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Abstract— This work identifies the architectural and design
scaling limits of 2-D flexible interconnect deep neural network
(DNN) accelerators and addresses them with 3-D ICs. We demon-
strate how scaling up a baseline 2-D accelerator in the X/Y
dimension fails and how vertical stacking effectively overcomes
the failure. We designed multitier accelerators that are 1.67 x
faster than the 2-D design. Using our 3-D architecture and circuit
codesign methodology, we improve throughput, energy efficiency,
and area efficiency by up to 5x, 1.2x, and 3.9x, respectively,
over 2-D counterparts. The IR-drop in our 3-D designs is within
10.7% of VDD, and the temperature variation is within 12 °C.

Index Terms— 3-D accelerator physical design, 3-D bond pitch
study for accelerators, high-performance 3-D accelerator, multi-
tier 3-D ML accelerator.

I. INTRODUCTION

EEP neural networks (DNNs) have become integral
to several applications, such as vision, speech recog-
nition, object detection, and autonomous driving, over the
past decade. These applications need to process a large
amount of data in real-time, making the DNNs increasingly
compute-intensive with substantially high memory require-
ments. The computation and the memory requirement of
DNN workloads have increased by approximately 100x and
4x, respectively [1], over the past decade. Fig. 1 shows
the filter weights’ memory requirements and total multiply-
and-accumulate (MAC) operations of various recent CNN
benchmarks.
While there has been significant improvement in the DNN
accelerator architecture for modern applications, the underly-
ing process and integration technology limit the accelerator’s
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performance, energy efficiency, and scalability. Technology
(logic/memory) downscaling deceleration, memory bandwidth
(BW) scaling challenges, and increasing computational com-
plexity have become the three main limiters of efficient scaling
of DNN accelerator hardware [1]. Several scaling solutions
provide multiple degrees of parallelism to compensate for
process, technology, and BW limitations. However, the need
for greater parallelism requires an increase in memory BW and
numerous MAC units, which creates a self-perpetuating cycle.
While ON-chip SRAMs provide high BW, they compromise
the chip density, leading to numerous second-order design
inefficiency. Therefore, several solutions incorporate small
capacity and high BW ON-chip SRAM buffers.

The compute logic needs to scale according to the appli-
cation trends and performance requirements. For example,
every new TPU [2] version has 2x or more MAC units than
the previous version to obtain higher throughput but with-
out similar improvement in energy efficiency. Alternatively,
compute-in-memory (CiM) techniques have been attractive
ways to minimize the processing element (PE) complexity
and energy consumption. But these techniques either alter
memory bit-cell or provide analog ways of computation and
compromise memory robustness or compute precision.

Three-dimensional integration techniques such as face-
to-face (F2F), face-to-back (F2B), and back-to-back (B2B)
involving bonding styles such as microbumping, hybrid-
bonding through-silicon via (TSV), or monolithic intertier via
(MIV) [3] can be used to solve several design challenges
mentioned above. The integration technique, number of tiers,
and bond pitch play significant roles in scaling and opti-
mizing accelerator designs. Without careful consideration of
these interdependent design aspects, the benefits of scaling
the design to meet ever-increasing performance and power
requirements for DNN accelerators become negligible. Hence,
there is a pressing need to co-optimize DNN accelerator
architectures through 3-D integration and study the effects of
3-D bond pitch and multitier integration on their performance.

Our contributions to this work are as follows.

1) We identify and study the architectural and design scal-
ing limits of 2-D flexible interconnect DNN accelerators.
2) We present realistic 3-D architecture and technology
co-optimization framework for efficient accelerator hard-
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Fig. 1. (a) Memory requirements of filter weights. (b) Total computations

of various recent CNN benchmarks [1].

ware scaling, with practical analysis of 3-D power
delivery network (PDN) and thermal issues.

3) Our two- and three-tier designs improve throughput,
energy efficiency, and area efficiency by up to 5x, 1.2x,
and 3.9x, respectively, over 2-D counterparts.

4) Our 3-D designs have IR-drop within 10.7% of VDD
with on-die temperature variation limited to 12 °C.

II. BACKGROUND AND MOTIVATION
A. Scaling Issues in Flexible DNN Accelerators

DNN has been successfully adopted in image classification
[4], object detection/recognition [5], text summarization [6],
and sentiment analysis [7]. With growing workloads in these
domains, we need better DNN accelerator hardware capabili-
ties for fast and energy-efficient acceleration.

Unfortunately, most DNN accelerators involve rigid archi-
tectures with careful codesign of PEs and network-on-chip
(NoC), leading to a fixed dataflow pattern. This often causes
underutilization of the PEs, especially on mapping arbitrary
dataflows onto them. For example, when the dimensions of a
convolution layer are not multiples of the PE array dimensions,
the PE array could be severely underutilized [8]. FlexSA,
a flexible systolic array [8], tries to solve this by introducing
flexible interconnects in systolic arrays. However, it could
only improve the utilization by up to 37%. DNN accelerators
need to be programmable to enable mass deployment with
interconnect configurability to support the various dataflow
patterns. This, on the other hand, could offer a near 100%
PE utilization, which is 8%—-459% higher utilization than most
systolic arrays for various workloads [9].

Flexible interconnect DNN accelerators, such as MAERI [9]
and SIGMA [10], permit internal BW and dataflow reconfig-
uration, offer better PE utilization than systolic arrays, and
also work great for sparse workloads. However, unlike systolic
arrays, flexible interconnect architectures have high memory
BW and capacity requirements. The ON-chip memory BW
heavily influences PE utilization in flexible interconnect accel-
erators. Often, a high ON-chip BW closer to or greater than
0.5 x #PEs (words/cycle) leads to maximum PE utilization
in these accelerators due to the activation and weight sharing
among the PEs, making it difficult to scale them in the X/Y
dimensions.

We can improve the throughput of such memory-bound
DNN accelerators by 1) increasing DRAM channels to sup-
ply sufficient data to ON-chip memory every cycle as the
design scales; 2) tightly coupling PEs and ON-chip memory
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Fig. 2. Execution cycle improvements from more PEs and more memory

BW. We use SSD-MobileNetvl DNN benchmark using MAERI [9] DNN
architecture.

to reduce latency; and 3) increasing the ON-chip memory
BW to keep all the MAC units busy every cycle. Among
the three solutions, incorporating more DRAM channels or
replacing DRAM with high bandwidth memory (HBM) leads
to increased cost or die area. For a given DRAM BW, Fig. 2
shows the trend in execution time of SSD-MobileNetvl on
different configurations of MAERI [9]. Based on the maximum
data flow requirement of different layers in these workloads,
we observe a multifold improvement in execution times as
the data BW and the number of PEs increase in the design.
Of the 44 convolution layers, 12 layers show a throughput
improvement of about 1.67x and the rest of them show up
to 4x improvement. With 128 PEs in the design, 12 layers
of SSD_MobileNetvl show a throughput improvement of up
to 1.67x and the remaining majority shows an improvement
of up to 4x as the BW increases from 32 to 128 B/cycle.
As the design scales from 128 to 256 PEs and the data BW
increases to 256 B/cycle, the throughput improves by up to 8%,
over the baseline 128 PE, 32 B/cycle BW design. Therefore, a
collective scaling of compute logic, memory BW, and memory
capacity is necessary to design improved DNN accelerator
architectures.

