatic design space exploration. Moreover, neu-
romorphic computing provides an excellent vehicle to study
our deep codesign framework because its computational
paradigm can be represented in low-level devices and
materials that can, if properly designed, offer tremendous
benefits in terms of energy efficiency and performance to
applications at the highest levels of abstraction.

In Abisko, we approach deep codesign in three ways.
First, we are identifying concrete interfaces across the
conceptual compute layers to capture idealized forms of
information exchange. Examples of these interfaces include
using the TCAD compact modeling language for modeling
material and device characteristics (e.g., Stettler et al.
(2021)), which can, in turn, be used to define new archi-
tectures, and using the MLIR programming infrastructure to
describe primary concepts for SNNs as first class objects in
the programming language.

Second, we are extending our Aspen/FLAME domain-
specific language to capture hierarchical details of system
design. To address many of these concerns, ORNL created
the domain-specific languages called Aspen (Spafford and
Vetter 2012, 2015; Spafford et al., 2013; Peng and Vetter
2018; Lee et al., 2015) and FLAME (Belviranli and Vetter
2019) to model applications and architectures. Aspen allows
users to create formal written descriptions of the applica-
tions and the architectures. Prior Aspen work focused on
system architecture, including CPUs, GPUs, networks, and
memory systems.

Third, we are investigating formalisms built on top of
Aspen and FLAME that can automatically optimize and
refine abstractions across the stack with AI techniques to
expedite the exploration of these massive design spaces.
Our initial activity will use DEFFE’s transfer learning (see
DEFFE (Data-Efficient Exploration Framework)) capability
to reduce the computation cost of these explorations.

Summary

This paper describes an approach to deep codesign of an
architecture for spiking neural networks using novel neu-
romorphic materials. The deep codesign approach engages
experts from across the entire range of disciplines: mate-
rials, devices and circuits, architectures and integration,
software, and algorithms. The novel neuromorphic devices
are based on resistive-switching materials, such as mem-
ristors and electrochemical RAM (ECRAM). Abisko has
three key objectives. First, we are designing an energy-
optimized high-performance neuromorphic accelerator
based on SNNs. This architecture is being designed as a

chiplet that can be deployed in contemporary computer
architectures and we are investigating novel neuromorphic
materials to improve its performance and energy-efficiency.
Second, we are concurrently developing a productive
software stack for the neuromorphic accelerator that will
also be portable to other architectures, such as field-
programmable gate arrays and GPUs. Third, we are cre-
ating a new deep codesign methodology and framework for
developing clear interfaces, requirements, and metrics be-
tween each level of abstraction to enable the system design
to be explored and implemented interchangeably with ex-
ecution, measurement, a model, or simulation. As a moti-
vating application for this codesign effort, we target the use
of SNNs for an analog event detector for a high-energy
physics sensor.

Acknowledgements

We thank Olha Popova, Liangbo Liang and Anton Ievlev at ORNL
CNMS for their on-going role in the building and development of
the materials thrust of the project.

Author’s note

This manuscript has been authored by UT-Battelle LLC under
contract DE-AC05-00OR22725 with the US Department of En-
ergy (DOE). The US government retains and the publisher, by
accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for US government purposes.
DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan). This
manuscript has been authored by Sandia National Laboratories that
is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
research is funded by the DOE Office of Science Research Pro-
gram for Microelectronics Codesign (sponsored by ASCR, BES,
HEP, NP, and FES) through the Abisko Project with program
managers Robinson Pino (ASCR), Hal Finkel (ASCR), and An-
drew Schwartz (BES).

Vetter et al. 23

http://energy.gov/downloads/doe-public-access-plan

ORCID iD

Jeffrey S. Vetter https://orcid.org/0000-0002-2449-6720

References

Aad G, Abajyan T, Abbott B, et al. (2012) Observation of a new
particle in the search for the Standard Model Higgs boson
with the ATLAS detector at the LHC. Physics Letters B 716:
1–29. DOI: 10.1016/j.physletb.2012.08.020

Abi Akar N, Cumming B, Karakasis V, et al. (2019) Arbor — A
morphologically detailed neural network simulation library
for contemporary high-performance computing architectures.
In: 2019 27th Euromicro International Conference on Par-
allel, Distributed and Network-Based Processing (PDP).
pp. 274–282. DOI:10.1109/EMPDP.2019.8671560

Agarwal S, Garland D, Niroula J, Jacobs-Gedrim RB, Hsia A, Van
Heukelom MS, Fuller E, Draper B and Marinella MJ (2019)
Using floating-gate memory to train ideal accuracy neural
networks. IEEE Journal on Exploratory Solid-State Com-
putational Devices and Circuits 5(1): 52–57. DOI: 10.1109/
JXCDC.2019.2902409

Aimone J, Date P, Fonseca-Guerra G, et al. (2022) A review of
non-cognitive applications for neuromorphic computing.
Neuromorphic Computing and Engineering.

Aimone JB, Ho Y, Parekh O, et al. (2020) Provable neuromorphic
advantages for computing shortest paths. In: Proceedings of
the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures. pp. 497–499.

