
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024 1957

Hier-3D: A Methodology for Physical Hierarchy
Exploration of 3-D ICs

Nesara Eranna Bethur , Anthony Agnesina , Moritz Brunion , Alberto Garcia-Ortiz , Senior Member, IEEE,
Francky Catthoor , Fellow, IEEE, Dragomir Milojevic, Manu Komalan , Member, IEEE,

Matheus Cavalcante, Student Member, IEEE, Samuel Riedel , Member, IEEE,
Luca Benini , Fellow, IEEE, and Sung Kyu Lim , Fellow, IEEE

Abstract—Hierarchical very-large-scale integration (VLSI)
flows are an understudied yet critical approach to achieving
design closure at giga-scale complexity and gigahertz frequency
targets. This article proposes a novel hierarchical physical design
flow enabling the building of high-density and commercial-quality
two-tier face-to-face-bonded hierarchical 3-D ICs. Complemented
with an automated floorplanning solution, the flow allows
for system-level physical and architectural exploration of 3-D
designs. As a result, we significantly reduce the associated man-
ufacturing cost compared to existing 3-D implementation flows
and, for the first time, achieve cost competitiveness against the
2-D reference in large modern designs. Experimental results on
complex industrial and open manycore processors demonstrate
in two advanced nodes that the proposed flow provides major
power, performance, and area/cost (PPAC) improvements of
1.2 -2.2 × compared with 2-D, where all metrics are improved
simultaneously, including up to 20 % power savings.

Index Terms—Bonded 3-D ICs, face-to-face (F2F), hier-3D,
physical design methodology, wafer-level bonding.

I. INTRODUCTION

TO DELIVER the perceived benefits of 3-D ICs outside the
purview of research and academia [1], a hierarchical 3-D

design flow must subdivide complex, manycore, large-memory
giga-scale designs into sub-blocks, which are independently
synthesized and physically placed-and-routed (P&R) as separate
design units. Then, the resultant mapped sub-blocks are

Manuscript received 13 May 2023; revised 30 October 2023; accepted
4 December 2023. Date of publication 14 December 2023; date of current
version 20 June 2024. This work was supported in part by the Ministry of
Trade, Industry and Energy of South Korea under Grant 1415187652 and
Grant RS-2023-00234159; in part by the Semiconductor Research Corporation
(CHIMES) under Grant 3136.002; and in part by the DOE Office of Science
Research Program for Microelectronics Co-Design (Abisko). This article was
recommended by Associate Editor V. Pavlidis. (Corresponding author: Nesara
Eranna Bethur.)

Nesara Eranna Bethur is with the Advanced Micro Devices Inc. Austin,
Austin, TX 78735 USA (e-mail: NesaraEranna.Bethur@amd.com).

Anthony Agnesina is with the NVIDIA Corporation, Santa Clara, CA 95050
USA.

Moritz Brunion, Francky Catthoor, Dragomir Milojevic, and Manu Komalan
are with IMEC, 3001 Leuven, Belgium.

Alberto Garcia-Ortiz is with the Electrical and Computer Engineering
Department, University of Bremen, 28359 Bremen, Germany.

Matheus Cavalcante, Samuel Riedel, and Luca Benini is with the
Electrical and Computer Engineering Department, ETH Zürich, 8092 Zürich,
Switzerland.

Sung Kyu Lim is with the Electrical and Computer Engineering
Department, Georgia Institute of Technology, Atlanta, GA 30332 USA.

Digital Object Identifier 10.1109/TCAD.2023.3342753

recombined into subsequent runs of higher-level blocks—a
process repeated as the hierarchy is traversed up to the top level.

This hierarchical approach offers the following benefits:
1) large designs can be implemented with acceptable runtime
and memory usage, where typically significant reuse is made
of (nearly) identical sub-blocks. It is infeasible with today’s
machines and tools to implement industrial-size SoC designs
flat; 2) concurrent implementation of design tasks can be
split across multiple development teams; and 3) third-party
intellectual property (IP) blocks can be elegantly integrated as
a natural part of the process flow. While a hierarchical flow
mitigates many issues of a flat approach, numerous tedious and
error-prone tasks are still required to close timing and optimize
PPA at the top-level netlist. These include budgeting for block-
level timing constraints and setting appropriate hierarchical
physical constraints.

EDA vendors’ tools partially manage these remaining
issues in their proposed hierarchical flows that can sim-
plify the implementation of large 2-D designs. However,
none of these flows are currently optimized for 3-D hier-
archical implementations. Instead, academic work [2], [3]
focuses on sequential die-by-die approaches, where hierar-
chy levels are artificially created to use standard block-level
flows where blocks are placed on different tiers and
routed in 3-D. Furthermore, in these hierarchical flows,
the blockage of macros makes placement and routing
much harder on higher hierarchy levels than in flat
implementations.

Moreover, the physical hierarchy decisions, including the
floorplanning of blocks in 3-D, are usually left to expert
engineers and preconstrained, like memory-on-logic. These
can significantly impact the power, performance, area, and
cost (PPAC) metrics, the latter becoming most important due
to increasing wafer costs. In addition, when designing a 3-D
floorplan, having a structured approach that facilitates manual
design decisions can be advantageous. While a human designer
can provide valuable guidance on placing critical components
in a global 3-D floorplan, creating a detailed floorplan for all
components can prove challenging. Therefore, there is a strong
need to automate this task for a more streamlined and efficient
design process.