Two-dimensional design scaling of the state-of-the-art
systolic array accelerators, such as Google TPU [2] and Intel
SpringHill [11], deteriorates the accelerator performance by
loosely coupling the PEs and the memories. On the other
hand, distributing the ON-chip memories across the design to
tightly couple them with the PEs increases the data latency
to the memory blocks located far away from the DRAM
interface. In flexible interconnect accelerators with much
higher BW, memory, and die area requirements, throughput
improvement through 2-D design scaling becomes practically
impossible, and efficient 3-D integration techniques are
necessary to scale them.

B. Existing Works

3D-ReG [12] and AccuReD [13] perform heterogeneous
3-D integration of Re-RAM on top of GPUs to offer multifold
throughput and energy efficiency improvement over traditional
GPU-based acceleration with DRAMs. However, we have
dedicated and improved hardware (accelerators) for training
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DNNs and inferencing, offering better performance over GPU-
based systems, such as Google TPU [2], SIGMA [10], Intel
SpringHill [11], and MAERI [9].

Lu et al. [14] proposed a 3-D cross-ring DNN accelerator
architecture involving 3D-SRAM cubes for energy-efficient
inference by reducing DRAM access and eliminating tempo-
ral redundancy. Wang et al. [15] proposed a 3-D convolution
model to improve data sharing between PEs for better through-
put. These works propose new 3-D architectures or dataflow
to achieve higher throughput and energy efficiency over the
existing 2-D architectures. However, they do not consider
the impact of multitier 3-D integration, bonding technology,
frequency, and power improvement resulting from 3-D designs
of the existing architectures.

Mathur et al. [16] performed thermal-aware design space
exploration of multitier memory-on-compute 3-D systolic
array accelerators. However, this work only analyses the power
and performance of multitier designs without considering the
actual physical design factors, including practical effects of
power bump planning, PDN design and routing, and additional
intertier vias/bonds. Ignoring them might cause prohibitive
power and area overhead in actual 3-D IC implementation.
Also, the multitier memory integration design in [16] offers
lower throughput than their 2-D baseline. Furthermore, sys-
tolic arrays with rigid interconnections require lesser ON-chip
memory BW and have low efficiency in sparse and irregular
workloads, unlike flexible interconnect accelerators. But flex-
ible accelerators offer higher efficiency through higher BW
demand, which makes them better candidates for performance
improvement through 3-D integration. Practical 3-D physi-
cal design implementation of flexible accelerators for better
throughput, energy efficiency, and area efficiency remains an
open research topic.

Unlike the works mentioned above, we do not focus
on developing new 3-D accelerator designs or performing
exploratory studies. Instead, our goal focuses on exploring
multitier 3-D architecture and physical design co-optimization
of the existing 2-D flexible accelerators to improve the overall
throughput, energy efficiency, and area efficiency.

In this work, we perform actual 3-D physical designs of the
accelerators using 3-D technology files in a commercial 2-D
IC physical design tool to understand the real benefits of 3-D
integration. We use 3-D LEF files to represent 3-D front-end-
of-line (FEOL)/back-end-of-line (BEOL), 3-D LIB files for
timing information of cells in different tiers, and 3-D qrctech
files for RC parasitic information of the 3-D routing stack.
We evaluate the designs using the metrics obtained from the
actual physical design. However, the architectural evaluation of
the accelerators is performed using modified 2-D simulators.
The details of the simulator and how we modify it for our
work are explained in Section III-B.

I11. DESIGN, SIMULATION, AND EDA METHODOLOGY
A. DNN Architecture

Among several reconfigurable accelerators, we choose a
state-of-the-art flexible interconnect architecture, MAERI [9],
to perform and evaluate the benefits of 3-D flexible inter-
connect architecture designs. While our approach is generic
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to any accelerator architecture, our goal is to use an archi-
tecture that maximizes the usage of 3-D bonds. Flexible
DNN architectures require more memory BW than systolic
arrays or other rigid architectures. We believe the insights
from MAERI could apply to other flexible accelerators such
as SIGMA [10] as well. Fig. 3 shows the generic MAERI
architecture. It has four major blocks: 1) prefetch buffers;
2) distribution tree/network (DN); 3) multiplier switches/PEs;
and 4) reduction tree/network (RN). Prefetch buffers store the
inputs and intermediate partial sums, while the distribution
network and collection network handle the data movement
between PEs and buffers. In this article, (2), (3), and (4) are
collectively referred to as compute logic. We generate the
required RTL using the open-source compiler [9] based on
the architecture implemented.

B. Architecture Simulation Methodology

We evaluate the performance of the designs presented
in this work using the STONNE [17] simulator, an open-
source cycle-accurate simulator for the MAERI [9] accelerator.
STONNE is a cycle-level microarchitectural simulator best
suited for flexible DNN inference accelerators. It ensures
that the workload dimension is always a multiple of the tile
dimensions being mapped at a time to optimize reduction and
distribution network usage. In addition to execution cycles of a
given workload, STONNE provides static and dynamic energy
numbers. The tool calculates these numbers using a lookup
table (LUT) consisting of the cycle-level energy numbers of
each module derived from synthesizing the MAERI RTL on
Synopsys Design Compiler (DC). We updated these numbers
with post-layer results from the physical design to generate
accurate results.

Similar to the actual design, STONNE considers the reduc-
tion tree size to be equal to the number of the PEs. The
mapping strategy used in the simulator is obtained from
mRNA [18], which maximizes layer performance based on
layer specifications. The intertier memory-to-logic commu-
nication is considered to be of one cycle. The cycle time
is determined from the 3-D physical design. The simulator
considers a 64-bit wide dual-channel DDR-5 (32 bits per
channel) as the OFF-chip memory, which is connected to
the ON-chip SRAM buffers. The PEs are connected using a
linear topology, which share inputs and weights with each
other. The adders are connected using a tree-based topology.
These topologies are consistent with those used in MAERI.As
the STONNE simulator does not provide any information on
DRAM accesses, we use Timeloop [19] to simulate the DRAM
access cycles and energy numbers.

To reduce the manual effort involved in performing simu-
lations, we use a Python framework that incorporates every
input to the simulator in the form of comma-separated files.
The framework identifies the most optimal mapping for each
convolution layer that results in the highest throughput. We use
industry-standard inferencing and evaluation benchmarks,
such as ResNet-50, SSD-MobileNetvl, GoogLeNet [20], and
AlexNet [21] to evaluate our designs. The details of these
workloads are shown in Table 1.
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TABLE I

DETAILS OF THE WORKLOADS USED IN THIS WORK
ResNet-50 MobileNetvl GoogLeNet AlexNet

#Parameters 2556 M 5.5M 4M 61.1M
#Conv. Layers 50 28 22 8
#Operations 412 B 1.14B 152 B 0.72 B
Top-5 accuracy  92.87% 70.89% 89.53% 79.09%
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Fig. 3. MAERI [9] architecture.
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Fig. 4. EDA methodology used in this work.

