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Abstract— This article presents 3DNN-Xplorer, the first
machine learning (ML)-based framework for predicting the
performance of heterogeneous 3-D deep neural network (DNN)
accelerators. Our ML framework facilitates the design space
exploration (DSE) of heterogeneous 3-D accelerators with a
two-tier compute-on-memory (CoM) configuration, considering
3-D physical design factors. Our design space encompasses four
distinct heterogeneous 3-D integration styles, combining 28- and
16-nm technology nodes for both compute and memory tiers.
Using extrapolation techniques with ML models trained on
10-to-256 processing element (PE) accelerator configurations,
we estimate the performance of systems featuring 75–16 384 PEs,
achieving a maximum absolute error of 13.9% (the number
of PEs is not continuous and varies based on the accelerator
architecture). To ensure balanced tier areas in the design,
our framework assumes the same number of PEs or on-chip
memory capacity across the four integration styles, accounting
for area imbalance resulting from different technology nodes.
Our analysis reveals that the heterogeneous 3-D style with 28-nm
compute and 16-nm memory is energy-efficient and offers notable
energy savings of up to 50% and an 8.8% reduction in runtime
compared to other 3-D integration styles with the same number of
PEs. Similarly, the heterogeneous 3-D style with 16-nm compute
and 28-nm memory is area-efficient and shows up to 8.3%
runtime reduction compared to other 3-D styles with the same
on-chip memory capacity.

Index Terms— AI accelerator, design automation, heteroge-
neous 3D design, machine learning (ML), physical design.

I. INTRODUCTION

DEEP neural network (DNN) accelerators find diverse
applications across multiple domains, including com-

puter vision, natural language processing, and autonomous
vehicles. In recent years, DNN workloads have grown sig-
nificantly, encompassing numerous layers and billions of
parameters.

However, 2-D integration faces challenges in accommodat-
ing larger on-chip memory, resulting in worse performance
and energy consumption due to the reliance on off-chip
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memories. Three-dimensional integration overcomes this issue
by enabling the integration of multitier on-chip memories with
large capacities. Academic research [1], [2], [3] and industry
demonstrations, such as system on integrated chips (SoIC)
[4] and Foveros [5], have successfully demonstrated multitier
memory integration.

While the computational capabilities of accelerator systems
progress rapidly, memory technology advances at a slower
pace. The 3-D IC design addresses this challenge by allowing
the integration of compute logic and memory at different
technology nodes on a single chip. Heterogeneous 3-D integra-
tion offers diverse design possibilities for a single accelerator
architecture. However, manually exploring and identifying the
most suitable 3-D integration style for different accelerator
configurations and workloads can be challenging.

While accelerator simulators provide a faster estimation of
performance than performing the actual physical design, cycle-
accurate simulators run for several hours to days. Furthermore,
these simulators are primarily designed for 2-D systems where
input/output features are shuttled between on-chip and off-chip
memories due to limited on-chip memory capacity. On the
other hand, in 3-D accelerators with larger on-chip memory
capacities, output features of an entire DNN layer can fit
within the on-chip memory, enabling efficient computation
without the need for data transfers on-chip and off-chip
memories.

Industrial and academic research efforts have resulted in the
development of parameterizable accelerators, such as TPU [6],
SIGMA [7], Eyeriss [8], and MAERI [9], which can be cus-
tomized for specific applications. Although these accelerators
have been optimized for 2-D designs, there is a lack of design
space exploration (DSE) and optimization techniques tailored
for 3-D technology. Our research aims to address this gap
using a machine learning (ML)-based performance prediction
framework for 3-D compute-on-memory (CoM) heterogeneous
accelerators.

The contributions of this article are as follows.
1) We present 3DNN-Xplorer, the first ML-based frame-

work for DSE of heterogeneous CoM 3-D accelerators,
providing a reliable and close approximation to the
actual physical design process.

2) We train frequency, power, runtime, and energy models
using 16, 32, and 64 processing element (PE) MAERI
and systolic array configuration with row and column
size of 4, 8, and 16 and perform extrapolation to predict
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the performance of 128, 256, 512, 1024, and 2048 PE
MAERI and systolic array design with 16, 32, 64,
and 128 row and column size with a 13.9% maximum
prediction error.

3) Our DSE shows that among the four integration styles
combining 28- and 16-nm tech nodes, the style with
28-nm compute and 16-nm memory is energy-efficient,
offering up to 50% energy savings and 8.8% runtime
reduction over other 3-D designs with the same number
of PEs.

4) The heterogeneous 3-D style with 16-nm compute and
28-nm memory is area-efficient and offers up to 8.3%
runtime reduction over other 3-D designs with the same
on-chip memory capacity.

II. BACKGROUND AND RELATED WORKS

Several studies have proposed different architectures and
integration techniques for 3-D ML accelerators [3], [10], [11].
While 3-D accelerators offer inherent performance benefits
compared to their 2-D counterparts, optimizing the architec-
ture, integration approach, and workload dataflow can yield
highly energy-efficient accelerators.

DSE techniques are commonly used to explore the extensive
range of design parameters for 2-D accelerators. For example,
Esmaeilzadeh et al. [12] proposed a technique that uses
automatic ML (AutoML) [13] to predict the performance of
hardware-accelerated ML algorithms. Their predictive models
estimate various performance metrics, including design fre-
quency, chip power, workload runtime, and energy usage for a
given 2-D accelerator configuration. While they perform DSE
for 2-D accelerators, their study is limited by interpolation
techniques and a maximum prediction error rate of 53.61%,
suggesting the possibility of better configurations beyond the
training set.

In contrast, DSE studies for 3-D accelerators are limited.
Mathur et al. [14] explored the thermal-aware design space
for 3-D systolic ML accelerators. Their focus was on inves-
tigating options for multitier 3-D integration, but the study
was restricted to a narrow range of accelerator architectural
configurations and lacked performance prediction frameworks
for larger configurations. Li et al. [15] conducted DSE on
on-chip memory technology for mobile DNN accelerators
using 3-D vertical RRAM. However, their study primarily
concentrated on memory technology with an iso-throughput
accelerator configuration, rather than exploring the overall
accelerator design space.