In this work, we propose Hier-3D, a physical design
methodology for 3-D bottom-up hierarchical implementations
to co-optimize power, performance, and area/cost combined
design metrics, as modern-day 3-D flows do not satisfactorily

1937-4151 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7297-9738
https://orcid.org/0000-0003-0393-0230
https://orcid.org/0000-0001-7842-7774
https://orcid.org/0000-0002-6461-3864
https://orcid.org/0000-0002-3599-8515
https://orcid.org/0000-0002-0029-6548
https://orcid.org/0000-0002-5772-6377
https://orcid.org/0000-0001-8068-3806
https://orcid.org/0000-0002-2267-5282

1958 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

address the latter. The key contributions of this article, an
extension of [4], are as follows:

1) We propose a first-of-its-kind hierarchical physical
design flow for 3-D designs, significantly improving
the placement and routing utilization across the 3-D
stack by reusing the unassigned silicon area of preceding
hierarchy levels.

2) Our Hier-3D flow exploits the inherent logical hierarchy
to enable hierarchical multitier standard cell placement,
greatly expanding the design space of 3-D ICs. We
demonstrate the flexibility of the proposed implemen-
tation flow by exploring the architecture configuration
space for a selected design.

3) We develop a high-level automated solution span-
ning RTL clustering, 3-D logic-on-logic floorplanning,
and holistic 3-D physical implementations. This effort
enables the automated architecture design exploration on
a multilevel 3-D physical hierarchy while still enabling
predefined placements imposed by manual guidance
from the human designer.

4) We design a novel whitespace modeling flow that works
across different physical design flows to propagate the
physical shapes of the standard cells as an abstraction
to the following hierarchy. This promotes further fine-
grained area savings across the 3-D stack as the area can
now be utilized in a pure logic die for the subsequent
hierarchies’ placement but also enables feedthrough
buffer insertion for better timing across hierarchies.

5) We demonstrate 1.2–2.2× PPAC improvements and
1.2–1.5× runtime speedup on three highly diverse open-
source and industrial low-power benchmarks and, for
the first time, cost improvement compared to the 2-D
reference. These results are incommensurate with 2-D
and standard commercial and academic 3-D flows.

II. PRELIMINARIES

This section presents motivations for the proposed approach,
including preliminaries about hierarchical implementations
and current state-of-the-art 3-D block-level methodologies.

A. Hierarchical Methodologies

In general, hierarchical EDA flows typically must provide
the following capabilities:

1) Partitioning the design logically and physically into the
top-level design and the various partition blocks.

2) Automatic pin assignment for partitions, which guides
the interpartitions global routes.

3) Feedthrough insertion of nets and buffers into partitions
to allow routing nets to cross over partition areas without
creating significant detours, maintaining the signal’s
integrity and performance.

4) Timing budgeting that apportions budgets to blocks. This
is a chicken or the egg problem, as proper budgets
depend on the timing inside the partitions.

5) Assembling partitions for top-level sign-off closure.
Commercial EDA tools offer efficient databases (DBs), flows,

and commands for engineers to solve these practical issues.

However, the tools are currently restricted to 2-D designs and
were not designed for high-level architectural exploration.

Moreover, 3-D integration introduces a new layout axis
that provides opportunities for optimization but also increases
design complexity. It requires making multiple complex
choices for physical hierarchy and system architecture.
Therefore, a flexible 3-D exploration flow that combines
human decision-making with automated assistance for less
critical decisions is necessary to address this complexity.

B. 3-D Floorplanning

Floorplanning is a crucial step in the very-large-scale
integration (VLSI) physical design flow. Large sub-blocks
representing IPs, already implemented partitions, clusters of
unplaced standard cells, or memory macros must be placed on
a 2-D or 3-D canvas at each hierarchy level. The decisions at
that stage are essential as they heavily dictate the achievable
P&R quality at the top level of the chip.

Today, 2-D floorplanning is at the forefront of research [5],
[6]. However, research on 3-D floorplanning is more limited.
Due to the limited capabilities of EDA tools and manufac-
turing methods for 3-D designs, current academic works,
and industrial applications are confined to memory-on-logic
implementations with restricted architectural explorations and
manual floorplanning [7]. One successful example of con-
strained memory-on-logic floorplanning is AMD’s Ryzen
V-Cache 3-D IC [8], where L3 caches are stacked above the
core units to increase the on-chip last level cache capacity
by 200 % while maintaining the footprint. On the other hand,
automated floorplanning research mainly concentrates on
extending classical combinatorial 2-D algorithms to 3-D. First,
the underlying data structures that efficiently encode the floor-
planning space, e.g., normalized Polish expressions, sequence
pairs, corner block lists, and O/B*-trees [2], [9], [10], are aug-
mented to include the third layout axis. Then, transformations
on the data structures are defined, including 3-D changes to the
floorplan, guided by optimization methods such as simulated
annealing (SA). The main suboptimality reasons for these
methods come from the difficulty of defining appropriate cost
metrics to judge the quality of a 3-D floorplan that correlates
well with actual physical implementations and optimizing
many competing metrics simultaneously. Moreover, these lack
proper feedback from actual physical implementations. We
will fill these gaps in our paper: the proposed flow for efficient
3-D hierarchical physical implementations is presented in
Section III, and the proposed floorplanning methodology with
new 3-D cost components is shown in Section IV.