Akopyan F, Sawada J, Cassidy A, et al. (2015) Truenorth: design
and tool flow of a 65 mw 1 million neuron programmable
neurosynaptic chip. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 34(10):
1537–1557. DOI: 10.1109/TCAD.2015.2474396

Ang J, Chien AA, Hammond SD, et al. (2021) Reimagining co-
design for advanced scientific computing: unlocking trans-
formational opportunities for future computing systems for
science. Technical report. DOI:10.2172/1822198

Ardalan S, Cirit H, Farjad R, et al. (2020) Bunch of wires: an open
die-to-die interface. In: 2020 IEEE Symposium on High-
Performance Interconnects (HOTI). pp. 9–16. DOI: 10.1109/
HOTI51249.2020.00017

Athmanathan A, Stanisavljevic M, Papandreou N, et al. (2016)
Multilevel-cell phase-change memory: a viable technology.
IEEE Journal on Emerging and Selected Topics in Circuits and
Systems 6(1): 87–100. DOI: 10.1109/JETCAS.2016.2528598

Barber ME, Ma EY and Shen ZX (2021) Microwave impedance
microscopy and its application to quantum materials. Nature
Reviews Physics 4(1): 61–74. DOI: 10.1038/s42254-021-
00386-3

La Barbera S, Vuillaume D and Alibart F (2015) Filamentary
switching: synaptic plasticity through device volatility. ACS
Nano 9(1): 941–949. DOI: 10.1021/nn506735m

Belianinov A, Ievlev AV, Lorenz M, et al. (2018) Correlated
materials characterization via multimodal chemical and

functional imaging. ACS NANO 12(12): 11798–11818. DOI:
10.1021/acsnano.8b07292

Belviranli ME and Vetter JS (2019) FLAME: graph-based hard-
ware representations for rapid and precise performance
modeling. In: 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE). pp. 1775–1780. DOI:10.
23919/DATE.2019.8747521

Benjamin BV, Gao P, McQuinn E, et al. (2014) Neurogrid: a
mixed-analog-digital multichip system for large-scale neural
simulations. Proceedings of the IEEE 102(5): 699–716.

Bohte SM, Kok JN and La Poutré JA (2000) Spikeprop: back-
propagation for networks of spiking neurons. In: ESANN, Vol.
48. Bruges, pp. 419–424.

Brown TD, Kumar S and Williams RS (2022) Physics-based
compact modeling of electro-thermal memristors: negative
differential resistance, local activity, and non-local dynamical
bifurcations. Applied Physics Reviews 9(1). DOI: 10.1063/5.
0070558

Burns SR, Tselev A, Ievlev AV, et al. (2022) Tunable microwave
conductance of nanodomains in ferroelectric pbzr0.2ti0.8o3 thin
film. Advanced Electronic Materials 8(3). DOI: 10.1002/aelm.
202100952

Burr GW, Breitwisch MJ, Franceschini M, et al. (2010) Phase
change memory technology. Journal of Vacuum Science &
Technology B, Nanotechnology and Microelectronics: Ma-
terials, Processing, Measurement, and Phenomena 28(2):
223–262. DOI: 10.1116/1.3301579

Burr GW, Shelby RM, Sidler S, et al. (2015) Experimental
demonstration and tolerancing of a large-scale neural network
(165 000 synapses) using phase-change memory as the
synaptic weight element. IEEE Transactions on Electron
Devices 62(11): 3498–3507. DOI: 10.1109/TED.2015.
2439635

Calligaris L (2020) Status of the phase-2 tracker upgrade of the
cms experiment at the hl-lhc. In: Journal of Physics: Con-
ference Series. IOP Publishing, Vol. 1690, p. 012039.

Caporale N and Dan Y (2008) Spike timing-dependent plasticity: a
hebbian learning rule. Annual Review of Neuroscience 31(1):
25–46.

Chanthbouala A, Garcia V, Cherifi RO, et al. (2012) A ferroelectric
memristor.Nature Materials 11(10): 860–864. DOI: 10.1038/
nmat3415

Chatrchyan S, Khachatryan V, Sirunyan A, et al. (2012) Obser-
vation of a New Boson at a Mass of 125 GeV with the CMS
Experiment at the LHC. Physics Letters B 716: 30–61. DOI:
10.1016/j.physletb.2012.08.021

Chen PY, Kadetotad D, Xu Z, et al. (2015a) Technology-design
co-optimization of resistive cross-point array for acceler-
ating learning algorithms on chip. In: 2015 Design, Auto-
mation & Test in Europe Conference & Exhibition (DATE).
pp. 854–859.

Chen PY, Lin B, Wang IT, et al. (2015b) Mitigating effects of non-
ideal synaptic device characteristics for on-chip learning. In:
2015 IEEE/ACM International Conference on Computer-

24 The International Journal of High Performance Computing Applications 0(0)

https://orcid.org/0000-0002-2449-6720
https://orcid.org/0000-0002-2449-6720
https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1109/EMPDP.2019.8671560
https://doi.org/10.1109/JXCDC.2019.2902409
https://doi.org/10.1109/JXCDC.2019.2902409
https://doi.org/10.1109/TCAD.2015.2474396
https://doi.org/10.2172/1822198
https://doi.org/10.1109/HOTI51249.2020.00017
https://doi.org/10.1109/HOTI51249.2020.00017
https://doi.org/10.1109/JETCAS.2016.2528598
https://doi.org/10.1038/s42254-021-00386-3
https://doi.org/10.1038/s42254-021-00386-3
https://doi.org/10.1021/nn506735m
https://doi.org/10.1021/acsnano.8b07292
https://doi.org/10.23919/DATE.2019.8747521
https://doi.org/10.23919/DATE.2019.8747521
https://doi.org/10.1063/5.0070558
https://doi.org/10.1063/5.0070558
https://doi.org/10.1002/aelm.202100952
https://doi.org/10.1002/aelm.202100952
https://doi.org/10.1116/1.3301579
https://doi.org/10.1109/TED.2015.2439635
https://doi.org/10.1109/TED.2015.2439635
https://doi.org/10.1038/nmat3415
https://doi.org/10.1038/nmat3415
https://doi.org/10.1016/j.physletb.2012.08.021

Aided Design (ICCAD). pp. 194–199. DOI: 10.1109/
ICCAD.2015.7372570

Chien SWD, Markidis S, Olshevsky V, et al. (2019) Tensorflow
doing HPC. CoRR abs/1903.04364.