While extensive research exists on optimizing DSE for 2-D
accelerators [12], [16], detailed work on 3-D accelerators is
limited. In this article, we present a comprehensive approach
to DSE for heterogeneous 3-D DNN accelerators, considering
various aspects such as accelerator configurations, 3-D inte-
gration methodology, compute and memory technology nodes,
workload dimensions, clock frequency, power, and energy
requirements. Importantly, our technique offers highly accurate
performance predictions for larger accelerator designs with
minimal training runtime, using insights from smaller designs.
In addition to our previous work [17], we have included two

different kinds of accelerator architectures and corresponding
workloads to further enhance the DSE framework.

III. DESIGN AND SIMULATION TOOLS USED

The objective of our ML-based training framework is to
develop trained models using small accelerators that can
accurately predict significant physical design and workload
metrics of large ones. This will aid in an efficient DSE of
CoM 3-D accelerator designs. We use simple architecture, 3-D
integration, and physical design features as input parameters
for our training model (as detailed in Section IV-B). The
chosen parameters simplify the DSE process, as it is not
necessary to perform an initial synthesis or physical design
to use the trained model.

A. Benchmark Architecture

We employ three distinct architectures—namely,
MAERI [9], Axiline [18], and a conventional systolic
array—to develop and showcase a comprehensive strategy
for DSE of both homogeneous and heterogeneous 3-D ML
accelerators. The three architectures are shown in Fig. 1.

MAERI is a DNN accelerator that boasts flexible/
programmable interconnects between PEs, as shown in
Fig. 1(a), allowing it to achieve high utilization on both
sparse and dense workloads. This flexibility allows dataflow
optimizations to be performed per layer, making MAERI
highly energy efficient. In addition, MAERI is an open-source
DNN accelerator that is highly configurable and includes a
sophisticated workload simulator called STONNE [19] that
allows for custom dataflow capabilities.

Axiline is a versatile template-based generator designed
for shallow ML (SML) hardware acceleration, such as linear
regression, logarithmic regression, and recommender systems,
identifying common computational kernels in algorithms to
construct an optimized pipelined accelerator. It maps the data
flow graphs of ML instances to pipeline stages, optimizing
for different data dimensions through custom algorithms.
This method yields energy-efficient hardware that is tailored
for both training and inference across multiple ML algo-
rithms. Axiline is also an easily configurable open-source
SML accelerator that comes with a register transfer level
(RTL) generator and architecture simulator called VeriGOOD-
ML [20]. Fig. 1(b) shows the template-style architecture of
Axiline.

systolic array, a specialized accelerator for DNN, exhibits
a rigid interconnect topology between PEs, as shown in
Fig. 1(c). This topology can be classified into various dataflow
paradigms: input stationary, weight stationary, output sta-
tionary, and row stationary, each delineated by its unique
interconnect structure. Despite the systolic array’s compact
area footprint, attributed to its simplistic connectivity, it is
prone to substantial underutilization, particularly within expan-
sive arrays. Consequently, it is important for designers to
navigate the design space of the systolic arrays. The RTL code
for systolic arrays, alongside the workload simulator SCALE-
Sim, is also open-source and can be easily reconfigured.
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Fig. 1. Benchmark architectures used in this work.

While other accelerators can also be implemented using
3-D technology, we choose the abovementioned accelerators
to demonstrate the generic nature of our DSE methodology.
The methods we propose in this work are generic and can be
applied to any type of ML accelerator.

B. Architectural Simulator

Simulating 3-D accelerator dataflow using a 2-D simula-
tor presents a significant challenge. Three-dimensional ICs
offer several advantages, including low access latency and
large on-chip memory compared to their 2-D counterparts.
These benefits result in reduced energy consumption and run-
time, thereby improving the two crucial workload-performance
metrics of an accelerator. STONNE [19] for simulating
2-D MAERI, VeriGOOD-ML [20] for Axiline, and SCALE-
Sim [21] for 2-D systolic array do not model the advantages
of having a large on-chip memory. The simulator handles
each layer’s simulation as an independent run, resulting in
the loss of previously stored outputs in the large on-chip
memory. Consequently, it retrieves inputs once again from
the DRAM, discarding the results from any previous com-
putations. We overcome this limitation by modeling dataflow
between layers, as shown in Algorithm 1.

The upgraded simulation framework with modified dataflow
is used to compute the runtime and energy of a given workload
as follows.

1) The STONNE simulator [19], VeriGOOD-ML [20], and
SCALE-Sim [21] are used to calculate the execution
cycles (C) for a given DNN workload layer, assuming
that all inputs are stored in the on-chip SRAM buffer.

2) Using the dataflow shown in Algorithm 1, we compute
DRAM accesses and use it to modify the total execution
cycles (TCs) for a given workload.

3) We obtain the TCs using the following equation:

TC = C + AccessesDRAM × LatencyDRAM. (1)

4) To calculate the compute logic and SRAM access
energy (E) required to execute a given workload, we pro-
vide STONNE the compute logic and on-chip memory

Algorithm 1 Dataflow Used in 3-D MAERI Simulation
Framework

power obtained from the physical design of the acceler-
ator being simulated.

5) We calculate the total energy (TE) using the following
equation:

TE = E + AccessesDRAM × DE (2)

where DE is the DRAM access energy per byte.
We assume a DRAM access energy of 120 pJ/byte as
suggested in [14].

C. 3-D IC Physical Design and Simulation Tools

To generate the necessary Verilog files, we utilize the
MAERI RTL generator [22] and Axiline’s VeriGOOD-ML
RTL generator. We use a generic systolic array RTL code for
the designs presented in this work. Subsequently, we synthe-
size the netlist using Synopsys Design Compiler (DC). The
physical design is then performed using Cadence Innovus.
We provide the tool with the floorplan of the memory macros
and use the Macro-3D [23] flow to perform the 3-D compute
in memory design. Our 3-D designs feature a 3-D back-end of
line (BEOL) with six metal layers on each tier. The spacing,
width, and RC parasitics of the metal layers are adjusted
according to the technology node of the respective tier.
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TABLE I
ARCHITECTURAL FEATURES USED IN ML TRAINING. THE BW IS IN BYTES/CYCLE

Fig. 2. 3DNN-Xplorer: training framework. The metric models shown are
for MAERI architecture.