C. State of 3-D Flows

In the following, we present two existing state-of-the-art
approaches to implementing face-to-face (F2F) wafer-to-wafer
(W2W) bonded 3-D ICs: 1) a die-by-die-like Sequential-
2D [11] and 2) a Macro-3D flow [12].

1) Sequential-2D Flow: The Sequential-2D flow follows
the EDA industry’s approach to implementing 3-D designs.

Key Idea: It enables 3-D integration through the separate
implementations of a die stack’s top and bottom die with a

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

BETHUR et al.: HIER-3D: A METHODOLOGY FOR PHYSICAL HIERARCHY EXPLORATION OF 3-D ICs 1959

standard 2-D flow. 3-D physical awareness is established by
defining pins inside the core area at valid copper pad locations.

Strengths: This approach does not restrict the partitioning
scheme, as logic and memory cells can be placed in both
dies. Moreover, it reuses the standard commercial 2-D tools
capabilities, modeling the F2F bonding pads as IO pin shapes.

Limitations: Partitioning a design into a top and bot-
tom die inherently introduces an additional level into the
implementation hierarchy. If it does not follow the natural
partitioning provided by the logical hierarchy, it requires
a challenging additional constraint modeling step that can
introduce PPA degradation. Moreover, sharing both dies’ back-
end-of-line (BEOL) resources would necessitate the insertion
of feedthroughs in the netlist of each die for each shared
intradie net, an approach highly inflexible and impractical
without additional automation efforts.

Hierarchical Design: The Sequential-2D flow can be
applied to a hierarchical design by introducing an additional
hierarchy level into each block and forming a top and bottom
sub-blocks. Implementations of subsequent hierarchy levels
must respect the separated child block implementations in both
dies.

2) Macro-3D Flow: Macro-3D provides state-of-the-art
PPA optimization capabilities for 3-D ICs in the memory-on-
logic partitioning scheme.

Key Idea: The commercial 2-D P&R tool is made aware
of the complete die stack. The pins and routing obstructions
of the memory macros are projected to the corresponding top
layer to yield a holistic memory-on-logic flow. The copper
pads are modeled as regular vias, allowing their automated
insertion by a traditional global router and inherently incorpo-
rating the impact of their parasitics on timing and power.

Strengths: Standard P&R engines can optimize the complete
design for timing closure because of the complete design view
across both dies. Further, the holistic stack view enables a
unified routing step of both dies, allowing metal layer sharing,
i.e., nets with a start- and endpoint in the same die can borrow
metal resources from the other die, resulting in a more uniform
metal layer utilization.

Limitations: The silicon area of the memory and the logic
die are usually very different. Therefore, as W2W-based 3-D
integration requires matching die sizes, the Macro-3D flow
increases the resulting manufacturing cost relative to the 2-D
die if the lost space cannot be reclaimed.

Hierarchical Design: Macro-3D can implement designs
hierarchically by abstracting sub-blocks as full-block obstruc-
tions. However, by obstructing all metal layers between the
front-end-of-lines (FEOLs) of both dies, routing through the
abstraction is prohibited, and routing over it is impossible.

III. DESIGN METHODOLOGY

Focusing on die area savings is essential for semicon-
ductor industries to save on die costs. Having this as our
motivation, we solve the die area minimization problem via
the 3-D stack interhierarchy area utilization. We propose
our Hier-3D flow to mitigate the issues presented above.
Targeted explicitly for silicon area minimization, it allows
the building of high-density hierarchical commercial-quality

Fig. 1. Key steps in our Hier-3D flow. The hierarchy depth defines the number
of outer cycles/iterations. Per iteration, synthesized block-level designs are
prepared with 3-D floorplanning, 3-D P&R, and abstracted through our
physical and timing constraints propagation. optional features of automatic
floorplan generator and whitespace modeling are also provided. Finally, the
stack and abstractions can be inverted to enable standard cell placement on
the opposite die at the upper hierarchy level.

F2F-bonded 3-D ICs in a bottom-up fashion. It combines
the previously presented advantages of the Sequential-2D and
Macro-3D flows and introduces new key features to address
their shortcomings, as summarized in Table I.

Further, we propose an automated floorplanning solution
which allows predefined guidance by a human designer to
produce physical hierarchy assignments that can be imple-
mented using the Hier-3D methodology. For physical hierarchy
assignments, we refer to the physical block creations enabled
by our RTL clustering for optimum automated floorplans. This
is further discussed in Section IV. Our flow also enables hier-
archies defined manually from the existing logical hierarchies,
which we discuss in the following section.

The high integration density targeted by Hier-3D has vast
implications on the PPAC characteristics. Indeed, dense block
packing can increase the number of dies per wafer for cost,
eliminate long timing-critical wires and reduce interconnecting
energy by reducing distances. In addition, maintaining a
holistic view across the die stack avoids overconstraining
the block interfaces and enables efficient power optimization
capabilities.