Chu Z, Zheng L and Lai K (2020) Microwave microscopy and its
applications. In: Clarke D (ed), Annual Review of Materials
Research, volume 50, pp. 105–130. ISBN. DOI: 10.1146/
annurev-matsci-081519-011844

Close GF, Frey U, Breitwisch M, et al. (2010) Device, circuit and
system-level analysis of noise in multi-bit phase-change
memory. In: 2010 International Electron Devices Meeting.
pp. 29.5.1–29.5.4. DOI: 10.1109/IEDM.2010.5703445

Coenen T and Haegel NM (2017) Cathodoluminescence for the
21st century: learning more from light. Applied Physics
Reviews 4(3): 031103. DOI: 10.1063/1.4985767

Cong G, Lim SH, Kulkarni S, et al. (2022) Semi-supervised graph
structure learning on neuromorphic computers. In: Pro-
ceedings of the International Conference on Neuromorphic
Systems 2022. pp. 1–4.

DallyWJ, Turakhia Yand Han S (2020) Domain-specific hardware
accelerators. Communications of the ACM 63(7): 48–57.
DOI: 10.1145/3361682

Dao NC and Koch D (2020) Memristor-based reconfigurable
circuits: challenges in implementation. In: 2020 Interna-
tional Conference on Electronics, Information, and Com-
munication (ICEIC). pp. 1–6. DOI: 10.1109/ICEIC49074.
2020.9051174

Date P, Carothers CD, Hendler JA and Magdon-Ismail M (2018)
Efficient classification of supercomputer failures using neu-
romorphic computing. In: 2018 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, pp. 242–249.

Date P, Kay B, Schuman C, et al. (2021) Computational com-
plexity of neuromorphic algorithms. In: International Con-
ference on Neuromorphic Systems 2021. pp. 1–7.

Date P, Kulkarni S, Young A, et al. (2022a) Encoding integers and
rationals on neuromorphic computers using virtual neuron.
arXiv preprint arXiv:2208.07468.

Date P, Potok T, Schuman C and Kay B (2022b) Neuromorphic
computing is turing-complete. In: Proceedings of the Inter-
national Conference on Neuromorphic Systems 2022.
pp. 1–10.

Davies M, Srinivasa N, Lin T, et al. (2018) Loihi: a neuromorphic
manycore processor with on-chip learning. IEEE Micro
38(1): 82–99. DOI: 10.1109/MM.2018.112130359

Di Ventra M and Traversa FL (2018) Perspective: memcomputing:
leveraging memory and physics to compute efficiently.
Journal of Applied Physics 123(18): 180901. DOI: 10.1063/
1.5026506 DOI: 10.1063/1.5026506

Ferrari S, Mehta B, DiMuro G, et al. (2008) Biologically realizable
reward-modulated hebbian training for spiking neural net-
works. In: 2008 IEEE International Joint Conference on
Neural Networks (IEEE World Congress on Computational
Intelligence). IEEE, pp. 1780–1786.

Fleming B, et al. (2019) Basic research needs for high energy
physics detector research & development. https://science.osti.
gov/hep/Community-Resources/Reports

Gao L, Ren Q, Sun J, et al. (2021) Memristor modeling: challenges
in theories, simulations, and device variability. Journal of
Materials Chemistry C 9(47): 16859–16884. DOI: 10.1039/
d1tc04201g

Gewaltig MO and Diesmann M (2007) Nest (neural simulation
tool). Scholarpedia 2(4): 1430.

Gonzalez-Tallada M, Valero-Lara P, Denny J, et al. (2022) ecc++ :
An embedded compiler construction frameworkfor domain-
specific languages [manuscript submitted for publication].

Hamdioui S, Kvatinsky S, Cauwenberghs G, et al. (2017)
Memristor for computing: myth or reality? In: Design,
Automation & Test in Europe Conference & Exhibition
(DATE), 2017. pp. 722–731. DOI:10.23919/DATE.2017.
7927083

Hamilton K, Date P, Kay B, et al. (2020a) Modeling epidemic
spread with spike-based models. In: International Conference
on Neuromorphic Systems 2020. pp. 1–5.

Hamilton K, Mintz T, Date P, et al. (2020b) Spike-based graph
centrality measures. In: International Conference on Neuro-
morphic Systems 2020. pp. 1–8.

Hennessy JL and Patterson DA (2019) A new golden age for
computer architecture. Communications of the ACM 62(2):
48–60. DOI: 10.1145/3282307

Jacobs-Gedrim RB, Hughart DR, Agarwal S, et al. (2019) Training
a neural network on analog taox reram devices irradiated with
heavy ions: effects on classification accuracy demonstrated
with CrossSim. IEEE Transactions on Nuclear Science 66(1,
1, SI): 54–60. DOI:10.1109/TNS.2018.2886229. 55th IEEE
Nuclear and Space Radiation Effects Conference (NSREC),
Kona, HI, JUL 16-20, 2018.

Jin T, Bercea GT, Le TD, et al. (2020) Compiling onnx neural
network models using mlir.

Kay B, Date P and Schuman C (2020) Neuromorphic graph al-
gorithms: extracting longest shortest paths and minimum
spanning trees. In: Proceedings of the Neuro-inspired
Computational Elements Workshop. pp. 1–6.

Kay B, Schuman C, O’Connor J, et al. (2021) Neuromorphic graph
algorithms: cycle detection, odd cycle detection, and max
flow. In: International Conference on Neuromorphic Systems
2021. pp. 1–7.

Kehlet D et al. (2017) Accelerating innovation through a standard
chiplet interface: the advanced interface bus (aib).