We extract the timing and power information of the standard
cells and memories in the design using Cadence Tempus and
use it to calculate the effective design frequency and chip
power. We then incorporate these physical design metrics into
the STONNE [19], VeriGOOD-ML [20], and SCALE-Sim [21]
simulators to obtain accurate runtime and energy metrics for
each accelerator configuration.

IV. ML PREDICTION MODEL DEFINITION

The 3DNN-Xplorer framework has four ML models to
predict the performance of a given accelerator configuration.
This section defines the models and the set of features used
to train these models. Fig. 2 shows the models and features
used in the 3DNN-Xplorer framework.

A. Four Separate Models Built in This Work

We create prediction models necessary for an easy and
reliable DSE of 3-D accelerators. We use four significant
performance metrics to evaluate an accelerator configuration.

1) Effective Design Frequency (Based on Gradient Boost-
ing): The final operational frequency in gigahertz of a
given accelerator configuration.

2) Chip Power (Based on Polynomial Regression): The
average chip power in milliwatts, assuming an activity
of 10%.

3) Workload Runtime (Based on Polynomial Regression):
The overall time in milliseconds required to run an entire
ML workload.

TABLE II
PHYSICAL DESIGN FEATURES USED IN ML TRAINING. AXILINE IS

LIMITED TO USING A HOMOGENEOUS INTEGRATION STYLE

4) Workload-Specific Energy (Based on Polynomial Regres-
sion): The energy consumption of the design in
millijoules to execute an entire workload.

B. Common Input Features

The following parameters are shared as inputs for our four
ML-based prediction models. Tables I and II summarize the
list of these common input features.

1) Architectural Parameters: The accelerator configuration
is determined by the architectural parameters, specifically the
number of PEs (#PE) and the total memory bandwidth (BW)
of the on-chip SRAM buffer (#BW). For MAERI and Axiline,
the memory BW chosen for training depends on the number of
#PEs in the design. Our approach involves selecting the most
favorable BW values that can provide reasonable throughput
while minimizing or completely eliminating memory access
stalling. In the case of Axiline, the hardware changes depend-
ing on the target workload benchmark, as listed in Table I. For
the systolic array, the configuration is determined by the row
size (#ROW) and column size (#COL). Based on the given
row and column size, we can calculate the number of #PEs
as #ROW × #COL and #BW as #ROW + 2×#COL. We use
#ROW and #COL as input features for the frequency model
and #PE and #BW for the other three prediction models.

2) Technology Nodes: We use two different technology
nodes in this work: 16 and 28 nm.

3) Three-Dimensional Integration Style: The 3-D integra-
tion offers the advantage of integrating different technology
nodes on different tiers. The computation speed and power
depend greatly on the technology node of both compute and
memory tiers. Furthermore, the capacity of on-chip memory is
significantly influenced by the technology nodes and available
silicon area of both tiers. In this work, we perform homo-
geneous and heterogeneous 3-D designs and compare them
in terms of power, performance, and area (PPA), workload
runtime, and energy. Our 3-D designs involve two tiers,
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Fig. 3. Four different F2F CoM 3-D integration styles used in this work. We use hybrid bonds of 1-µm pitch and a six-metal layer BEOL in each tier.
(a) Homogeneous 3-D 28 nm. (b) Heterogeneous 3-D 28-nm compute/16-nm memory. (c) Heterogeneous 3-D 16-nm compute/28-nm memory. (d) Homogeneous
3-D 16 nm.

TABLE III
DIFFERENT 3-D DESIGN STYLES EXPLORED IN THIS WORK. THE RELA-

TION BETWEEN ON-CHIP MEMORY AND #PES VARIES BASED ON THE
TECH NODE TO BALANCE THE COMPUTE AND MEMORY TIER

AREAS (SEE TABLES IV AND V)

as shown in Fig. 3: one for compute and one for memory. The
two tiers are integrated using a memory-on-logic 3-D physical
design methodology called Macro-3D [23]. As we are using
two different technology nodes in this study, we construct
two variants each of homogeneous and heterogeneous 3-D
designs. In the case of Axiline, we only explore homogeneous
3-D designs, as the on-chip memory capacity does not greatly
affect the throughput of the accelerator.

Table III shows the four different 3-D integration styles used
in this work. We integrate the two tiers in a face-to-face (F2F)
fashion using hybrid bonds of 1-µm pitch in homogeneous 3-D
(16 or 28 nm) and heterogeneous 3-D (16 and 28 nm) fashions,
as shown in Fig. 3. While typically, the memory is at an older
node in heterogeneous 3-D designs [3], [24], in this work,
we explore a heterogeneous 3-D style with memory at a more
recent node than the compute. We chose F2F integration over
TSV-based solutions for two main reasons: 1) to align with
the current industrial trends of exploring hybrid bond-based
3-D integration solutions and 2) F2F integration offers finer
pitches than TSV-based solutions, leading to higher on-chip
memory and better PPA, which are crucial to achieving better
throughput and energy efficiency in accelerators.

4) Target Frequency (Ftarget): The design frequency is a
crucial factor in exploring the design space of any accelerator
since it impacts the power consumption, workload runtime,
and energy efficiency of the accelerator. We conduct a fre-
quency sweep ranging from 0.1 to 4 GHz, in increments
of 0.1 GHz, for every combination of architectural parame-
ters and 3-D integration style. For both the 16- and 28-nm
technology nodes, the maximum design frequency of three
architecture configurations falls comfortably within the chosen
range.

C. On-Chip Memory Capacity

Although there are various approaches to implementing the
two tiers in a 3-D IC, we prioritize area balancing as a

TABLE IV
ON-CHIP MEMORY CAPACITY IN kB OF MAERI AND AXILINE

crucial factor for determining their respective areas. Given the
architectural parameters, we choose the total on-chip memory
capacity such that the area imbalance between the memory
and compute tiers is within 5%.

1) Memory Selection for MAERI: MAERI uses a single
on-chip SRAM hierarchy for inputs, filters, and outputs. The
overall on-chip memory capacity scales directly with the
number of PEs, as we target to balance the core areas between
the compute and memory tiers. However, it should be noted
that the total memory capacity on the chip varies according
to the number of PEs and the technology. The transition from
CMOS technology in the 28-nm node to FinFET in the 16-nm
node leads to a reduction of more than 50% in the chip
area. Consequently, the 28-nm accelerators can accommodate
a higher on-chip memory capacity for a given number of PEs.
Table IV shows the on-chip memory capacity in the MAERI
design for different integration styles.