A. Flow Overview

Our overall 3-D hierarchical flow is represented in Fig. 1.
The flow starts with an RTL whose hierarchy is logically
predefined or manually created, e.g., from high-level floor-
planning. Then, we synthesize each block within a given
hierarchy level using the timing abstractions of the lower-level
sub-blocks. Next, each block undergoes a 3-D floorplanning
step that places pins in the 3-D stack and preserves routing

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

1960 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

TABLE I
QUALITATIVE COMPARISON AMONG STATE-OF-THE-ART PHYSICAL DESIGN TOOLS FOR 3-D ICS AND THIS WORK

resources for easier access and routing in the next step,
respectively. If the automated floorplan is enabled, the 3-D
floorplanning step also incorporates the automated floorplan
generation described in Section IV.

This PDK includes shrunk cover memory macros and is
updated at every level with the newly generated sub-blocks
abstractions. The current block is then implemented using
the timing and physical abstractions of the lower hierarchy
levels. Please note that a given block implementation can
span one die (=2-D) or two dies (=3-D), depending on the
designer’s choice. Next, the resulting implemented block is
abstracted with our physical/timing constraints propagation
method, including an optional whitespace modeling. Finally,
the stack and the view of the abstracted block can be inverted
for the next step to place standard cells on the opposite
die. This loop continues until all hierarchy levels have been
implemented.

The remainder of this section focuses on the detailed
presentation of the critical steps of the Hier-3D flow.

B. Hierarchy Partitioning

The proposed flow offers the flexibility to use the logic
hierarchy as is or manually define hierarchies from the existing
logic hierarchies. We have developed a flow step around
Cadence Genus to restructure the netlist, generate new SDCs,
and manually place the IO pins. This provides the designer
an additional knob for extracting the most from the 3-D
stack interhierarchy area utilization, promoting further die area
savings.

C. 3-D Floorplanning

Apart from the automated floorplanning that will be dis-
cussed in Section IV, the other main steps in this stage are as
follows:

1) Holistic 3-D Routing Resource Budgeting: The routing
resources may need to be budgeted individually by planning
and reserving resources at the block level to ease the routing
in the upper hierarchy level. For example, if the first level
utilizes all metal layers in the doubled stack, very inefficient
detours of critical nets through the die stack might occur
in the following hierarchy level. We circumvent this by
constraining the routing of the nets that do not require both
BEOLs’ traversal. In our experiments, our budgeting balances
the routing resources between sequentially implemented sub-
blocks by restricting nets to the die where standard cells are

being placed, through the intermediary of the Cadence Innovus
command set_route_attributes.

2) 3-D Pin Placement in Double Metal Stack: Our
proposed methodology can exploit the tool’s capability to
freely assign a layer (z dimension) and all the block area (x, y
dimensions) when placing the pins. By appropriately selecting
the layers of the pins, the routing of the subsequent hierarchy
level can be guided to utilize a particular die, offering
additional options to plan the routing resource allocation.

Our in-house script automates the pin placement by creating
a staggered pin grid with routing keep-out-zones (KoZ). These
zones force the router to legalize in advance the F2F via
placement on the pin in the following step. The pin grid
also allows a denser signal routing for very wide IO busses,
which would otherwise allocate many routing and placement
resources for fan-out and fan-in only. The KoZ dimensions
must be superior to the F2F pitch and are empirically set to
5× the F2F pitch in our experiments to allow a design rule
check (DRC)-clean routing solution in advanced nodes.

D. 3-D P&R: Sequential Multitier Cell Placement

Fig. 2 illustrates the standard cell placement on the second
hierarchy level in Hier-3D. Standard cells can utilize the
unused silicon area of the upper die, while in Macro-3D, an
additional silicon area around the block is required, increasing
the floorplan.

To better exploit the capabilities/assumptions of the P&R
tool meant for standard 2-D environments during clock
tree synthesis (CTS) and routing, we invert the 3-D stack,
including the abstractions, while traversing the implemen-
tation hierarchy. The inversion of a block/stack consists in
swapping the top and bottom layer names inside the Library
Exchange Format (LEF)/technology LEF (TECHLEF) files,
as Mj_bot ↔ Mj_top. As a result, standard cells are always
placed on the “bottom” die from the tool’s perspective. During
CTS, tree segment definitions assume that the top segment
is defined to a higher metal layer than the trunk. However,
with a holistic 3-D stack, the clock tree should ideally branch
into two trunk and leaf definitions for the two FEOLs. This
assumption remains valid with the inverted stack during the
standard cell placement step. The clock balancing across tiers
is simplified by the bottom-up hierarchical approach and by
placing all standard cells on one tier per step. In addition, the
opposite-tier macros—blocks or memories—have a balancing
requirement automatically integrated inside their Liberty (LIB)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

BETHUR et al.: HIER-3D: A METHODOLOGY FOR PHYSICAL HIERARCHY EXPLORATION OF 3-D ICs 1961

Fig. 2. Hier-3D’s physical constraint propagation, stack inversion, multitier
cell placement. Top macros are projected as site-sized cells at the bottom to
not obstruct standard cell placement, and IO pins can be placed anywhere
inside the stack to facilitate upper-level connections(=left). The physical
routing/placement information is propagated to the next level to allow the
P&R of the top die with the inverted stack(=right).

through the max_clock_tree_path attribute. Moreover, during
routing, the assumption of reducing electrical resistance with
higher metal layers holds for the FEOL of the standard cells
currently being placed, leading to a more standard metal layer
configuration and, therefore, more effective use of the router’s
heuristics.