Kim DS, Watkins VJ, Cline LA, et al. (2022) Nonvolatile elec-
trochemical random-access memory under short circuit.
Advanced Electronic Materials 9(n/a): 2200958. DOI: 10.
1002/aelm.202200958

Kim MJ, Baek IG, Ha YH, et al. (2010) Low power operating
bipolar tmo reram for sub 10 nm era. In: 2010 International
Electron Devices Meeting. pp. 19.3.1–19.3.4. DOI:10.1109/
IEDM.2010.5703391

Vetter et al. 25

https://doi.org/10.1109/ICCAD.2015.7372570
https://doi.org/10.1109/ICCAD.2015.7372570
https://doi.org/10.1146/annurev-matsci-081519-011844
https://doi.org/10.1146/annurev-matsci-081519-011844
https://doi.org/10.1109/IEDM.2010.5703445
https://doi.org/10.1063/1.4985767
https://doi.org/10.1145/3361682
https://doi.org/10.1109/ICEIC49074.2020.9051174
https://doi.org/10.1109/ICEIC49074.2020.9051174
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1063/1.5026506
https://doi.org/10.1063/1.5026506
https://doi.org/10.1063/1.5026506
https://science.osti.gov/hep/Community-Resources/Reports
https://science.osti.gov/hep/Community-Resources/Reports
https://doi.org/10.1039/d1tc04201g
https://doi.org/10.1039/d1tc04201g
https://doi.org/10.23919/DATE.2017.7927083
https://doi.org/10.23919/DATE.2017.7927083
https://doi.org/10.1145/3282307
https://doi.org/10.1109/TNS.2018.2886229
https://doi.org/10.1002/aelm.202200958
https://doi.org/10.1002/aelm.202200958
https://doi.org/10.1109/IEDM.2010.5703391
https://doi.org/10.1109/IEDM.2010.5703391

Kösters DJ, Kortman BA, Boybat I, et al. (2022) Benchmarking
energy consumption and latency for neuromorphic comput-
ing in condensed matter and particle physics. arXiv preprint
arXiv:2209.10481.

Kozloski JR and Wagner J (2011) An ultrascalable solution to
large-scale neural tissue simulation. Frontiers in Neuro-
informatics 5: 15. DOI: 10.3389/fninf.2011.00015

Krishnan G, Mandal SK, Pannala M, et al. (2021) Siam: chiplet-
based scalable in-memory acceleration with mesh for deep
neural networks 20(5s). DOI:10.1145/3476999

Kwisthout J and Donselaar N (2020) On the computational power
and complexity of spiking neural networks. In: Proceedings
of the Neuro-inspired Computational Elements Workshop.
pp. 1–7.

Lattner C, Amini M, Bondhugula U, et al. (2021) Mlir: scaling
compiler infrastructure for domain specific computation. In:
2021 IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO). pp. 2–14. DOI: 10.1109/
CGO51591.2021.9370308

Lee S, Meredith JS and Vetter JS (2015) COMPASS: a framework
for automated performance modeling and prediction. In:
Proceedings of the 29th ACM on International Conference on
Supercomputing. Newport Beach, CA, USA. ACM,
pp. 405–414. DOI: 10.1145/2751205.2751220

Li T, Hou J, Yan J, et al. (2020a) Chiplet heterogeneous integration
technology—status and challenges. Electronics 9(4): 670.

Li Y, Fuller EJ, Sugar JD, et al. (2020b) Memory devices: filament-
free bulk resistive memory enables deterministic analogue
switching (adv. mater. 45/2020). Advanced Materials 32(45):
2070339. DOI: 10.1002/adma.202070339

Liu D, Cheng H, Zhu X, et al. (2013) Analog memristors based on
thickening/thinning of ag nanofilaments in amorphous
manganite thin films. ACS Applied Materials & Interfaces
5(21): 11258–11264. DOI: 10.1021/am403497y

Liu F, Miniskar NR, Chakraborty D, et al. (2020) Deffe A data-
efficient framework for performance characterization in
domain-specific computing. In: Proceedings of the 17th ACM
International Conference on Computing Frontiers, CF ’20.
New York, NY, USA: Association for Computing Machinery,
pp. 182–191.

Marinella MJ (2021) Radiation effects in advanced and emerging
nonvolatile memories. IEEE Transactions on Nuclear Sci-
ence 68(5): 546–572. DOI: 10.1109/TNS.2021.3074139

Marinella MJ, Agarwal S, Hsia A, et al. (2018) Multiscale co-
design analysis of energy, latency, area, and accuracy of a
reRAM analog neural training accelerator. Ieee Journal on
Emerging and Selected Topics in Circuits and Systems 8(1):
86–101. DOI: 10.1109/jetcas.2018.2796379

Marinella MJ, Dalton SM, Mickel PR, et al. (2012) Initial assess-
ment of the effects of radiation on the electrical characteristics
of taox memristive memories. IEEE Transactions on Nuclear
Science 59(6): 2987–2994. DOI: 10.1109/TNS.2012.2224377

MarinellaMJ, Xiao TP, Feinberg B, et al. (2022) Achieving accurate in-
memory neural network inference with highly overlapping

nonvolatilememory state distributions. In: 2022 6th IEEEElectron
Devices Technology & Manufacturing Conference (EDTM).
pp. 330–332. DOI: 10.1109/EDTM53872.2022.9797919

McCaskey A and Nguyen T (2021) A mlir dialect for quantum
assembly languages.