2) Memory Selection for Axiline: Similar to MAERI, the
memory capacity in our Axiline designs also has a direct
correlation with #PEs. Axiline uses separate memories for
inputs and outputs and as the output BW is 2× that of the input
BW, we use 2× memory capacity to store outputs compared
to the inputs. Table IV shows the on-chip memory capacity in
the Axiline design for different integration styles.

3) Memory Selection for Systolic Array: In contrast to the
prior two architectures, the systolic array incorporates distinct
on-chip memory units for inputs, filters, and outputs. It dictates
that the input memory requires the total BW corresponding to
#ROW, while the filter and output memory demand the BW
equivalent to #COL. In adherence to the BW requirements,
and the prerequisites for logic and area balance, the largest
portion of the area is allocated to the input and output memory,
with the residual area designated for filter memory. This
strategy significantly diminishes the need for DRAM access,
consequently improving both the runtime and the energy
consumption of the system. Table V shows an example of
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TABLE V
ON-CHIP MEMORY CAPACITY IN kB FOR 28-nm Homogeneous

3-D Systolic Array

TABLE VI
DNN WORKLOAD-SPECIFIC PARAMETERS USED IN ML

TRAINING FOR MAERI AND SYSTOLIC ARRAY

on-chip memory capacity allocation for each design size on a
28-nm homogeneous 3-D systolic array.

D. Workload Features

The following parameters are exclusive to the workload-
specific runtime and energy models.

1) Workload Parameters: Besides the architectural features,
the overall workload execution runtime and energy are also
influenced by various parameters related to the workload itself.
These parameters include the size of the input features, the size
of the filters, the number of channels, the number of kernels,
and the stride size. Instead of training the workload-related
models on the entire workload, we train them specifically using
these features. This approach allows for more flexibility in
predicting and extrapolating workload performance to unseen
designs and workloads. Table VI lists the workload-specific
features used in training the ML-based prediction models
of MAERI and the systolic array. Axiline computes runtime
and energy numbers directly from the frequency and power
numbers. Therefore, in this work, we do not implement any
ML models for their prediction.

E. Training Design Space

Combining the features listed in Tables I and II, we per-
form 960 MAERI, 1920 Axiline, and 800 systolic array design
runs for synthesis and physical design using Synopsys dc
and Cadence Innovus, respectively. These runs take close to
700 h and were performed on six 2.10-GHz Intel1 Xeon1 Gold
6130 servers, using 64 cores in each server. Note that this
runtime is close to the design time of a single large MAERI
accelerator with 2048 PEs.

1Registered trademark.

V. ML MODEL TRAINING METHODOLOGY

This section describes the training techniques used for each
model (shown in Fig. 2) to perform an accurate prediction
of unseen design configurations by extrapolation. Unseen
configurations pertain to any values of the input parameters
listed in Table II that were not employed during the training
process.

As each performance metric exhibits distinct relationships
with each input parameter, we use four different models to
predict each metric. We employ exploratory data analysis
methods to detect prevalent patterns and detect any anomalies
within the training data. Our initial step involves analyzing
the distribution of different input variables using graphical
approaches, allowing us to draw approximate conclusions
about the relationship between the independent and dependent
variables. This examination helps to identify whether the
relationship is direct or inverse, as well as whether it follows a
linear or polynomial pattern. With these preliminary insights,
we employ suitable supervised learning techniques to prioritize
significant features and eliminate irrelevant ones from the
training data. The goal of the trained model is to be able to
predict the performance metrics by extrapolating our training
sample.

The ML models for effective frequency and chip power
are trained using the corresponding metrics obtained from the
actual physical design of the 3680 accelerator configurations
listed in Tables I and II. Sections V-A and V-B explain the
training methodology used for effective frequency and power
prediction models, respectively.

While the physical design metrics provide a general
understanding of an accelerator’s performance, workload
performance prediction models offer an application-specific
assessment. The overall runtime required to execute a work-
load is influenced by the effective clock frequency of the
accelerator, and the energy consumption depends on the chip
power and the DRAM access energy. Hence, workload per-
formance prediction models offer a comprehensive assessment
of various accelerator configurations. The ML models for pre-
dicting workload execution runtime and energy consumption
models are explained in Sections V-C and V-D, respectively

A. Training Frequency Model

We first train the three frequency prediction models using
the training dataset for each architecture. Unlike other per-
formance metrics, there is a maximum limit on the effective
design frequency. It is impossible to increase the design
frequency beyond a certain limit depending on the technology
nodes involved. Our training dataset includes the target fre-
quency range necessary to determine this maximum limit for
all the integration styles used in this study. Fig. 4(a) shows this
target versus effective clock frequency trend in two designs
used for training the model.

A significant proportion of the input configurations present
in our training dataset exhibits maximum effective frequency
saturation at approximately 3 GHz for MAERI, 2.5 GHz
for Axiline, and 3.5 GHz for systolic array, as shown in
Fig. 4(a). Nevertheless, we extend the target frequency range
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Fig. 4. (a) Frequency and (b) power trend observed in a 32-PE MAERI
system across four different integration styles.

to 4 GHz and incorporate the resulting effective frequencies
into the training dataset. This approach guarantees that the ML
model is trained to accurately predict the saturation limits,
considering the architectural features. The gradient boosting
algorithm offers excellent extrapolation when trained using an
extensive dataset and when the prediction values are within the
training range [25]. The effective frequencies of larger designs
are always less than those of the smaller designs. Therefore,
we use the gradient boosting algorithm in the scikit-learn
framework [26] with a depth = 5 and 1000 boosting stages to
train the frequency model. We use the Huber function shown
in (3) as the loss function (L freq) in the gradient boosting
algorithm, with the alpha-quantile (α) set to 0.9

L freq =


(
Fact − Fpred

)2

2
, if

(
Fact − Fpred

)
≤ α

α|
(
Fact − Fpred

)
| −

α

2
, otherwise

(3)

where Fact is the actual observed effective frequency and Fpred
is the effective frequency predicted by the model.