By default, the blocks’ LEF obstructions do not prevent
the P&R engine from placing cells at illegal positions due to
the presence of routed wires from the lower-level hierarchy.
Therefore, we purposely replicate the LEF obstructions by cre-
ating special wire shapes on metal layers where standard cells
have their pin shapes in our target TSMC technologies (M1
for signal pins and M2 for power and ground rails). Finally,
we force the tool to check for pin DRC violations during cell
placement which then enforces a valid cell placement. We also
insert routing blockages on M1 and M2 over the obstructions
of the OVERLAP layer to model the presence of the internal pin
shapes of the cells in the sub-blocks, which are not propagated
as OBS in the detailed LEF.

E. Abstraction

1) Physical/Timing Constraint Propagation: To enable the
utilization of unused placement and routing resources by the
P&R engines, we extend the LEF abstracts of implemented
sub-blocks to enumerate all objects and structures in the
placement and routing DB instead of wholly occupying all
resources in the sub-block area. The physical abstractions
are represented as “detailed” LEFs with BLOCK class type.
In particular, the top memory macros projected as site-sized
virtual cells during the current block implementation are
exported as obstructions on the OVERLAP layer and as detailed
routing obstructions (OBS statements) for the next hierarchical
level, as shown in Fig. 2. The FULLDRC attribute is added to
the OBS statements in the LEF so that the router considers
them as real shapes with full DRC checking rules and cross-
coupling considerations. This reduces signal integrity issues

(a) (b)

Fig. 3. Hier-3D’s whitespace modeling. (a) Tiling applied over the placed
shapes of cells (standard, macro, existing OBS on OVERLAP layer). The
coarseness of the user-defined tiling provides a tradeoff between runtime and
area recovered. (b) Occupied tiles are merged into a set of rectilinear polygons
to define OVERLAP obstructions for the detailed LEF.

that can degrade the timing of the sub-blocks. Because single
standard cells cannot be propagated individually due to the
shape complexity, which would cause high memory usage
and file size, their shapes can be first clustered into much
larger 2-D polygons and saved as rectilinear-shaped overlaps
similar to the memory macros. We present this approach in the
following section. This approach enables a full context view
of the current level and implemented sub-blocks with reduced
memory requirements. Besides, because the router is now free
to route through partitions, we improve the routing availability
without the large runtime downsides of assembling sub-blocks
as partitions. In addition, accurate timing representations are
modeled by timing arcs from post-route extracted LIB files.

2) Whitespace Modeling: We must consider the placement
of standard cells and macroblocks to enable fully-capable
physical information propagation. This is useful to reserve
placement space for the upper levels (e.g., for feedthrough
buffers insertion) or when sub-blocks exhibit low cell density
with large unused placement regions that should be reclaimed
to optimize silicon area utilization. However, the standard
cell count prohibits propagating their shapes individually,
increasing LEF size and slowing down the EDA tool.

Thus, we propose a whitespace modeling method for effi-
cient placement information propagation, depicted in Fig. 3.
First, we reduce the complexity of handling the numerous
geometrical shapes of the standard cells by tiling the floorplan.
In practice, we use tiles of size 20× the site size. This
parameter is, however, tunable, defining the coarseness of the
placement information propagation. From the tiling applied
over the floorplan (that is the bottom die where standard cells
were lastly placed), we build a binary matrix O which encodes
the occupation of tiles

O(i, j) = 1
[∃ cell ∈ tile(i, j)

]
(1)

where both standard and macro cells (memories and OBS on
OVERLAP layer from sub-blocks) are considered. Finally, we
rely on the efficient computational geometry primitives inside
the EDA tool principally available for DRC checking to query
objects and process shapes.

The rectangular shapes of the occupied tiles are unioned
to merge touching shapes, cropped to the floorplan box FP,
yielding a set of connected components with polygons

P = ∪�((∪�O) ∩� FP) (2)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

1962 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

Fig. 4. Automated RTL clustering.

where � and � denote operations yielding rectangles and recti-
linear and convex polygons, respectively. Reducing rectangles
into polygons dramatically decreases the number of shapes to
handle in the LEF for higher runtime scalability in the EDA
tool. Moreover, one can apply a filter F to expose only a
specific part of the placement (e.g., floorplan boundary only)

P̃ = F ∩� P. (3)

During the implementation of the parent block using the
extracted LEF with whitespace modeling, small holes in
between polygons are filled with hard or soft placement
blockages depending on their size, and computed as

Holes = (
FP \� P̃

)
INSIDE� FP. (4)

The whitespace modeling simplifies the buffer feedthrough
insertion, even in high-density designs where very little space
can be reclaimed organically. For example, a small area (e.g., a
square of five standard cell rows) can be reserved at the lower
level. This space will be available at the upper level to insert
buffers for over-the-block routes without planning pins and
introducing significant routing blockages for these routes only,
given the block boundary and routing are entirely opened by
the detailed LEF. However, note that routing blockages over
M1-M2 must still be added to leave pin access points for the
inserted buffers.

IV. AUTOMATED FLOORPLANNING

This section presents an automated approach to obtain-
ing 3-D floorplans. These floorplans are intended to guide
designers and should be revised for high-quality Hier-3D
implementations. Additionally, these floorplans can aid in
exploring the system-level physical hierarchy and architecture
of large designs more effectively in 3-D.