McLellan P (2020) Hbi, a new standard to connect your chiplets.
https://community.cadence.com/cadence_blogs_8/b/
breakfast-bytes/posts/hbi-a-new-standard-to-connect-your-
chiplets

Menzel S, Waters M, Marchewka A, et al. (2011) Origin of the
ultra-nonlinear switching kinetics in oxide-based resistive
switches. Advanced Functional Materials 21(23):
4487–4492. DOI: 10.1002/adfm.201101117

Messaris I, Serb A, Stathopoulos S, et al. (2018) A data-driven
verilog-a reram model. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 37(12):
3151–3162. DOI: 10.1109/TCAD.2018.2791468

Neckar A, Fok S, Benjamin BV, et al. (2019) Braindrop: A mixed-
signal neuromorphic architecture with a dynamical systems-
based programming model. Proceedings of the IEEE 107(1):
144–164. DOI: 10.1109/JPROC.2018.2881432

Nili H, Vincent AF, Prezesio M, et al. (2020a) Comprehensive
compact phenomenological modeling of integrated metal-
oxide memristors. IEEE Transactions on Nanotechnology
19: 344–349. DOI: 10.1109/TNANO.2020.2982128

Nili H, Vincent AF, Prezesio M, et al. (2020b) Comprehensive
compact phenomenological modeling of integrated metal-
oxide memristors. IEEE Transactions on Nanotechnology
19: 344–349. DOI: 10.1109/TNANO.2020.2982128

of Particles D and of the American Physical Society F (2021) The
particle physics community planning exercise (snowmass).
https://snowmass21.org/

Park H, Ku BW, Chang K, et al. (2020) Pseudo-3D approaches for
commercial-grade RTL-to-GDS tool flow targeting mono-
lithic 3D ICs. In: Proceedings of the 2020 International
Symposium on Physical Design. pp. 47–54.

Parsa M, Kulkarni SR, Coletti M, et al. (2021) Multi-objective
hyperparameter optimization for spiking neural network
neuroevolution. In: 2021 IEEE Congress on Evolutionary
Computation (CEC). IEEE, pp. 1225–1232.

Paszke A, Gross S, Massa F, et al. (2019) Pytorch: an imperative
style, high-performance deep learning library. Advances in
Neural Information Processing Systems 32. Curran Associ-
ates, Inc., pp. 8024–8035. http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-
learning-library.pdf

Patton R, Schuman C, Kulkarni S, et al. (2021) Neuromorphic
computing for autonomous racing. In: International Con-
ference on Neuromorphic Systems 2021. pp. 1–5.

Peng IB and Vetter JS (2018) Siena: exploring the design space of
heterogeneous memory systems. In:Proceedings of the In-
ternational Conference for High Performance Computing,
Networking, Storage, and Analysis. Dallas, TX: IEEE Press,
pp. 1–14.

26 The International Journal of High Performance Computing Applications 0(0)

https://doi.org/10.3389/fninf.2011.00015
https://doi.org/10.1145/3476999
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1145/2751205.2751220
https://doi.org/10.1002/adma.202070339
https://doi.org/10.1021/am403497y
https://doi.org/10.1109/TNS.2021.3074139
https://doi.org/10.1109/jetcas.2018.2796379
https://doi.org/10.1109/TNS.2012.2224377
https://doi.org/10.1109/EDTM53872.2022.9797919
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/hbi-a-new-standard-to-connect-your-chiplets
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/hbi-a-new-standard-to-connect-your-chiplets
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/hbi-a-new-standard-to-connect-your-chiplets
https://doi.org/10.1002/adfm.201101117
https://doi.org/10.1109/TCAD.2018.2791468
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1109/TNANO.2020.2982128
https://doi.org/10.1109/TNANO.2020.2982128
https://snowmass21.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Raoux S, Burr GW, Breitwisch MJ, et al. (2008) Phase-change
random access memory: a scalable technology. IBM Journal
of Research and Development 52(4.5): 465–479. DOI: 10.
1147/rd.524.0465

Rasmussen D (2018) NengoDL: combining deep learning and
neuromorphic modelling methods. arXiv 1805.11144:
1–22..http://arxiv.org/abs/1805.11144

Schemmel J, Briiderle D, Griibl A, et al. (2010) A wafer-scale
neuromorphic hardware system for large-scale neural mod-
eling. In: Proceedings of 2010 IEEE International Sympo-
sium on Circuits and Systems. pp. 1947–1950. DOI:10.1109/
ISCAS.2010.5536970

Schliebs S, Mohemmed A and Kasabov N (2011) Are probabilistic
spiking neural networks suitable for reservoir computing? In:
The 2011 International Joint Conference on Neural Networks.
IEEE, pp. 3156–3163.

Schulte MJ, Ignatowski M, Loh GH, et al. (2015) Achieving
exascale capabilities through heterogeneous computing.
IEEE Micro 35(4): 26–36. DOI: 10.1109/MM.2015.71

Schuman CD, Hamilton K, Mintz T, et al. (2019) Shortest path and
neighborhood subgraph extraction on a spiking memristive
neuromorphic implementation. In: Proceedings of the 7th Annual
Neuro-inspired Computational Elements Workshop. pp. 1–6.

Schuman CD, Kay B, Date P, et al. (2021) Sparse binary matrix-
vector multiplication on neuromorphic computers. In:
2021 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, pp. 308–311.

Schuman CD, Mitchell JP, Patton RM, et al. (2020) Evolutionary
optimization for neuromorphic systems. In: Proceedings of the
Neuro-inspired Computational Elements Workshop. pp. 1–9.

Schuman CD, Plank JS, Disney A, et al. (2016) An evolutionary
optimization framework for neural networks and neuro-
morphic architectures. In: 2016 International Joint Confer-
ence on Neural Networks (IJCNN). IEEE, pp. 145–154.

Schuman CD, Potok TE, Patton RM, et al. (2017) A survey of
neuromorphic computing and neural networks in hardware.
arXiv preprint arXiv:1705.06963.