The loss function utilized in our frequency model incor-
porates both absolute and squared prediction errors. The
alpha-quantile is set to 0.9 to enhance the robustness of
the model against outliers present in the frequency curve,
particularly when dealing with values beyond the maximum
attainable effective frequency of the design. The accuracy
of the trained model is demonstrated by its impressive R2
score of 0.999997 for MAERI, 0.99956 for Axiline, and
0.999992 for the systolic array.

B. Training Power Model

In the case of Axiline, the number of gates in the design
scales linearly with the number of PEs. Therefore, the gradient
boosting machine (GBM) works well for power prediction
in Axiline, as well. With the same GBM model as used for
frequency prediction, we trained the Axiline power prediction
model and achieved an R2 score of 0.9899.

However, for the other two accelerator architectures, the
number of gates in the design increases in a nonlinear fash-
ion. Unlike frequency, power displays a direct yet nonlinear
correlation with all the input parameters used in the training
process, as shown in Fig. 4(b). Often, ensemble algorithms,
such as GBM and random forest (RF), offer a poor prediction
for such metrics on unseen configurations [27] (more details in
Section V-C and Table VII). Therefore, we employ polynomial

regression for training the power prediction model with input
features of #PE, #BW, technology nodes, and target frequency.
This method typically involves creating polynomial features
from the input data in the preprocessing stage, followed by
applying linear regression to these features. However, linear
regression does not employ any regularization techniques and
treats all polynomial features equally, leading to overfitting of
the data. Therefore, we perform ElasticNet regression on the
polynomial features extracted in our approach.

ElasticNet uses both L1 (lasso) and L2 (ridge) regulariza-
tions, offering a fine balance between feature selection and
coefficient regularization. The extracted polynomial features
involve higher order and codependent combinations of the
input training parameters, such as #PE, Fn

target, #PE × #BW,
and #BW × Ftarget. ElasticNet regression helps prioritizing
the most relevant features, leading to highly accurate model
generation. The loss function Lpower of ElasticNet regression
is given by the following equation:

Lpower =

∑n
i=1 |Pi,act − Pi,pred|

2

2n
+ λ1∥β∥1 + 0.5λ2∥β∥

2
2 (4)

where Pi,act and Pi,pred are the actual observed and predicted
power for a given input configuration i , respectively; ∥β∥1 and
∥β∥

2
2 represent the L1 and L2 norms of the polynomial

coefficients, respectively; and λ1 and λ2 are regularization
parameters.

As a tradeoff between feature selection and coefficient
regularization, we set λ1 + λ2 = 0.5 for MAERI and 0.9 for
systolic array and (λ1/λ1 + λ2) = 0.5 for MAERI and 0.3 for
systolic array using the scikit-learn framework [26]. With the
degree of the polynomial feature extraction stage set to 5 and 8,
the trained power model has an R2 score of 0.9994 and
0.9906 for each architecture, respectively.

C. Training Runtime Model

The runtime prediction model used in our study incor-
porates both architectural parameters from Table II and
workload-specific parameters described in Table VI. This
comprehensive approach improves the accuracy and reusability
of our prediction models for runtime estimation of various
workloads.

To generate the runtime dataset, we simulate ResNet-50,
ResNet-34, AlexNet, GoogLeNet, and MobileNetV1 using
STONNE [19] and SCALE-Sim [21]. Axiline estimates run-
time and energy numbers directly from the frequency and
power numbers using a spreadsheet-based calculator. There-
fore, we do not build runtime and energy prediction models
for Axiline. Instead, we use the estimated power and frequency
numbers from physical design models to directly compute the
energy and runtime. For MAERI, its high reconfigurability
allows multiple mapping possibilities per convolution layer,
leading to suboptimal mappings that underutilize the available
PEs in the design. Since our goal was to identify the best
design, we specifically simulated mappings that maximized
the utilization of all PEs. We adopted a weight stationary
flow for the systolic array, ensuring a fixed mapping for each
convolution layer.
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TABLE VII
ENSEMBLE VERSUS REGRESSION TECHNIQUES FOR RUNTIME

PREDICTION. ML FRAMEWORK USED: SCIKIT-LEARN [26]

Fig. 5. Example of the matrix multiplication format used to perform
convolution operations on a systolic array.

We explored two ML approaches to create a highly accurate
model, as detailed in Table VII: 1) stacked ensemble of GBM,
RF, and decision trees (DTs); and 2) polynomial regression.
Although the ensemble algorithms exhibit strong performance
when interpolating within the training dataset, their effective-
ness diminishes beyond the convex hull of the dataset [27].
After assessing the model scores, we use the polynomial
regression model of degree 10, which exhibits the highest
prediction score on extrapolation to new data. To address
features having an inversely proportional relationship (#PEs
and #BW) with the response variable, we transform them by
taking their reciprocals during the training process.

The PE utilization of systolic arrays is significantly affected
by variations in workload parameters, row size, and column
size, which is a notable difference from MAERI. For example,
in the 25th layer of ResNet-50, the utilization rates of 88.6%,
78.7%, and 64.3% were observed for systolic arrays with sizes
8 × 8, 16 × 16, and 32 × 32, respectively. These utilization
metrics are directly proportional to runtime. However, the
runtime modeling technique used for MAERI does not account
for these variations, resulting in mean and maximum errors of
20.9% and 50.9%, respectively.

To address this discrepancy, we propose two novel
approaches for the runtime model. Initially, rather than relying
on simplistic workload parameters as listed in Table VI,
we introduce R × S × C, OX × OY, and K as the input
features for modeling workload parameters. This approach is
based on the realization that systolic arrays primarily perform
matrix multiplication, as depicted in Fig. 5. The chosen input
features correspond to the dimensions of the rows and columns
of three matrices. Also, to simplify the model’s ability to
compute the number of tiles, we incorporate (1/#ROW) and
(1/#COL) together as input features.

Second, we use utilization as the target value of the pre-
diction model, instead of runtime value. We are then able to

calculate the predicted runtime using the following equation:

Calculated Runtime on N × M Sys. Array

=
(Runtime on 8 × 8) ∗ (Utilization on 8 × 8)

(Predicted Utilization on N × M) ∗
N∗M

64

. (5)

Leveraging the ground truth values for runtime and uti-
lization from smaller systolic arrays, our DSE framework
is equipped to estimate runtime for larger arrays. This
methodological refinement facilitates a better understanding
of runtime calculation and the relationships between systolic
array sizes.