C. Design Technology and EDA Methodology

We perform accelerator designs using a commercial 28-nm
technology node. Our 3-D designs involve both the F2F and
F2B 3-D integration. The F2F integration involves hybrid
bonding, with 1-um pitch and 0.5-um diameter, between the
corresponding tiers, and the F2B integration involves TSVs
with 1-pum pitch and 0.5-pum diameter.

Fig. 4 shows the overall EDA methodology used in this
work. We use MAERI blue spec Verilog (BSV) compiler [9]
to generate the compute logic RTL of different MAERI accel-
erator configurations and a commercial 28-nm SRAM memory
compiler to generate the ON-chip prefetch buffer design files.
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We synthesize MAERI netlist from the logic RTL and memory
database (DB) files using Synopsys DC tool.

Post-synthesis, we perform place and route (P&R) using
Cadence Innovus. In the case of multitier 3-D design, during
the memory placement stage, we reduce the memory macros to
site size (minimum possible size in a given technology node)
and fix their locations on the memory tiers, as demonstrated
in the Macro3D flow [22]. Since a 2-D tool cannot support
multiple FEOL, we project the shrunk FEOL of all the memory
tiers to the compute tier and perform standard cell placement
in the compute tier.

After P&R, we evaluate our 3-D designs by performing
static timing analysis (STA) using Cadence Tempus, power
rail and IR-drop analysis using Cadence Voltus, and 3-D
thermal analysis using Ansys Redhawk. These analyses help us
understand the true performance benefits of 3-D accelerators
over 2-D designs.

IV. THREE-DIMENSIONAL IC BOND PITCH IMPACT STUDY

The bond pitch used for 3-D IC integration plays a sig-
nificant role in determining the feasibility of the target 3-D
compute-on-memory ML accelerator designs, given the intense
memory BW requirement in them. It is hard to meet the high
BW requirement in these designs with p-bumps, as they have
pitches greater than 25 pum. In addition, w-bumps require large
drivers to maintain signal integrity across tiers. On the other
hand, Intel has demonstrated that hybrid bonds with 10-um
pitches offer almost 5x lower bond parasitics and smaller
drivers than p-bumps with 40-um pitches [23]. Hybrid bonds
are a better candidate for compute-on-memory 3-D designs
with high memory BW requirements and help avoid IO driver
area and power overheads.

To understand the impact of 3-D bond pitches in accelerator
physical design performance, we implemented a small 128 PE
two-tier 3-D MAERI using three different bond pitches: 5, 2,
and 1 um. The diameter of these bonds is half that of the
pitch size. The R/C values of the hybrid bonds used in this
work with 5-pm pitch are 17 m€2/0.1 {F, with 2-um pitch are
44.2 m2/0.08 fF, and with 1-um pitch are 97 m€2/0.07 {fF. The
resistance and capacitance per unit length of the metal layers
these bonds connect to are 9.05 €2 and 0.17 fF, respectively.
Of these pitches, 5 um is currently used for manufacturing,
and the other two are expected to be available soon for
production. We allow metal layer sharing (MLS) [24] between
the two tiers so that the tool uses less capacitive routes to
improve critical path timing. Therefore, the F2F pad count is
higher than the logical connections between the memory and
logic tier (determined by network BW). The number of nets
routed using MLS is closely dependent on the F2F bonds that
can be accommodated without causing a bonding violation and
it reduces with increasing F2F bond pitch. Hence, choosing
the right F2F pitch bond is critical to achieving the desired
accelerator performance.

Based on the memory tier area, we first integrate 32 SRAM
buffers, each with a 2-byte wide data bus and 8.125 kB
capacity, providing a total memory capacity of 260 kB and a
total memory BW of 64 B/cycle. We reconfigure the network
BW on the logic tier accordingly. The variation in power and
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TABLE I

F2F PITCH IMPACT ON PPA OF MAERI [9]
3D bond pitch Sum 2um Tum [ Sum 2um

Tum

#PEs 128 128 128 128 128 128
Buffer BW (B/cycle) 64 64 64 128 128 128
Buffer cap. (KB) 260 260 260 256 256 256
#F2F pads 8,142 39,789 48,473 | 6,111 60,719 89,729
Max. Freq. (GHz) 1.727 1.818 1.828 | 1.695 1.709 1.801
Power (W) 1.579 1.573  1.578 | 1.932 1944 1951
#F2F pad violations 752 36 0 2246 571 3
TABLE III

FOUR ARCHITECTURE CONFIGURATIONS USED IN OUR STUDY. STIFT
DENOTES THE SPATIO-TEMPORAL INTEGRATED FOLDING TREE
ARCHITECTURE [25]

Network Prefetch STIFT

Arch #PEs # Tiers BW Buffer [25]
Baseline 2D 1024 1 1 KB/cycle 256 KB No
Scaled 2D 2048 1 2 KB/cycle 512 KB Yes
2-tier 3D 2048 2 2 KB/cycle 2 MB Yes
3-tier 3D 2048 3 2 KB/cycle 4 MB Yes

performance with varying F2F pad pitches are summarized
in Table II. Even for a BW of 64 B/cycle, 5-um pitch
introduces significantly higher F2F pad violations such as cut
spacing and short violations. The 5-um pitches are suitable
for designs with BW lower than 64 B/cycle and low-frequency
requirements. Pitches finer than 5 ywm are necessary for higher
BW and frequency. Both 2- and 1-um bond pitches offer
similar design metrics and handle more intertier connections.

We perform another set of designs with the three different
bond pitches by doubling the memory BW to 128 B/cycle.
We achieve this by integrating 64 SRAM buffers, each with
a 2-B data bus and 4-kB memory, providing a total memory
capacity of 256 kB. The reduction in memory capacity is based
on the memory tier area. Again, the network BW in the logic
tier is adjusted to support the new BW. The effect of varying
3-D bond pitches on the design with the 2x BW is tabulated
in Table II. Even at this BW, the 1-um pitch hardly has any
3-D bond issues. But the design with 2-um bond pitch starts
to show significant violations.

At the 28-nm node, with a support for S-pum pitch
technology, we can only design accelerators with dataflow
restricted to values much lower than 64 B/cycle. To achieve
a BW of 64 B/cycle, we at least require a 3-D technol-
ogy that supports 2-um bond pitch. To improve the BW
beyond 128 B/cycle, we need 1 wm or finer pitches. In addition
to increased BW, using finer pitches also improves design
frequency. Therefore, we use 1-um 3-D bond pitch in this
work to implement our 3-D designs.

V. BASELINE 2-D ARCHITECTURE AND DESIGN

A. Architecture and Physical Design

The baseline 2-D MAERI architecture in this work
has 1024 PEs, and a maximum distribution and collection
network BW of 1024 B/cycle. The distribution BW is split
between input activations and weights. The baseline design
includes 256 B of prefetch buffer for each PE, offering a total
ON-chip memory capacity of 256 kB (refer Table III).