A. Block Generation With RTL Clustering

Our Automated Floorplanning solution enables automated
sub-block creation by using an RTL clustering that promotes

Fig. 5. Illustration of the RTL clustering algorithm formally described in
Fig. 4. Hard blocks form their own cluster in the resulting flattened netlist,
while standard cells are clustered into soft blocks.

an optimal grouping of logic cells for better floorplans within a
given hierarchy. Typically, the logical hierarchy determined by
the RTL ultimately governs the physical hierarchy. However,
adhering to this approach may prove impractical when a
logical hierarchy is not readily discernible.

To overcome the limitation, we propose an automated clus-
tering of the netlist, illustrated in Fig. 4. Our algorithm clusters
modules within the same hierarchy until the cluster’s area
exceeds a threshold. The user can easily specify exceptions
to this process and add predefined guidance on clustering for
some critical components. The netlist is then fully flattened as
depicted in Fig. 5. This method heeds that logical connectivity
is a good predictor of physical position.

B. Floorplan Settings

The clustered netlist is translated into Bookshelf for-
mat for the floorplanning engine and Verilog format for
implementation in the EDA tool. Soft blocks of standard
cells have an area based on a user-defined target density
[dtarget = ∑

c∈Cstd
a(c)/a(soft block)], with a variable aspect

ratio between 0.5 and 2. Their IO terms are assumed to be
placed in the center. On the other hand, hard macros have fixed
outlines and pins set at their exact locations. We increase the
size of hard macros (padding) by a configurable constant to
leave room for their legalization in the EDA tool. The unplaced
IO pins move along with the floorplan area. They are snapped
to the closest edge on the periphery based on the center of
gravity of the module pins it connects to.

We observe that the wirelength and congestion estimation
constitutes a runtime bottleneck during the combinatorial
search. However, many nets connect the same pair of blocks
in a bus-like structure. Therefore, we perform a net merging
step, speeding up the 3-D floorplan exploration by ×5. Nets
are merged using a string hashing of the concatenated endpoint
names sorted with lexicographical order. Merged nets are
associated with a bit-width and weight from the original nets to
estimate accumulated wirelength. The positions of associated
merged pins on the hard blocks are computed as the barycenter
of the original pin locations.

C. Cost Components

Precisely judging the quality of a 3-D floorplan without real
physical design feedback is difficult. Therefore, we propose
simple yet precise high-level components for our cost, includ-
ing time-honored PPA representatives and novel features. This

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

BETHUR et al.: HIER-3D: A METHODOLOGY FOR PHYSICAL HIERARCHY EXPLORATION OF 3-D ICs 1963

cost will drive our combinatorial floorplan optimization. The
latest macro placement works [5], [6] showed the effectiveness
of relying on such high-level proxies.

Area Cost: The area is one of the essential PPA elements.
The area of the 3-D floorplan is defined from the maximum of
the tiers’ sizes. However, there are cases where it is necessary
to fix the outline of the floorplan, especially when decisions
are made early in the design cycle in the physical hierarchical
planning and layout. To that effect, we propose an area cost
favoring outlines fitting inside the target outline (wT , hT)

carea = a ·
(

1 + Relu(w − wT)

wT
+ Relu(h − hT)

hT

)2

(5)

where the area cost is simply the area a = (w, h) of the 3-D
floorplan when there is no target outline.

Macro-Specific Cost: We include a penalty to mimic human-
like floorplan rules for macro handling as in [14]. Because hard
macros are preferably placed on the periphery of the floorplan
to leave space for the standard cell placement and away from
the IO pins to ease pin accessibility, our macro cost is

cmacro =
∑

m : macros

min
s: sides

{d(m, s)} + OA(m, koz(pins)) (6)

where the first term attracts the macros to the sides of the
floorplan. The second term computes the macro’s overlapping
area OA with the IO pins’ keep-out zones in case IO pins are
preplaced, pushing macros away from the IO pins.

Wirelength Cost: We use the half-perimeter wirelength
(HPWL) as a proxy for routed wirelength. Because timing is
also a crucial metric during floorplanning, we weigh nets in
the wirelength cost with

w(e) =
(

1 − slack(e)

T

)2

(7)

where T is the clock period and the slack of each net e is
extracted with static timing analysis (STA) on the synthesized
netlist [15]. Finally, the wirelength cost is

cHPWL =
∑

e∈Emerged

w(e) · nbits(e) · HPWL(e). (8)

3-D Congestion Cost: We estimate congestion using the
simple and accurate rectangular uniform wire density (RUDY)
method [16]. We extend the 2-D formulation specifically for
3-D designs by considering the effects of 3-D routing and
F2F bumps. For each bin b of the gridded placement canvas,
and per horizontal or vertical (H/V) direction, the routing
congestion is

RUDY(b) =
∑

e∈Emerged

RISA(e) · nbits(e)

cap(b)
· OA(e, b)

he‖we
· Z(e)

(9)

where cap is the number of metal resources in bin b, (we, he)

is the size of the bounding box of net e, Z(e) = 1/2 if the net e
is 3-D, otherwise, Z(e) = 1. The smaller Z weight for the 3-D
nets models the availability of more routing resources from
both tiers (1/2 assumes a 3-D mirrored stack). RISA(e) serves
as net weighting based on pin count to improve correlation
with routed wirelength [17].