Extrapolation of multiple features, as we aim to do in our
model, often prevents ensemble algorithms from converging
on an optimal solution, even after tuning various training
parameters. Taking into account the characteristics of our data
and the bounds of extrapolation, the excellent prediction scores
achieved by polynomial regression make it a suitable choice
for our research.

D. Training Energy Model

We train the energy model to predict the compute energies
of the linear network of PEs. Although we can analytically
calculate the energies associated with SRAM and DRAM
accesses, the compute energies cannot be derived analytically
due to the lack of per-cycle activity information. To overcome
this limitation, we employ a model that predicts the compute
energies with input features of #PE, #BW, technology nodes,
and workload parameters in Table VI. Following the method-
ology outlined in Section III-B and conducting experiments
similar to those presented in Table VII, we select a polynomial
regression model. Furthermore, the strategy of separating mod-
els based on the filter dimensions—specifically distinguishing
the 1 × 1 filter from larger sizes—was adopted for the systolic
array. Due to the rigid interconnect in the systolic array, layers
with filter size 1 × 1 suffer from severe underutilization,
resulting in longer overall cycles. Therefore, our methodology
helps the model to learn two different tendencies on energy
consumption.

VI. ML INFERENCE METHODOLOGY

The first step in the prediction flow is to find the effective
frequency. We calculate the effective frequency of the new
design being explored using the following equation:

Feff = pred_eff_frequency
(
pe, bw, is, Ftarget

)
pe = 2x , x ∈ [4, 11], bw ∈

{pe
4

,
pe
2

}
, is ∈ {0, 1, 2, 3}

(6)

where Feff is the predicted effective frequency; pe and bw
are the total number of PEs and the on-chip memory BW in
the design being explored, respectively; is denotes the integer-
coded 3-D integration style; and Ftarget is the target frequency.
We have tested the prediction model for up to a total #PE count
of 211 or 2048, and therefore, we restrict the input variable pe
to 2048. For systolic arrays, we use row and col instead of pe
and bw. The configurations range from (8, 4) to (128, 128),
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Fig. 6. Inference methodology used in 3DNN-Xplorer to evaluate unseen
accelerator configurations during DSE.

TABLE VIII
PREDICTION MODEL ERROR RATES BASED ON RANDOMLY SELECTED

128 AND 256 PE CONFIGURATIONS FOR MAERI ARCHITECTURE

encompassing various combinations such as (8, 4), (8, 8),
(8, 16), . . . , (64, 128), (128, 64), and (128, 128).

Based on the prediction methodology shown in [12],
we define a frequency range of interest (FROI) for the predic-
tion models to ensure the maximum accuracy. FROI is given
by the following equation:

FROI ∈ ∀Feff :
|Ftarget − Feff|

Ftarget
≤ 5%. (7)

If the predicted effective frequency is beyond a 5% margin
from the desired target frequency, it becomes futile to inves-
tigate that particular design configuration further. We keep
updating the target frequency until the predicted effective
frequency is within the 5% limit. We then predict the chip
power. Subsequently, using the effective frequency, we predict
the runtime for one of the five workloads used in training.
Using the chip power and frequency values, we use the energy
model to predict the overall energy for a chosen workload.
Fig. 6 shows the prediction methodology employed in 3DNN-
Xplorer. The predicted energy and runtime are the final metrics
used to evaluate the selected design configuration.

Our primary objective is to develop resilient prediction
models that facilitate precise extrapolation of performance
metrics for unseen accelerator configurations. Large acceler-
ator designs demand substantial design time, rendering the
DSE for such configurations extremely time-consuming. Using
appropriate training strategies tailored to each performance

TABLE IX
PREDICTION MODEL ERROR RATES BASED ON RANDOMLY SELECTED

16 × 32, 32 × 16, AND 32 × 32 CONFIGURATIONS FOR SYSTOLIC
ARRAY ARCHITECTURE

metric, we are able to construct prediction models capa-
ble of extrapolating these metrics to designs larger than
those exposed to the ML models in the training phase.
Tables VIII and IX show the accuracy of our models for
MAERI and systolic array, respectively, compared to the actual
physical design and simulation data for various metrics. All
our models have a maximum error ≤ 13.9%.

VII. DSE RESULTS

A. Experimental Setup

We conduct an extensive DSE encompassing the design
configurations shown as follows.

By sweeping the target frequency range from 0.5 to 4 GHz,
we determine the maximum effective design frequency for
each integration style and configuration. Subsequently, we esti-
mate the chip power based on the predicted maximum design
frequency. Utilizing the predicted physical design metrics,
we estimate the TE consumption (compute + SRAM +

DRAM) and runtime to execute ResNet-50 on each config-
uration using the parameterized workload prediction models.

We perform two different DSEs using the predicted ResNet-
50 runtime and energy values.

1) We compare designs with the same number of PEs
across different integration styles. In this case, the
on-chip memory varies based on the integration style
according to the relation given in Tables IV and V.

2) We compare designs with the same on-chip memory
across various integration styles. In this case, #PEs
differ.
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Fig. 7. DSE of the two homogeneous (top) and two heterogeneous (bottom) 3-D MAERI configurations with the same #PEs and #PE/4 (left) or #PE/2
(right) words/cycle bandwidth. The on-chip memory capacity varies based on the tech node. Workload used: ResNet-50.

TABLE X
DSE OF 3-D MAERI CONFIGURATIONS WITH THE SAME ON-CHIP MEMORY CAPACITY. THE #PES VARIES BASED ON

THE TECH NODE. WORKLOAD USED: RESNET-50

We assume that the compute and memory tiers have a
balanced total silicon area in both comparisons. This ensures
a fair and consistent evaluation of the different configurations,
allowing us to isolate and analyze the impact of other design
parameters on performance and efficiency. Our approach com-
bines the power of advanced prediction models with the
flexibility of DSE, allowing us to make informed decisions
regarding integration styles and design parameters.

B. Homogeneous 3-D Integration
This section presents a comparison of runtime and energy

consumption for the ResNet-50 workload across different
configurations, designed in 16- and 28-nm homogeneous 3-D
styles.