We perform the physical design of the baseline configuration
using a 28-nm technology node with six metal layers on
the BEOL. Fig. 5(a) and (b) shows the generic floorplan
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Baseline 2D (1024 PE, 256KB Buffer)

3.6 mm

E
M6 ©
(3
M1
FEOL
(b)
Fig. 5. Our baseline 2-D MAERI architecture with 1024 PEs and 256-kB

prefetch buffer. (a) Floorplan, (b) layer stack, and (c) placement and routing
GDS using a commercial 28-nm technology.

of the 2-D baseline design and its routing stack. Fig. 5(c)
shows the physical design layouts of the baseline design.
Our optimized memory placement brings the distribution and
reduction networks closer to the prefetch buffers, and the PEs
surrounds these network modules. The footprint of this design
is 3.6 x 3.6 mm?, and the maximum frequency is 600 MHz
(refer Table IV).

B. Performance Analysis

We map various benchmarks listed in Section III-B onto
baseline 2-D MAERI. The throughput observed ranges
from 0.4 to 0.56 TOPS (tera-operations per second). The
baseline 2-D design has energy efficiency in the range of
2.92-5.74 (TOPS/W). The energy efficiency reported in
this work is based on the ON-chip power and does not
include any OFF-chip components. The area efficiency varies
from 31 to 43 (GOPS/mm?). Table V lists workload-specific
performance metrics.

VI. SCALED AND IMPROVED 2-D ARCHITECTURE AND
DESIGN

A. Motivation for Architecture Scaling

Architecturally, the primary bottlenecks to performance
improvement in baseline 2-D MAERI are the prefetch buffer
BW, capacity, and long interconnects between the compute
engines and the buffers. In addition, the MAERI architecture
uses spatial buffers in the reduction tree to accumulate the
partial sums generated by the PEs. The spatial-buffer-based
reduction tree works fine for any DNN layer dimensions
in which the controller maps input activation and weight
rows required to generate an output pixel to the PEs in one
cycle. However, it requires additional accumulators for bigger
workloads to avoid computation stalling during partial sums’
accumulation. To overcome this issue, the authors of MAERI
suggest a spatio-temporal integrated folding tree (STIFT) [25].
In the case of large workloads, the spatio-temporal accumu-
lation buffers in STIFT keep accumulating the intermediate
partial sums till it generates final output pixels without
stalling the computation. In other words, the STIFT acts
as a near-memory adder and quantizer (NMAQ) unit and
optimizes partial sum accumulation. We scale our 2-D baseline
incorporating the above-mentioned architectural aspects and
study the scaling impacts.

B. Architecture and Physical Design

The scaled 2-D MAERI accelerator has 2x PEs, 2x
prefetch buffer BW and capacity than the 2-D baseline, and
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Improved 2D (2048PE, 512KB Buffer, STIFT)
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Fig. 6. Our improved 2-D MAERI architecture with 2048 PEs, 512-kB
prefetch buffer, and STIFT enhancement [25]. (a) Floorplan, (b) layer stack,
and (c) placement and routing GDS.

includes the STIFT reduction network. Our scaled 2-D design
has 2048 PEs and offers a 512-kB prefetch buffer with a
network BW of 2 kB/cycle, as shown in Table III. Fig. 6(a) and
(b) shows the floorplan and routing stack, and Fig. 6(c) shows
the layouts of the improved 2-D MAERI accelerator design.
Similar to the baseline, the scaled 2-D design also uses six
metal layers for signal routing.

The scaled 2-D design is a two-tile version of the base-
line 2-D design with an STIFT reduction network. In Google
TPU architectures [2], it has been shown that tiling 128 x
128 MAC unit subarray is more efficient than building bigger
subarrays. We adopt a similar methodology for scaling in
our work as well to ensure maximum design performance.
The maximum frequency of the improved 2-D MAERI design
is 580 MHz.

C. Performance Analysis

Table V shows workload-specific metrics. The throughput
ranges from 0.87 to 1.30 TOPS, the energy efficiency from
2.81 to 5.46 (TOPS/W), and the area efficiency from 32 to 49
(GOPS/mm?).

The STIFT network adds only 3% area overhead to the
MAERI design while reducing computation stalling by around
30%. However, this tiny area overhead can make registers and
memories even more loosely coupled than in the baseline 2-D
design. We observe this in comparing different critical path
groups between the baseline 2-D and scaled 2-D designs in
Table VI. The scaled 2-D design has significantly higher path
delays than the baseline 2-D. Integrating STIFT buffers causes
more routing congestion around memories. To achieve similar
operational speeds as the baseline design, scaled 2-D design
needs high-strength timing buffers to optimize the critical
paths, making the overall design more power-hungry. Thereby,
it is not easy to have energy-efficient near-memory computing
in flexible architectures as we scale them further through 2-D
integration.

D. Baseline Versus Scaled 2-D Designs

The STIFT network reduces computation stalling in par-
tial sum accumulations, as observed by more than 2x
improvement in scaled 2-D design throughputs over than
the baseline 2-D (see Table V). However, the architectural
improvement in the scaled 2-D design leads to frequency
degradation and higher design power. The energy efficiency
improvement starts dropping from 7% to —5%, proving

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 31, NO. 10, OCTOBER 2023

our claim that 2-D accelerator design scaling becomes less
energy-efficient as the workload grows. Similarly, the area
efficiency improvement drops from 41% to —15%. Therefore,
2-D design and architectural scaling of memory-intensive
flexible interconnect accelerator architectures, such as MAERI,
makes them less energy-efficient on larger workloads.

VII. TWO-TIER 3-D ARCHITECTURE AND DESIGN
A. Performance Bottlenecks in 2-D Designs

As seen in Table VI, the major performance bottle-
neck in 2-D accelerators is the critical paths between the
SRAM buffers and the internal register logic. To optimize
the mem?2reg or reg2mem paths, several register-to-register
(reg2reg) paths in the design are underoptimized. These col-
lectively lead to lower design frequency as we scale the
accelerators through 2-D integration. The NMAQ units also
introduce several signal nets to the controller and ON-chip
memory buffers. These further increase the routing overhead
in the 2-D design, overshadowing the architectural benefits
brought about by the NMAQ units.

B. Motivation for 3-D Integration

Commercial accelerators compensate for the shortcomings
in 2-D accelerator design scaling using multiple memory hier-
archies. Often, the external memory links involve BW-limited
communication protocols, such as AXI, due to limited routing
resources in 2-D scaling. With bigger workloads, these proto-
cols cause computation stalling. In this section, we address
the architecture and design scaling issues in 2-D acceler-
ators through compute-on-memory 3-D integration. Three-
dimensional integration [22] shows up to 28% performance
and power improvement through memory-on-logic 3-D inte-
gration of processor designs with a considerable amount of
ON-chip memory. Unlike processors, memory blocks are a
significant component of accelerator designs, making them
better candidates for compute-on-memory 3-D integration.

In 2-D MAERI, the placement of ON-chip memory around
the 2-D computation causes long wires in the tree-based
reduction network, which transfer data between the PEs and
the ON-chip memory. However, by adopting 3-D integration,
the wirelength can be reduced through the vertical stacking of
ON-chip memory beneath or on top of the compute logic. This
integration approach significantly enhances the scalability of
the 2-D MAERI design.