Severa W, Lehoucq R, Parekh O, et al. (2018a) Spiking neural al-
gorithms for markov process randomwalk. In: 2018 International
Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–8.

SeveraW,Vineyard CM,Dellana R, et al. (2018b)Whetstone: Amethod
for training deep artificial neural networks for binary communi-
cation. CoRR abs/1810.11521 http://arxiv.org/abs/1810.11521

Sharma DD (2022) Universal chiplet interconnect express (ucie)®:
Building an open chiplet ecosystem. Technical report, Uni-
versal Chiplet Interconnect Express.

Sharma S, Aubin S and Eliasmith C (2016) Large-scale cognitive
model design using the nengo neural simulator. Biologically
Inspired Cognitive Architectures 17: 86–100. DOI: 10.1016/j.
bica.2016.05.001. https://www.sciencedirect.com/science/
article/pii/S2212683X16300317

Shrestha SB and Orchard G (2018) SLAYER: Spike layer error
reassignment in time. In: Bengio S, Wallach H, Larochelle H,
et al. (eds), Advances in Neural Information Processing

Systems 31. Curran Associates, Inc., pp. 1419–1428. http://
papers.nips.cc/paper/7415-slayer-spike-layer-error-
reassignment-in-time.pdf

Spafford K, Vetter JS, Benson T, et al. (2013) Modeling synthetic
aperture radar computation with aspen. The International
Journal of High Performance Computing Applications 27(3):
255–262. DOI: 10.1177/1094342013488262

Spafford KL and Vetter JS (2012) Aspen: a domain specific
language for performance modeling. In: SC12: Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis. Salt Lake City,
pp. 1–11. DOI: 10.1109/SC.2012.20

Spafford KL and Vetter JS (2015) Automated design space ex-
ploration with aspen. Scientific Programming 2015: 1–10.
DOI: 10.1155/2015/157305

Stark J (2019) Chiplets: the path to iot diversity. Technical report,
Cambridge Consultants.

Stettler MA, Cea SM, Hasan S, et al. (2021) Industrial tcad: modeling
atoms to chips. IEEE Transactions on Electron Devices 68(11):
5350–5357. DOI: 10.1109/TED.2021.3076976

Stimberg M, Brette R and Goodman DF (2019) Brian 2, an in-
tuitive and efficient neural simulator. eLife 8: e47314. DOI:
10.7554/eLife.47314

Strukov DB and Williams RS (2009) Exponential ionic drift: fast
switching and low volatility of thin-film memristors. Applied
Physics A 94(3): 515–519. DOI: 10.1007/s00339-008-4975-3

Talin AA, Li Y, Robinson DA, et al. (2022) ECRAM materials,
devices, circuits and architectures: A perspective. Advanced
Materials: 2204771. n/a(n/a). DOI: 10.1002/adma.202204771

Tavanaei A, Ghodrati M, Kheradpisheh S, et al. (2019) Deep
learning in spiking neural networks. Neural Networks : The
Official Journal of the International Neural Network Society
111: 47–63. DOI: 10.1016/j.neunet.2018.12.002. https://www.
sciencedirect.com/science/article/pii/S0893608018303332

Terai M, Sakotsubo Y, Kotsuji S, et al. (2010) Resistance Con-
trollability of $\hbox{Ta}_{2} \hbox{O}_{5}/\hbox{TiO}_
{2}$ Stack ReRAM for Low-Voltage and Multilevel Oper-
ation. IEEE Electron Device Letters 31: 204–206. DOI: 10.
1109/LED.2009.2039021

Tselev A, Yu P, Cao Y, et al. (2016) Microwave a.c. conductivity of
domain walls in ferroelectric thin films. NATURE COM-
MUNICATIONS 7: 11630. DOI: 10.1038/ncomms11630

Valov I, Waser R, Jameson JR, et al. (2011) Electrochemical
metallization memories—fundamentals, applications, pros-
pects. Nanotechnology 22(25): 254003. DOI: 10.1088/0957-
4484/22/25/254003

Vetter JS, Brightwell R, Gokhale M, et al. (2018) Extreme het-
erogeneity 2018 - productive computational science in the era
of extreme heterogeneity: report for DOE ASCR workshop
on extreme heterogeneity. Technical report, USDOEOffice of
Science (SC) (United States). DOI:10.2172/1473756

Vogel T, Zintler A, Kaiser N, et al. (2022) Structural and electrical
response of emerging memories exposed to heavy ion radiation.
ACS NANO 16: 14463–14478. DOI: 10.1021/acsnano.2c04841

Vetter et al. 27

https://doi.org/10.1147/rd.524.0465
https://doi.org/10.1147/rd.524.0465
http://arxiv.org/abs/1805.11144
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1109/MM.2015.71
http://arxiv.org/abs/1810.11521
https://doi.org/10.1016/j.bica.2016.05.001
https://doi.org/10.1016/j.bica.2016.05.001
https://www.sciencedirect.com/science/article/pii/S2212683X16300317
https://www.sciencedirect.com/science/article/pii/S2212683X16300317
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
http://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf
https://doi.org/10.1177/1094342013488262
https://doi.org/10.1109/SC.2012.20
https://doi.org/10.1155/2015/157305
https://doi.org/10.1109/TED.2021.3076976
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1007/s00339-008-4975-3
https://doi.org/10.1002/adma.202204771
https://doi.org/10.1016/j.neunet.2018.12.002
https://www.sciencedirect.com/science/article/pii/S0893608018303332
https://www.sciencedirect.com/science/article/pii/S0893608018303332
https://doi.org/10.1109/LED.2009.2039021
https://doi.org/10.1109/LED.2009.2039021
https://doi.org/10.1038/ncomms11630
https://doi.org/10.1088/0957-4484/22/25/254003
https://doi.org/10.1088/0957-4484/22/25/254003
https://doi.org/10.2172/1473756
https://doi.org/10.1021/acsnano.2c04841