1) MAERI: Fig. 7 shows the DSE of homogeneous 3-D
MAERI designs with the same number of PEs across different
integration styles. Our DSE reveals that the optimal design
in the space explored is 28-nm homogeneous 3-D MAERI
with 2048 PEs, a BW of 1024 words/cycle, and 2-MB on-
chip memory. This configuration achieves a lower energy
consumption of 1.22 mJ and a runtime of 9.35 ms on the
ResNet-50 workload. While the runtime of the 16-nm homo-
geneous 3-D design with 2048 PEs is better than that of its
28-nm counterpart, it uses almost 5× more energy to execute

Fig. 8. DSE of the two homogeneous (left) and two heterogeneous (left) 3-D
systolic array configurations with the same #ROW and #COL. The on-chip
memory capacity varies based on the tech node. Workload used: ResNet-50.

ResNet-50. This is due to the fact that the 16-nm 2048 PE
design has half the on-chip memory capacity of its 28-nm
counterpart.

In contrast, the exploration focusing on maintaining the
same on-chip memory capacity (see Table X) identifies 16-nm
homogeneous 3-D MAERI as a better design over correspond-
ing 28-nm designs as it offers better energy and runtime.

Overall, the 28-nm 3-D MAERI are more energy-efficient
than the 16-nm ones for #PEs ≥ 512. Conversely, the smaller
area and shorter runtime of the 16-nm 3-D MAERI make them
more area-efficient compared to the 28-nm MAERI.
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TABLE XI
DSE OF 3-D SYSTOLIC ARRAY CONFIGURATIONS WITH THE SAME ON-CHIP MEMORY CAPACITY. #ROW AND #COL VARY

BASED ON THE TECH NODE. WORKLOAD USED: RESNET-50

2) Axiline: In the case of Axiline, we use support vector
machine (SVM) as the benchmark workload to perform the
DSE. As SVM is a shallow model with a single layer, the
amount of on-chip capacity does not affect the performance
of the accelerator significantly. Therefore, an Axiline system
of 200 dimensions is the most energy and runtime-efficient for
both homogeneous 28- and 16-nm 3-D designs. They offer an
execution runtime of 0.36 and 0.27 ms, and energy of 33 and
26 µJ on executing SVM with 200 weights, 500 000 feature
vectors, and 200 model topology.

3) Systolic Array: Results for homogeneous 3-D systolic
arrays are depicted in Fig. 8. Our design space highlights two
Pareto optimal configurations at 28- and 16-nm homogeneous,
each with a systolic array size of 128 × 128. These designs
allocate on-chip memory for input, filter, and output data
as 1 MB, 64 kB, and 1 MB for the 28-nm homogeneous
design, and 0.5 MB, 64 kB, and 0.5 MB for the 16-nm homo-
geneous design, respectively. In evaluating these designs under
the ResNet-50 workload, the 28-nm homogeneous design
demonstrates better energy with a consumption of 2.84 mJ
and a runtime of 4.73 ms. For a 16-nm homogeneous design,
benefiting from its higher maximum performance reduces the
runtime to 4.57 ms at the cost of increased energy consumption
at 3.62 mJ.

Further analysis, as presented in Table XI, maintains con-
stant input and output on-chip memory sizes across designs.
It reveals that the 64 × 128 sized 16-nm 3-D systolic array
with 256-kB input and output on-chip memory is the best
design in both runtime and energy. In summary, a 28-nm 3-D
systolic array emerges as more energy-efficient due to its lower
power consumption, while the 16-nm design exhibits higher
area efficiency, attributed to its reduced physical footprint.

C. Heterogeneous 3-D Integration
1) MAERI: Fig. 7 shows the DSE of heterogeneous 3-D

MAERI with the same number of PEs for various integration
styles. Among all heterogeneous 3-D designs, the design with
28-nm compute and 16-nm memory, featuring 2048 PEs, a BW
of 1024 words/cycle, and an on-chip memory capacity of 4 MB
is the most optimal design. This design executes ResNet-50
in 7.25 ms with an energy consumption of 0.61 mJ.

Conversely, when maintaining the same memory capacity
across the two heterogeneous styles (see Table X) and striving
for area balance between tiers, the heterogeneous style with
16-nm compute and 28-nm memory emerges as the most
favorable option. This configuration entails 2048 PEs, a BW
of 1024 words/cycle, and an on-chip memory capacity of
512 kB. It offers the shortest runtime of 11.17 ms and a low
energy consumption of 5.4 mJ to execute ResNet-50 among
other designs with the same on-chip memory. In summary,

the heterogeneous style with 28-nm compute exhibits higher
energy efficiency, while the other style with 16-nm compute
demonstrates superior area efficiency.

2) Systolic Array: The exploration of design spaces for
heterogeneous 3-D systolic arrays, as depicted in Fig. 8,
indicates a variety of configurations across different sizes.
Among these, the heterogeneous 3-D systolic array design
comprising a 128 × 128 configuration with 28-nm compute
and 16-nm memory emerges as the most efficient. It shows
exemplary performance on the ResNet-50 workload with a
runtime of 4.51 ms and an energy consumption of 2.86 mJ.

In contrast, analysis with fixed on-chip memory capacity,
detailed in Table XI, identifies the 128 × 128 sized het-
erogeneous 3-D systolic array, utilizing 16 nm for compute
and 28 nm for memory, as the optimal design in terms of
both runtime and energy. This configuration, which includes
a substantial on-chip memory capacity of 256 kB and exten-
sive logic area, achieves significant reductions in energy and
runtime, consuming 4.08 mJ and completing tasks in 6.39 ms,
respectively.

From an overall perspective, the heterogeneous 3-D systolic
array with 28-nm compute and 16-nm memory stands out for
its energy efficiency. In comparison, the alternative heteroge-
neous configuration, which leverages 16 nm for compute and
28 nm for memory, is distinguished by its area efficiency.

D. Homogeneous Versus Heterogeneous 3-D Integration
In this section, we compare the energy- and area-efficient

designs of homogeneous integration styles against their hetero-
geneous versions. In the case of Axiline, we do not have any
heterogeneous 3-D designs and the 16-nm homogeneous 3-D
design of dimension 200 is both energy- and area-efficient.