C. Architecture and Physical Design

Our two-tier 3-D MAERI design has one compute tier and
one memory tier integrated through F2F hybrid bonding (1-xm
pitch). Fig. 7(a) shows the floorplan of the two-tier design. The
external connections in the accelerator are predominantly to
and from the memories. Therefore, we place the memories on
the bottom tier to avoid many multitier external connections
to other SoCs or package, as the external pins and C4 bumps
are on the bottom tier.

The two-tier design has the same number of PEs and
ON-chip BW as the scaled 2-D design, but we scale the on-
chip memory capacity to 2 MB based on the additional area
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Fig. 7. Our two-tier 3-D MAERI architecture with 2048 PEs, 2-MB prefetch
buffer, and STIFT enhancement [25]. (a) Floorplan, (b) layer stack, and
(c) placement and routing GDS.

available in the memory tier. This additional memory is used
to reduce DRAM accesses between two consecutive layers of
DNN inference. Fig. 7(b) and (c) shows the routing stack and
the final layouts of the two-tier design. The 3-D design has the
NMAQ units and the reduction/distribution networks directly
above the corresponding ON-chip memory subarray, leading to
an improved frequency of 1 GHz, which is 1.67x faster than
the 2-D designs.

D. Performance Analysis

The throughput varies from 1.48 to 2.24 TOPS, with the
highest throughput seen on the ResNet-50 workload. The
energy efficiency is in the range of 3.09-6.16 (TOPS/W).
The area efficiency varies from 86 to 129 (GOPS/mm?). With
compute-on-memory 3-D integration, we improve the critical
paths between the memories and the register, achieving higher
design frequency. Our two-tier 3-D design offers throughput,
energy efficiency, and area efficiency improvement of up to
5x, 1.2x, and 3.88x, respectively, compared with the base-
line 2-D design, and up to 1.7x, 1.1x, and 2.7 x, respectively,
compared with the scaled 2-D design. Table V summarizes
these results.

Using 3-D integration, we could not only rearchitect the
design with increased compute logic and memory BW/ capac-
ity but also bring the accumulators close to the ON-chip
memory and include STIFT buffers to avoid compute stalling.
Performing this in the 2-D design had a negative impact on
the overall design frequency, as explained in Section VI-D.
In addition to offering technology-induced benefits, 3-D inte-
gration also enables architecture improvement through faster
near-memory addition and quantization (NMAQ).

VIII. THREE-TIER 3-D ARCHITECTURE AND DESIGN
A. Energy-Efficient Accelerator Design

With the ability to integrate high-capacity ON-chip memo-
ries in 3-D design, 3-D integration facilitates energy-efficient
accelerator designs. As the workloads grow, we can scale the
ON-chip memory in the accelerators further through vertical
integration of additional memory tiers to reduce high-energy
external memory accesses.
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B. Architecture and Physical Design

Our three-tier MAERI design offers one compute tier
with 1024 PEs and two memory tiers with 2 MB of ON-chip
buffers per tier, totaling 4 MB. Fig. 8(a) shows the floorplan
of our three-tier design. The three-tier design has 2x ON-
chip memory of that of the three-tier design. The additional
memory is used to reduce the total number of DRAM transfers
of outputs (of the current layer)/input activations (of the next
layer) while switching from one inference layer to the other.

There are two different techniques for performing three-tier
3-D designs: Monolithic 3-D involving F2B integration only
or a mix of F2B and F2F integration. In F2B integration, TSVs
bond multiple tiers. As TSVs penetrate through the silicon, the
memory placement or the TSV usage gets restricted, especially
in memory-intensive designs, such as accelerators. On the
other hand, F2F integration does not pose any restriction on
intertier bond usage, making it a better candidate for multitier
accelerator integration. However, it is impossible to integrate
all three tiers using F2F integration, and therefore, we use
a combination of F2F and F2B integration to perform the
three-tier MAERI design. Fig. 8(b) shows the routing stack
used for this integration.

We perform a three-tier MAERI design using an 18-metal
layer routing stack [Fig. 8(b)], with two memory tiers on the
bottom and one compute tier on the top. (We also performed a
design with F2F bonding between the compute and the middle
memory tier, but its effective frequency was 11.7% lesser.)
Similar to a two-tier 3-D design, we place the memories closer
to the package for better connectivity to external memories.
Fig. 8(c) shows the physical design layouts of our three-tier
design. Even though the memory capacity doubles, the mem-
ory subarray sizes do not exactly double, leading to a smaller
footprint of the three-tier design than the two-tier design.

C. Performance Analysis

Table V shows the workload-specific performance results of
the three-tier 3-D design. The three-tier design offers the same
throughput as that of the two-tier design, as the number of
PEs, ON-chip memory BW, and design frequency are the same
between the two designs. The energy efficiency is in the range
of 3.07-6.03 (TOPS/W). The SRAM power increases for
bigger workloads, such as ResNet50 and GooglLeNet, leading
to a drop in energy efficiency. The primary energy-saving in
the 3-D design stems from the reduction in DRAM accesses.
For a slight increase in SRAM energy, the DRAM access
energy reduces to up to 27% in the two-tier design and 46%
in the three-tier design. Fig. 9 shows workload-based PE,
SRAM, and DRAM energy comparisons. The PE energy in
the 3-D designs is less than the scaled 2-D design due to lesser
high-strength timing buffers, resulting in 72% higher fre-
quency with only a 52%-56% increase in ON-chip power. The
area efficiency of the three-tier design varies from 89 to 133
(GOPS/mm?).

While the throughput improves in the 3-D designs, the
chip power also considerably increases due to their higher
frequency of operation. Therefore, the energy efficiency is
consistent across all the designs. However, the footprint of
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Fig. 8. Our three-tier 3-D MAERI architecture with 2048 PEs, 4-MB
prefetch buffer, and STIFT enhancement [25]. (a) Floorplan, (b) layer stack,
(c) placement and routing GDS, and (d) TSV locations.

TABLE IV

PHYSICAL DESIGN METRIC COMPARISON. WORKLOAD-BASED POWER
NUMBERS ARE SHOWN IN TABLE V
Baseline Scaled 2-tier  3-tier
2D 2D 3D 3D

Footprint (mm?) 13.01 2678 17.36  16.80
Utilization 704%  73.7% 70.7% 70.2%
#Metal layers 6 6 6+6 6+6+6
Wirelength (m) 1225 408.1 3677 3647
#Gates 36M  83M 84M  8.IM
#F2F pads - - 556.0K 419.5K
#TSVs - - 671.8K

Max. Freq. (MHz) 1000 1000

ABCD ABCD ABCD ABCD "~ ABCD ABCD ABCD ABCD
2.5 Compute Logic Energy (mJ)
20 M AlexNet A: Baseline 2D
15 l GoogLeNet B: Scaled 2D
10 Il MobileNetV1 C: 2-tier 3D
05 B ResNet-50  D: 3-tier 3D

ABCD ABCD ABCD ABCD

Fig. 9. Workload-based DRAM, SRAM, and PE energy comparison. Note:
The energy numbers are on different scales.

the 3-D designs is much lesser than that of the scaled-2-D
design (see Table IV). Therefore, the increased throughput in
3-D designs leads to a much higher area efficiency in them
than the 2-D designs.
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memory tier |

55 i

Fig. 10. Clock routing in (a) baseline 2-D, (b) scaled 2-D, (c) two-tier 3-D,
and (d) three-tier 3-D MAERI designs. The routing is enhanced for visibility.
The three-tier design has insignificant clock routing on memory tiers.