The H/V congestion maps are then smoothed using a fast
box filter to model that congestion can be alleviated by fanout
routing outside the nets’ bounding boxes. We use a summed-
area table (SAT) or 2-D prefix-sum [18] to speed up the
filtering. Each element of an SAT contains the sum of all
elements above and to the left of the original maps, which
can be computed efficiently in one-pass over the matrix. The
tables are then used to compute the filtered maps by retrieving
the sum of matrix values over any rectangular area in constant
time.

F2F Via Density: The RUDY estimation does not model
the pitch and spacing considerations of the F2F connections
for the 3-D nets. However, it is critical to model these, given
that many DRCs occur when the required 3-D interconnection
density rises in our experiments. This is a typical problem
when using traditional 2-D global routers for 3-D nets [19].
Therefore, we propose a RUDY-inspired method to model the
F2F via density

DF2F(b) =
∑

e∈Emerged

1[e cut] · OA(e, b)

area(b)
· nbits(e)

nvias(we, he)
(10)

where nvias(we, he) = ([we · he]/[px · py]) with px/y the F2F
bump pitch.

Finally, our total congestion cost, including routing and F2F
via considerations, is empirically set as

ccong. = 2 · max {DF2F} + max
{
RUDYH, RUDYV

}

+ max{σ(RUDYH), σ (RUDYV)} (11)

encapsulating the average and standard deviation of the routing
congestion, to balance via density and routing congestion.

D. 3-D Sequence Pair

Similarly to [2], we use a 3-D sequence pair (SP) to
represent a slicing floorplan solution. The 3-D SP maintains
one 2-D SP per tier. In each 2-D SP, the SP consists of
an ordered pair of module name sequences that encodes
geometric relationships between blocks. This representation
covers many possible floorplans while offering efficient and
flexible perturbations to the solution.

We introduce a few moves that act on the 3-D SP to modify
the floorplan. The main difference from a single 2-D SP is that
blocks can move from one pair to another in 3-D to explore
the 3-D partitioning space. We allow the following moves: 1)
Change the aspect ratio of a soft block (standard cells cluster)
picked randomly. Hard macros’ shapes and orientations are
fixed; 2) Swap two blocks picked randomly in a 2-D pair in
the positive sequence, negative sequence, or both, 3) Move a
block picked randomly from one tier to another, or swap two
blocks picked randomly between tiers.

E. Floorplan Space Multilevel Exploration

We use the SA algorithm [20] to explore the floorplan
space. However, we observed that SA often cannot produce
floorplans where the number of 3-D interconnections is in the
expected range. Therefore, we perform a preliminary area-
balanced Fiduccia–Mattheyses (FM) min-cut partitioning [13]

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

1964 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

Fig. 6. Hier-3D’s automated floorplanning methodology. A FM partition-
ing [13] produces a min-cut tier assignment of the blocks. Then, an optimized
3-D SP is generated for the two-level SA.

to propose a good starting point for SA. The FM cost is
modified to handle timing, as in for the HPWL

cFM =
∑

e∈Emerged

1[e cut] · w(e) · nbits(e). (12)

Recognizing the importance of the starting seed, we run the
FM algorithm multiple times to improve the solution quality
further, starting from numerous random permutations of the
blocks and selecting the solution with the smallest cFM.

Optimizing all goals simultaneously during SA is compli-
cated and inefficient, mainly because moves affect the cost in
a nonlinear and chaotic way. On the other hand, SA works
better when the objective is “smooth.” Therefore, we devise a
multistage SA procedure where different goals are optimized
at each stage, along with a multilevel temperature schedule.

Our multilevel optimization scheme is depicted in Fig. 6.
The first stage optimizes the area, wirelength, and macro costs
using a geometrical temperature schedule, Ti = Tα·i

0 , with
T0 = 100 and α = 0.99. The best solution from that step is
used as the initial configuration for the next stage. Then, the
hard macros and outline are fixed; in practice, by rejecting
moves involving hard macros and by using the outline penalty
in (5). Again, different user-predefined guidances are enabled
here. The second stage of SA optimizes area, wirelength,
and congestion using an adaptive temperature schedule, Ti =
(�cost < 0)? Ti−1 : αTi−1, where the final temperature of the
first stage is used as the initial temperature.

The costs of the two SA steps are scalarized to optimize
our multiobjectives as follows:

1) cost = c̃area + β · c̃HPWL + γ · c̃macro,
2) cost = c̃area + μ · c̃HPWL + ρ · c̃cong.,

where the terms are normalized based on the starting floorplan,
and (β, γ, μ, ρ) are weights empirically set to (1, 1, 2, 2).

Running the flow in Fig. 6 takes less than a minute on
the 3-D MemPool tile (50 blocks/2K merged nets) and a
few minutes on the 3-D 4-Core Cortex-A53 (369 blocks/5K
merged nets). This scalability allows running this flow multiple
times, tuning its parameters using some optimization method
(e.g., [21]) to achieve better cost metrics.