1) MAERI: The energy-efficient heterogeneous design with
28-nm compute and 16-nm memory, featuring 2048 PEs and
1024 words/cycle BW, achieves 50% energy savings and
an 8.8% reduction in runtime over the 28-nm homogeneous
3-D design with the same number of PEs. The area-efficient
heterogeneous design with 16-nm compute and 28-nm mem-
ory, featuring 512-kB on-chip memory and 1024 words/cycle
BW, demonstrates an 8.3% runtime improvement over its
area-efficient 16-nm homogeneous counterpart. These findings
highlight the superior performance of the heterogeneous 3-D
designs, showcasing their potential for achieving both energy
savings and runtime improvements.

2) Systolic Array: The energy-efficient 3-D systolic array
is heterogeneous 3-D design with 28-nm compute and 16-nm
memory. This particular arrangement, which features a 128 ×

128 array size coupled with 3-MB on-chip memory capacity,
stands out for its performance metrics and delivers a 3.3%
reduction in runtime compared to a 28-nm homogeneous 3-D
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TABLE XII
PPA ANALYSIS OF THE BEST CONFIGURATIONS. RUNTIME AND ENERGY METRICS ARE BASED ON RESNET-50 WORKLOAD FOR MAERI AND SYSTOLIC

ARRAY AND BASED ON SVM FOR AXILINE. THE ACTUAL RUNTIME AND ENERGY NUMBERS OBTAINED POST-PHYSICAL
DESIGN ARE SHOWN IN BLUE

Fig. 9. Final layouts of energy-efficient 2048 PE 3-D MAERI.

design and a 20.9% decrease in energy consumption compared
to a 16-nm homogeneous 3-D design, maintaining the same
array dimensions. On the other hand, the area-efficient 3-D
systolic array is 16-nm homogeneous 3-D design. This design
features an array size of 16 × 16 and is equipped with 20 kB
of on-chip memory. Unlike the MAERI, the systolic array’s
area efficiency does not scale linearly with its size. This
phenomenon is attributed to the significant underutilization of
PEs in larger arrays. The underutilization leads to a scenario
where the increase in TOPs does not match the proportional
expansion in the number of PEs, whereas the chip area
continues to scale directly with the array size.

We perform the physical design of the best configurations
of the accelerators. Figs. 9 and 10 show the final layouts
of the most energy- and area-efficient 3-D MAERI designs,
respectively. Performance analyses of these designs are sum-
marized in Table XII. These results align with the predictions
of our DSE study. The actual energy and runtime numbers
are very close to our predictions and are shown in blue
in Table XII. Integrating 16-nm memories on top of 28-nm
compute logic allows having large on-chip memory, which
reduces the number of DRAM accesses and, thereby, the
overall computation energy.

E. Thermal and Power-Delivery Considerations

3DNN-Xplorer is a physical and technology-aware simu-
lation framework that does not consider power and thermal
issues in heterogeneous 3-D IC designs in detail. Our training
designs use different supply voltages for 28- and 16-nm nodes
and the conversion is assumed to be handled outside the
logic and memory tiers. While realizing the actual design, the
strategies detailed in [28] can help realistically implement this

Fig. 10. Final layouts of area-efficient 2048 PE 3-D MAERI.

assumption and achieve performance results closer to those
estimated from our simulation framework.

VIII. LIMITATIONS AND FUTURE SCOPE OF
3DNN-XPLORER

Only the RTL of our designs is open-source, not the GDS,
as we are using commercial PDKs for our designs. Hence, the
dataset is not publicly available. However, the methodology
explained in this article can be used to validate the authenticity
of this work.

The 3DNN-Xplorer framework currently supports three
distinct types of accelerators:

1) rigid interconnect or systolic array-like architectures—
such as TPU, Eyeriss, and Intel Gaudi;

2) flexible interconnect architectures—such as MAERI and
SIGMA;

3) template-based application-specific accelerators—such
as Axiline.

While incorporating a new accelerator topology into the
framework requires additional training, particularly when
the architecture diverges significantly from those already
supported, the current methodology remains adaptable to
emerging accelerator technologies. Future work will focus
on devising a more resource-efficient approach, aiming to
minimize dataset generation time and model training.

3DNN-Xplorer effectively evaluates the performance of
convolution layers, which are fundamental to CNNs. However,
beyond image-related workloads, accelerators are increasingly
utilized in diverse domains such as natural language process-
ing and graph processing, each with distinct core building
blocks. For instance, attention layers in transformer-based
large language models, primarily composed of fully connected
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layers and requiring KV caching, exhibit significantly different
computational and memory access characteristics compared to
convolution layers. Future work will extend the framework to
accommodate a wider range of workloads.

Furthermore, the 3-D designs used in training involve F2F
integration, limiting the exploration study to two-tier 3-D
designs. In the future, TSV-based designs could be considered
to build multitier 3-D designs and evaluate them.

IX. CONCLUSION

In this study, we conducted an extensive DSE of CoM 3-D
accelerators, encompassing both flexible and rigid architec-
tures, and designed using homogeneous and heterogeneous
3-D integration styles. To navigate this vast design space,
we introduced an ML-based performance prediction frame-
work called 3DNN-Xplorer. This framework facilitated the
evaluation of various accelerator configurations and inte-
gration styles, delivering reliable and robust performance
estimates. By training prediction models on different smaller
accelerators, we achieved highly accurate performance extrap-
olation for larger systems. We have also proposed methods to
manipulate performance metrics for rigid architectures, where
utilization is not always 100%, to achieve better and more
accurate performance predictions. Our findings identified the
most optimal design configurations for both homogeneous and
heterogeneous approaches while maintaining the same number
of PEs or on-chip memory capacity. In particular, heteroge-
neous integration styles emerged as exemplary configurations,
offering significant energy savings and runtime reductions
compared to their homogeneous counterparts.

Furthermore, our results highlighted the tradeoff between
energy efficiency and runtime performance when consider-
ing different technology nodes. The 28-nm 3-D accelerators
demonstrated higher energy efficiency, while 16-nm accelera-
tors exhibited the improved runtime performance. Therefore,
heterogeneous integration offers an excellent tradeoff between
runtime and energy efficiency. Overall, our study contributes
valuable insights to the field of 3-D accelerator design,
advancing our understanding of both homogeneous and het-
erogeneous 3-D integration styles for designing accelerators.
The methodologies presented in this work are generic and can
be applied to any DNN accelerator design.
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