IX. THREE-DIMENSIONAL PHYSICAL DESIGN ANALYSIS

In this section, we analyze our 3-D physical designs and
compare them against the 2-D designs.

A. Timing Critical Path Analysis

Fig. 10 shows the clock routing of the four different MAERI
designs. In general, clock routing is clustered around the
compute logic. In the case of the two-tier 3-D design, the
F2F bonding between the tiers permits clock signals to use
the memory tier’s M5 and M6 metal layers for better routing.
But in the case of the three-tier 3-D design, the limited space
available for TSV bonds between the compute and memory
tier is mainly reserved for memory signal routing optimization.
The major part of the clock tree is in the compute tier. The
memory tiers only have direct connections to the memory
clock pins.

Table VI presents the clock metrics summary comparison.
The presence of the NMAQ unit/STIFT network increases the
clock latency across all three MAERI designs with them. But
the latency is 9.3% and 18.6% less in the two-tier and three-
tier 3-D designs, respectively, compared with the scaled 2-D
design. The clock metrics of the three-tier 3-D are noticeably
better than the two-tier 3-D. Splitting the memory clock pins
across two tiers in the three-tier design offers better clock
routability, making three-tier clock metrics better than two-
tier 3-D.

Fig. 11 shows the critical paths, and Table VI shows
comparison of their metrics. The critical path delays are sig-
nificantly higher in the scaled 2-D design than in the baseline
due to the NMAQ. In the two-tier 3-D design, we observe
almost up to 34% improvement in these delays due to less
routing congestion. In the case of the three-tier 3-D design,
the maximum improvement is 31%, which is slightly lower
than the two-tier design due to multitier vias.

B. PDN Design

In 2-D designs, we flip the whole chip and connect the
package power/ground bumps to the topmost metal layer in the
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TABLE V
WORKLOAD SIMULATION COMPARISON. ALL METRICS ARE CALCULATED BASED ON ON-CHIP COMPONENTS
AlexNet GoogLeNet MobileNetv1 ResNet-50
base scaled 2-tier 3-tier | base scaled 2-tier 3-tier | base scaled 2-tier 3-tier | base scaled 2-tier 3-tier
2D 2D 3D 3D 2D 2D 3D 3D 2D 2D 3D 3D 2D 2D 3D 3D
Frequency 600 MHz 580 MHz 1 GHz 1 GHz
Tera-ops per second (TOPS) 1.17  2.01 2.01 | 0.50 148 148 {043 090 155 1.55 |0.56 1.30 PRZEEPRY
Normalized TOPS 1 292 502 5.02 1 1.74 298 298 1 2.09 3.60 3.60 1 232 400 4.00
Power (mW) 86 234 361 361 | 104 176 279 287 | 148 321 503 506 | 97 238 364 372
Energy efficiency (TOPS/W) | 4.65 497 556 5.56 |475 490 534 521 309 307 [574 546
Normalized 1 1.07 120 1.20 1 1.03 1.12 1.10 1 096 1.06 1.06 1 095 1.07 1.05
Area efficiency (GOPS/mm?) F 44 116 120 | 38 32 86 89 33 90 92 43 49 129 133
Normalized 1 141 376 3.88 1 085 226 234 1 1.01  2.69 278 1 .13 3.02 3.12
TABLE VI
CRITICAL PATH ANALYSIS
Base Scaled 2-tier 3-tier
2D 2D 3D 3D
clock metrics
Max latency (ns) 0.96 1.61 1.46 1.31
Max skew (ns) 0.1 0.29 0.35 0.29
Wirelength (m) 2.51 5.39 10.01 8.64
#Buffers 57,041 125,050 127,149 119,547
mem2reg critical path
Req. time (ns) 2.497  3.062 2.089 2.250
Arr. time (ns) 2.494  3.057 2.020 2.104
Slack (ps) 3 5 69 146 @ ®
reg2mem critical path Fig: 12.  PDN routing in (a) baseline 2-D and (b) two-tier 3-D MAERI
Req. time (ns) 2482 2943 2.125 2.311 designs.
Arr. time (ns) 2477 2905 1.959 2.002
Slack (ps) 5 38 166 309 TABLE VII
Req. Gme (1s) regzzlzg(g) crlt;.cg%path 3122 3746 POWER GRID USA(]}}E AND IR-DROP ANAL\{SIS. VDD = 0.9.V
. ase Scaled 2-tier 3-tier
Arr. time (ns) 2486  3.045 2.118 2.243 2D 2D 3D 3D
Slack (ps) 4 32 4 3
C4 bumps 324 624 256 256
- ;ggg‘rﬁfrg — reg2reg C4 bump pitch (um) 200 200 260 250
3.045 ns Hybrid bond pads - - 347.4K 311.6K
TSVs - - - 467.8K
2R el PDN area (mm?2) 201  3.98 8.45 9.17
% PDN area 2.58% 2.69% 4.10% 3.03%
12494 ns 3.057 ns PDN metal layers 2,5,6 2,5,6  Compute: 2,56 Compute: 2,5
Memory: 4,5,6 Memory: 4,5,6
2477 ns Max. IR-drop (mV’)  87.5 96.4 96.9 95.8

baseline 2D scaled 2D
2.002 ns

2.104 ns

2118 ns 1.959 ns 2.243 ns

2.02 ns

2-tier 3D 3-tier 3D

Fig. 11. Timing critical paths.

design. Therefore, the C4 bump pitch values can be flexible
in the 2-D design. We use a C4 power/ground bump pitch of
200 pm in our 2-D designs to limit the IR-drop to be within
10% of VDD. The baseline 2-D has 162 VDD and 162 VSS
bumps, and the scaled 2-D design has 312 VDD and 312 VSS
bumps. Fig. 12(a) shows PDN routing in baseline 2-D. We use
M2, M5, and M6 layers for PDN routing in 2-D designs.
Our 3-D designs place memories on the bottom tiers to
make the external memory connections easier to meet timing.
We place around 160 k (two-tier)-200 k (three-tier) external
signal and clock pins on the bottom tier and restrict their loca-
tion to the six metal layers on the bottom tier. These external