Wong HSP, Raoux S, Kim S, et al. (2010) Phase change memory.
Proceedings of the IEEE 98(12): 2201–2227. DOI: 10.1109/
JPROC.2010.2070050

Xiao TP, Bennett CH, Agarwal S, et al. (2021a) Ionizing radiation
effects in SONOS-based neuromorphic inference accelera-
tors. Ieee Transactions on Nuclear Science 68(5): 762–769.
DOI: 10.1109/tns.2021.3058548

Xiao TP, Bennett CH, Agarwal S, et al. (2022a) Single-event
effects induced by heavy ions in SONOS charge trapping
memory arrays. Ieee Transactions on Nuclear Science 69(3):
406–413. DOI: 10.1109/tns.2021.3127549

Xiao TP, Feinberg B, Bennett CH, et al. (2022b) An accurate,
error-tolerant, and energy-efficient neural network inference
engine based on SONOS analog memory. IEEE Transactions
on Circuits and Systems I: Regular Papers 69(4): 1480–1493.
DOI: 10.1109/TCSI.2021.3134313

Xiao TP, Feinberg B, Bennett CH, et al. (2021b) On the accuracy of
analog neural network inference accelerators. CoRR abs/
2109, p. 01262. https://arxiv.org/abs/2109.01262

Yakopcic C, Rahman N, Atahary T, et al. (2020) Solving constraint
satisfaction problems using the loihi spiking neuromorphic
processor. In: 2020 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, pp. 1079–1084.

Yang JJ, Strukov DB and Stewart DR (2013) Memristive devices
for computing.Nature Nanotechnology 8(1): 13–24. DOI: 10.
1038/nnano.2012.240

Yi S, Talin AA, Marinella MJ, et al. (2022) Physical compact
model for three-terminal SONOS synaptic circuit element.
Advanced Intelligent Systems 4(9): 2200070. DOI: 10.1002/
aisy.202200070

Young AR, Dean ME, Plank JS, et al. (2019) A review of spiking
neuromorphic hardware communication systems 7:
135606–135620. DOI: 10.1109/ACCESS.2019.2941772. http://
ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8843969&
isnumber=8600701

Author biographies

Jeffrey S. Vetter is a Corporate Fellow and the Section Head
for Advanced Computer Systems Research at Oak Ridge
National Laboratory (ORNL). Vetter earned his Ph.D. in
Computer Science from the Georgia Institute of Technol-
ogy. He is the Principal Investigator of the Abisko Mi-
croelectronics Codesign project.

Prasanna Date is a Research Scientist at the Oak Ridge
National Laboratory. He received his PhD from Rensselaer
Polytechnic Institute in 2019. He explores novel AI and
machine learning techniques on neuromorphic and quantum
computing platforms. For his research, Date was featured on
the 2022 Forbes 30 Under 30 Asia list. He is an Associate
Editor of IEEE TNNLS journal and an Editorial Board
Member for Nature Scientific Reports. Date is on the or-
ganizing committee of marquee conferences in

neuromorphic and quantum computing such as ACM
ICONS and IEEE Quantum Week.

Farah Fahim (farah@fnal.gov) received her M.Tech re-
search degree from the University of Limerick, Ireland, in
2011 and her Ph.D. degree in electrical engineering from
Northwestern University, Evanston, Illinois, USA, in 2019.
She has been with the Fermi National Accelerator Labo-
ratory, Batavia, Illinois, 60510, USA, since 2009, spe-
cializing in mixed-signal ASIC design, and is currently the
Division Head of Microelectronics. She is also an adjunct
professor at Northwestern University Department of
Electrical and Computer Engineering. For over 15 years she
has been developing low-noise, high-speed readout and
control electronics for detectors that operate in harsh en-
vironments such as high-ionizing radiation for a wide range
of applications. She has been awarded five patents and has
coauthored more than 40 publications.

Shruti Kulkarni is a research scientist at the Oak Ridge
National Laboratory in the Learning Systems group. Her
research spans different aspects of neuromorphic computing
including algorithms, applications, and hardware codesign.
She earned her PhD in 2019 from New Jersey Institute of
Technology supervised by Dr. Bipin Rajendran, where she
worked on bio-inspired learning and hardware acceleration
with emerging memories. She was a postdoctoral research
associate with Dr. Catherine Schuman at ORNL studying
evolutionary optimization for spiking neural networks and
scaling up SNN simulations to HPC systems.

Dr. Petro Maksymovych is a Distinguished Staff Scientist at
Oak Ridge National Laboratory and a Theme Leader at the
Center for Nanophase Materials Sciences. He received his
Ph. D. from the University of Pittsburgh in 2007, focusing
on hot-electron dynamics and surface chemical reactions as
building blocks of molecular electronic circuits. His re-
search interests at ORNL are aimed at the emergence of
phase transitions in classical and quantum materials and the
fundamental material properties that can enable future
computational paradigms, including ferroelectrics, complex
and correlated vdW materials, and the development of new
scanning probe techniques for nanoscale characterization of
phase-ordered media.