connections are to the accelerator controller within the same
package. Unlike 2-D designs, the C4 bumps for power/ground
connections in the case of 3-D designs have to connect to
the bottom-most metal layer of the memory tier. However, the
clustered nature of memories in the bottom tier, as shown in
Figs. 7 and 8(c), restricts the number of microbumps or C4
bumps’ locations in the design. The key to achieving finer
C4 bump pitches in memory-dominated designs is to have
smaller memory subarrays and add sufficient spacing between
them. With a whole tier dedicated to memory placement in
3-D designs, the slight area increase in splitting a memory
block into smaller subarrays does not cause any placement
congestion or routing overhead. We use power/ground bump
pitches of 260 and 250 um in our two-tier and three-tier 3-D
designs, respectively, to place the C4 bumps efficiently in the
gaps between the memories. Our two-tier and three-tier 3-D
designs have 128 VDD and 128 VSS bumps each. Fig. 12(b)
shows the PDN routing in the two-tier 3-D design. We use
metal layers M2, M5, and M6 of the compute tier and M4—
M6 of the memory tier for PDN routing in the two-tier design.
We use layers M2 and M5 of the compute tier, M4-M6 layers
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TABLE VIII
COMPARISON OF OUR WORK AGAINST EXISTING 3-D ACCELERATOR WORKS
Name Technology #PEs Mem. Capacity #Compute tiers #Mem. tiers 3D:2D throughput 3D:2D energy-efficiency
Thermal-aware 3D systolic array [16] 16 nm 1,024 512 KB 1 4 0.96 1.53
Thermal-aware 3D systolic array [16] 16 nm 4,096 128 KB 4 1 2.99 1.64
3D Stacked NN accelerator [27] 7 nm 1,024 8 MB 1 4 1.9 1.4
3D Stacked NN accelerator [27] 7 nm 2,048 16 MB 1 4 3.9 1.6
3D-aCortex [28] 55nm 16,384 1 MB 1 64 0.71 0.30
Our work 28 nm 2048 4 MB 1 2 1.2
- - 97 mv 56:C
EF_. - N ]
- -
s | O
memory tier hEMuteﬁr i omv
baseline 2D 2-tier 3D . ) i
memory tier compute tier
baseline 2D 2-tier 3D 44C

scaled 2D 3-tier 3D

Fig. 13. IR-drop map comparison.

of the middle memory tier, and M1, M4-M6 of the bottom
memory tier for PDN routing in the three-tier design.

Table VII summarizes the PDN-related metrics. Our 3-D
designs have a higher PDN area to limit the IR-drop. The
increased 3-D PDN area does not affect signal routing, as our
3-D designs offer significant wirelength (see Table IV) and
frequency (see Table V) improvements over the 2-D design.

C. IR-Drop Analysis

We use Cadence Voltus to perform power rail analysis and
use them to generate the IR-drop map of our 2-D and 3-D
designs using the techniques presented in [26]. We perform the
IR-drop analysis of our designs considering an input switching
activity of 10% to account for the worst possible scenario.
The power consumption corresponding to the workloads used
in this work is much less than the power corresponding to
a steady-state switching activity of 10%. Fig. 13 shows the
IR-drop maps of the four designs presented in this work.
The maximum IR-drop occurs around the compute logic,
and the minimum IR-drop occurs around the memories in both
the 2-D and 3-D designs. Table VII summarizes the maximum
IR-drop of all four designs. The % PDN area denotes the
portion of PDN routing tracks in the total routing tracks used
for routing. Despite the restricted placement of power bumps
on the memory tiers of 3-D design, the IR-drop in our 3-D
designs is within 10.7% of the VDD.

D. Thermal Analysis

We perform thermal analysis of our designs using Ansys
RedHawk-CTA tool, based on the technique shown in [29].
We generate the compact thermal models (CTMs) of each
tier at their maximum design frequency. The CTMs are then
stacked on to a package model according to the integration
style used. We use a dummy air-cooled package substrate with
signal and power routing to simulate the thermal conductivity

memlé'iy tier 2
3-tier 3D

compute tier

memory tier 1

scaled 2D

Fig. 14. Temperature map comparison.

of an actual package. We place a heat sink on the top tier
of 3-D designs. Similar to the IR-drop analysis, we consider
a design power corresponding to an average steady-state
switching activity of 10% to account for the worst possible
scenario. The assumed switching activity corresponds to that
of the average DNN workloads. The ambient temperature for
thermal analysis is considered to be 25 °C. The tool divides
the design into multiple tiles and calculates power density
and thermal conductivity within each tile. The tile dimensions
are 5 x 5 um. As the 3-D bond sizes are much smaller than
the tile dimensions, multiple 3-D bonds are within a single tile.

Fig. 14 shows the temperature maps of all four designs. The
maximum on-die temperature variation in our 3-D designs is
within 12 °C.

X. COMPARISON AGAINST PREVIOUS WORKS

Table VIII shows the comparison of our work against recent
3-D ML accelerator works. In this table, we have normalized
the throughput and energy efficiency benefits of 3-D ML
accelerators with respect to the corresponding 2-D designs
presented in the works shown. We compare our work against
the recent works of thermal-aware 3-D ML systolic arrays [16]
(2021), 3-D stacked neural network accelerator for AR/VR
application [27] (2022), and 3-D NAND flash memory-
based 3D-aCortex accelerator [28] (2021), which are rigid
interconnect architectures. Our analysis shows that our 3-D
work offers a 1.68x throughput improvement over the best
recent 3-D ML accelerator work, for just a 0.27x reduction
in energy efficiency. It is also to be noted that other works
are at a more recent node than our work and still offer higher
throughput. If we extend our 3-D design methodology to more
recent technology nodes, we can obtain further frequency,
throughput, and energy efficiency improvement. This also
shows that flexible interconnect accelerator designs show more
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improvements with 3-D integration than systolic arrays or
other rigid interconnect architectures.

XI. CONCLUSION

Flexible interconnect DNN accelerators offer energy-
efficient throughput improvement compared with systolic
arrays by maximizing PE utilization through flexible data
distribution and reduction. However, they also require signifi-
cantly higher ON-chip memory capacity and BW than systolic
arrays. Growing DNN workloads demand the corresponding
scaling of DNN accelerator architectures and designs. But
we see that scaling the near-memory computing architecture
through NMAQ units and the compute logic in these accel-
erators through 2-D integration is energy-inefficient and does
not use the full potential of the enhanced architecture.

On the other hand, compute-on-memory 3-D integration
helps build high-speed and energy-efficient flexible intercon-
nect DNN accelerators by enabling their full potential of
near-memory computing. Unlike [16], [27], using 3-D integra-
tion, we improve the throughput, energy efficiency, and area
efficiency by 5x, 1.2x, and 3.9x, respectively, in MAERI.
Furthermore, increasing the total ON-chip memory capacity by
integrating an additional memory tier, we also reduced DRAM
access energy by up to 46%. Through efficient memory design
and power planning, the IR-drop is within 10.7% of VDD.
We also optimize the external memory connections by placing
the memories on the bottom tier. This helps place the heat sink
closer to highly active compute blocks on the top tier, thereby
limiting the temperature variance across the chip to 12 °C.

REFERENCES

[1] K. Siu, D. M. Stuart, M. Mahmoud, and A. Moshovos, “Memory
requirements for convolutional neural network hardware accelerators,” in
Proc. IEEE Int. Symp. Workload Characterization (IISWC), Sep. 2018,
pp. 111-121.

[2] N. P. Jouppi et al., “A domain-specific supercomputer for training deep
neural networks,” Commun. ACM, vol. 63, no. 7, pp. 67-78, Jun. 2020.

[3] J. Kim, L. Zhu, H. M. Torun, M. Swaminathan, and S. K. Lim, “Micro-
bumping, hybrid bonding, or monolithic? A PPA study for heterogeneous
3D IC options,” in Proc. 58th ACM/IEEE Design Autom. Conf. (DAC),
Dec. 2021, pp. 1189-1194.

[4] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and
E. S. Chung, “Accelerating deep convolutional neural networks using
specialized hardware,” Microsoft Res. Whitepaper, vol. 2, pp. 1-4,
Feb. 2015.

[5] W. Ali, S. Abdelkarim, M. Zidan, M. Zahran, and A. El Sallab,
“YOLO3D: End-to-end real-time 3D oriented object bounding box
detection from LiDAR point cloud,” in Proc. Eur. Conf. Comput. Vis.
(ECCV) Workshops, 2018, pp. 716-728.

[6] S. Gao et al., “Abstractive text summarization by incorporating reader
comments,” in Proc. AAAI Conf. Artif. Intell., 2019, vol. 33, no. 1,
pp. 6399-6406.

[7]1 H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and T. Zhao, “SMART: Robust
and efficient fine-tuning for pre-trained natural language models through
principled regularized optimization,” in Proc. 58th Annu. Meeting Assoc.
for Comput. Linguistics, 2020, pp. 2177-2190.

[8] S. Lym and M. Erez, “FlexSA: Flexible systolic array architecture for
efficient pruned DNN model training,” 2020, arXiv:2004.13027.

[91 H. Kwon, A. Samajdar, and T. Krishna, “A communication-centric
approach for designing flexible DNN accelerators,” IEEE Micro, vol. 38,
no. 6, pp. 25-35, Nov. 2018.

(10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

1613

E. Qin et al., “SIGMA: A sparse and irregular GEMM accelerator with
flexible interconnects for DNN training,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2020, pp. 58-70.

O. Wechsler, M. Behar, and B. Daga, “Spring Hill (NNP-I 1000) Intel’s
data center inference chip,” in Proc. IEEE Hot Chips 31 Symp. (HCS),
Aug. 2019, pp. 1-12.

B. Li, J. R. Doppa, P. P. Pande, K. Chakrabarty, J. X. Qiu, and H. Li,
“3D-ReG: A 3D ReRAM-based heterogeneous architecture for training
deep neural networks,” ACM J. Emerg. Technol. Comput. Syst., vol. 16,
no. 2, pp. 1-24, Jan. 2020, doi: 10.1145/3375699.

B. K. Joardar, J. R. Doppa, P. P. Pande, H. Li, and K. Chakrabarty,
“AccuReD: High accuracy training of CNNs on ReRAM/GPU hetero-
geneous 3-D architecture,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 40, no. 5, pp. 971-984, May 2021.

W. Lu, P.-T. Huang, H.-M. Chen, and W. Hwang, “An energy-efficient
3D cross-ring accelerator with 3D-SRAM cubes for hybrid deep neural
networks,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 11, no. 4,
pp. 776-788, Dec. 2021.

Y. Wang, Y. Wang, C. Shi, L. Cheng, H. Li, and X. Li, “An edge
3D CNN accelerator for low-power activity recognition,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 5, pp. 918-930,
May 2021.

R. Mathur, A. K. A. Kumar, L. John, and J. P. Kulkarni, “Thermal-
aware design space exploration of 3-D systolic ML accelerators,” I[EEE
J. Explor. Solid-State Comput. Devices Circuits, vol. 7, no. 1, pp. 70-78,
Jun. 2021.

F. Mufoz-Martinez, J. L. Abellan, M. E. Acacio, and T. Krishna,
“STONNE: Enabling cycle-level microarchitectural simulation for DNN
inference accelerators,” IEEE Comput. Archit. Lett., vol. 20, no. 2,
pp. 122-125, Jul. 2021.

Z. Zhao, H. Kwon, S. Kuhar, W. Sheng, Z. Mao, and T. Krishna,
“MRNA: Enabling efficient mapping space exploration for a reconfigu-
ration neural accelerator,” in Proc. IEEE Int. Symp. Perform. Anal. Syst.
Softw. (ISPASS), Mar. 2019, pp. 282-292.

Y. N. Wu, V. Sze, and J. S. Emer, “An architecture-level energy and area
estimator for processing-in-memory accelerator designs,” in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Aug. 2020, pp. 116-118.
C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 1-9.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., vol. 25, F. Pereira, C. Burges, L. Bottou, and K. Weinberger,
Eds. New York, NY, USA: Curran Associates, 2012, pp. 1-9.

L. Bamberg, A. Garcia-Ortiz, L. Zhu, S. Pentapati, and S. K. Lim,
“Macro-3D: A physical design methodology for face-to-face-stacked
heterogeneous 3D ICs,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), 2020, pp. 37-42.

A. Elsherbini, S. Liff, J. Swan, K. Jun, S. Tiagaraj, and G. Pasdast,
“Hybrid bonding interconnect for advanced heterogeneously integrated
processors,” in Proc. IEEE 71st Electron. Compon. Technol. Conf.
(ECTC), Jun. 2021, pp. 1014-1019.

S. Pentapati and S. K. Lim, “Metal layer sharing: A routing optimization
technique for monolithic 3D ICs,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 30, no. 9, pp. 1355-1367, Sep. 2022.

F. Muifoz-Martinez, J. L. Abelldin, M. E. Acacio, and T. Krishna,
“STIFT: A spatio-temporal integrated folding tree for efficient reductions
in flexible DNN accelerators,” ACM J. Emerg. Technol. Comput. Syst.,
May 2022.

L. Zhu, C. Jo, and S. K. Lim, “Power delivery solutions and PPA impacts
in micro-bump and hybrid-bonding 3D ICs,” IEEE Trans. Compon.,
Packag., Manuf. Technol., vol. 12, no. 12, pp. 1969-1982, Dec. 2022.
L. Yang et al., “Three-dimensional stacked neural network accelerator
architectures for AR/VR applications,” IEEE Micro, vol. 42, no. 6,
pp- 116-124, Nov. 2022.

M. Bavandpour, S. Sahay, M. R. Mahmoodi, and D. B. Strukov, “3D-
aCortex: An ultra-compact energy-efficient neurocomputing platform
based on commercial 3D-NAND flash memories,” Neuromorphic Com-
put. Eng., vol. 1, no. 1, Jul. 2021, Art. no. 014001, doi: 10.1088/2634-
4386/ac0775.

L. Zhu et al., “High-performance logic-on-memory monolithic 3-D IC
designs for arm Cortex-A processors,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 29, no. 6, pp. 1152-1163, Jun. 2021.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 10,2024 at 12:29:20 UTC from |IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1145/3375699
http://dx.doi.org/10.1088/2634-4386/ac0775
http://dx.doi.org/10.1088/2634-4386/ac0775