Alec Talin received Ph.D. in Materials Science and Engi-
neering from UCLA in 1995. He is a DistinguishedMember
of Technical Staff at Sandia National Laboratories, an
Adjunct Associate Professor of Materials Science at the
University of Maryland, College Park, and is a Fellow of the
American Physical Society. Prior to joining Sandia, Alec
spent 6 years at Motorola Labs in Phoenix, AZ and 3 years
at the National Institute of Standards and Technology in
Gaithersburg, MD. His interests focus on nanoelectronics
and nanoionics, with applications to energy-efficient

28 The International Journal of High Performance Computing Applications 0(0)

https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1109/tns.2021.3058548
https://doi.org/10.1109/tns.2021.3127549
https://doi.org/10.1109/TCSI.2021.3134313
https://arxiv.org/abs/2109.01262
https://doi.org/10.1038/nnano.2012.240
https://doi.org/10.1038/nnano.2012.240
https://doi.org/10.1002/aisy.202200070
https://doi.org/10.1002/aisy.202200070
https://doi.org/10.1109/ACCESS.2019.2941772
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8843969&isnumber=8600701
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8843969&isnumber=8600701
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8843969&isnumber=8600701
mailto:farah@fnal.gov

computing, energy conversion, energy storage and national
security.

Marc Gonzalez Tallada is a Senior Research Scientist at the
Programming Systems Group at ORNL. He received the
degree in computer science in 1996 and the PhD degree in
computer science in 2003, both from the Universitat Po-
litècnica de Catalunya (UPC). His research interests are
related to parallel programming models, languages, and
compilers for High Performance Computing technologies.

Pruek Vanna-iampikul received the B.E degree in computer
engineering from King Mongkut’s Institute of Technology
Ladkrabang, Bangkok, Thailand in 2012, and the M.E.
degree in microelectronics and embedded systems from
Asian Institute of Technology, Pathumthani, Thailand in
2017. He is currently pursuing the Ph.D. degree under Prof.
S. K. Lim’s guidance. His current research focuses on
design algorithms and methodology for energy efficient
2.5D and 3D ICs.

Aaron Young is a Software Engineer in the Architectures
and Performance Group at Oak Ridge National Laboratory.
He received his Ph.D. in Computer Engineering from the
University of Tennessee in 2020, where he completed his
dissertation on a scaled-up neuromorphic array communi-
cations controller that allowed neural networks to scale
across multiple neuromorphic processors implemented
using FPGAs. His research interests include neuromorphic
computing, high-performance computing, heterogeneous
computing, computer architectures, embedded systems, and
high-speed communication.

David Brook the Haley Family Professor of computer
science with the School of Engineering and Applied Sci-
ences, Harvard University. His research interests include
resilient and power-efficient computer hardware and soft-
ware design for high-performance and embedded systems.

Yu Cao is a Professor of Electrical Engineering at Arizona
State University. He received his Ph.D. in 2002 from the
University of California, Berkeley. His research interests
include neural-inspired computing, hardware design for
on-chip learning, and reliable integration of nanoelectronics.

Dr. Wei received his B.S.E.E., M.S., and Ph.D. in Electrical
Engineering from Stanford University in 1994, 1997, and
2001, respectively. In 2000, he joined Accelerant Networks
(now a part of Synopsys) in Beaverton, Oregon as a Senior
Design Engineer. In 2002, he joined Harvard University.
His research interests span a variety of topics such as in-
tegrated voltage regulators, flexible voltage stacking, power

electronics, low-power computing architectures and cir-
cuits, auto-parallelizing compilers, and more.

Dr. Sung Kyu Lim is the Motorola Solutions Foundation
Professor at Georgia Institute of Technology’s School of
Electrical and Computer Engineering, and he previously has
served as the principal investigator for multiple DARPA
programs. Lim received his bachelor’s, master’s, and
doctorate degrees from the Computer Science Department,
University of California, Los Angeles in 1994, 1997, and
2000, respectively.

Frank Liu is the research manager (Group Leader) of the
Architecture and Performance Group at Oak Ridge National
Lab. His research interests include scientific machine
learning and its influence on computer architecture.

Matthew Marinella is an Associate Professor of Electrical
Engineering at Arizona State University. From 2010 to
2021, Matthew J. Marinella was with Sandia’s Micro-
systems S&T Center, where he was a Distinguished
Member of the Technical Staff. At Sandia, Dr. Marinella led
numerous internal and externally funded research projects
involving neuromorphic and low-power computing with
emerging electronic devices. He has served in technical
advising and leadership roles in various Lab- and DOE-
level initiatives on next generation computing for govern-
ment applications. Dr. Marinella is a member of the SRC
Decadal Plan Executive Committee, chairs the Emerging
Memory Devices Section for the IRDS Roadmap Beyond
CMOS Chapter, and serves on various technical program
committees.

Bobby Sumpter is a Corporate Fellow and the Section Head
for Theory and Computing at the Center for Nanophase
Materials Science, Oak Ridge National Laboratory
(ORNL).He received his Ph.D. in Physical Chemistry from
Oklahoma State University. Sumpter’s research is focused
on a fundamental understanding of self-assembly processes,
interactions at interfaces, the structure and dynamics of
molecular-based materials including multi-component
polymers and composites, and the physical, mechanical
and electronic properties of nanostructured materials.

Narasinga Rao Miniskar is research software engineer in
architecture performance group at the Oak Ridge National
Laboratory with broad experience in heterogeneous comput-
ing, hardware/software codesign, reconfigurable architectures
and high performance computing. With a strong interest in
Neuromorphic computing, he currently focuses on the de-
velopment of Neuromorphic accelerators at ORNL.

Vetter et al. 29

	Abisko: Deep codesign of an architecture for spiking neural networks using novel neuromorphic materials
	Introduction
	Spiking neural networks
	Abisko overview

	Motivating problem: Pixel detectors for high
	Algorithms
	Spiking neural network classification
	Spiking neural network regression
	DEFFE (data
	General

	Software
	Neuromorphic programming language
	Neuromorphic compiler

	Architectures
	Chiplet-based design
	Interface and communication
	Benefits of face

	Devices
	Materials
	Codesign
	Summary
	Acknowledgements
	Author’s note
	Declaration of conflicting interests
	Funding
	ORCID iD
	References
	Author biographies