F. From Floorplan to Implementation

The floorplanning solutions must be transformed for Hier-
3D’s sequential multitier hierarchical implementation. First,

(a) (b) (c)

(d) (e)

(f) (g)

Fig. 7. Our three hierarchical benchmarks, MemPool [22], ARM Cortex-
A53, and Mali-G52, implemented in TSMC’s 28 and 16 nm processes. (a) Tile.
(b) Group. (c) Cluster. (d) Core. (e) Quad-core. (f) Execution engine (ee).
(g) Gpu.

we leave the user to define the physical implementation
sub-blocks and implementation dependency tree. Then,
according to these decisions and in an automated fashion,
the netlist is logically partitioned, and timing constraints are
generated for the physical sub-blocks using the appropriate
PDK assignments.

Moreover, we automate the placement of 3-D bumps for
sub-blocks spanning multiple dies. First, a bump assignment
grid is created based on required F2F via pitch assumptions.
KoZ considerations are also considered when designing the
grid. Then, for every 3-D net, we construct a point at the
center of gravity of the pins connected to that net (pin
locations are obtained from the floorplanning solution). A
bipartite matching-based algorithm [19], then, assigns points
to the bump grid, minimizing the timing-weighted total dis-
placement. This results in the definition of the internal “IO”
pins of the floorplanned block. This approach resembles the
Sequential-2D one.

V. INDUSTRY BENCHMARKS

A. Architecture Description

To evaluate our proposed flow, we implement MemPool [22]
as a representative example for tiled manycore architectures,
the ARM Cortex-A53 representing ultrahigh efficiency com-
mercial multiprocessors, and the ARM Mali-G52 exemplifying
mid-range graphics and multimedia processors. All three
benchmarks are implemented using two advanced commercial
process technologies. Fig. 7 details the different hierarchical
architectures that we use for our benchmarks.

The 2-D floorplans of the MemPool subdesigns are obtained
from the original paper [22]. The 2-D floorplans of the ARM
Cortex-A53 and Mali-G52 are industrial-strength based on the
official documentation. We normalize our data to avoid revealing
proprietary information for these commercial processors.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

BETHUR et al.: HIER-3D: A METHODOLOGY FOR PHYSICAL HIERARCHY EXPLORATION OF 3-D ICs 1965

VI. EXPERIMENTS

A. Experimental Settings

We use a commercial TSMC 28 nm, high-κ metal gate,
planar technology to first implement the MemPool design,
and TSMC 16 nm, FinFET Compact technology for the
Cortex-A53 and Mali-G52 implementations. We also further
implement the MemPool design using the TSMC 16 nm
process. Specifically, the MemPool design will serve as a
vehicle to demonstrate the effectiveness of Hier-3D’s advanced
capabilities of whitespace modeling, architecture configuration
exploration, and 3-D/2-D automated floorplanning. In the 3-D
implementations, where we assume that the 3-D technol-
ogy is independent of the CMOS technology, the F2F via
size, pitch, resistance, and capacitance are 0.5μm×0.5μm,
1.0μm, 0.5 	, and 1 fF, respectively, [23]. The 3-D BEOL is
defined in a custom 3-D TECHLEF file where metal layers
are replicated and mirrored, separated by a F2F via layer
of 0.175 µm thickness. In addition, the custom TECHLEF
includes design rules for the double metal stack. Based on
a custom interconnect technology (ICT) file, we simulate the
metal layers’ resistance/capacitance (RC) and copper pads.

We use the in-house tools of Macro-3D [12] and implement
the Sequential-2D flow as the construction of two sequential
2-D implementations [11]. For a fair comparison, the 3-D
implementations include a (close to) balanced mirrored stack
of the 2-D configuration. Furthermore, we implement the
designs with a max-performance target at the typical corner
in all our experiments. Finally, our Hier-3D implementation
flow is automatized with Tcl and Bash scripts inside the
Cadence Innovus environment. The RTL clustering and logical
partitioning are automatized with Tcl inside Cadence Genus.
The 3-D floorplanning engine, including the bump planning
and automated generation of Tcl scripts, is implemented using
Python and C++.

B. Default Implementation Results

To highlight the PPA benefits of Hier-3D from the P&R side
only, we first present the main implementation results using the
default logical hierarchy and manual floorplan settings shown
in Section V. Please note that neither whitespace modeling nor
automated floorplanning is considered for these initial results.
These optional features (whitespace modeling and automated
floorplanning) and the hierarchy management are detailed in
their dedicated subsections within this section.

1) MemPool Design: While the tile implementation PPA
metrics are very similar across all integration flows, the group
level is critical in the implementation of MemPool. The group
is highly connected in the center, where the engine places most
of the local interconnect logic. This creates heavy congestion,
degrading timing, and increasing routing DRCs if the tiles are
not spaced sufficiently. Thus, the floorplan size for Sequential-
2D must be increased to obtain a DRC-clean design due
to the reduced stack awareness compared to the Macro-3D
implementation, as depicted in Fig. 8. With our flow, the
block-to-block spacing can instead be reduced to only 5 µm
thanks to the shared BEOL and the use of both FEOLs for
standard cells, providing substantial area and cost reductions.

Fig. 8. Placement of the MemPool 16-tile group designs using TSMC 28 nm
process: 2-D versus Macro-3D/Sequential-2D versus Hier-3D and Sequential-
2D, Macro-3D routing.

TABLE II
64-TILE MEMPOOL CLUSTER 2-D VERSUS SEQUENTIAL-2D VERSUS

MACRO-3D VERSUS HIER-3D, USING TSMC 28 nm PROCESS. 7.3M
CELLS, 13.1M NETS, AND 1536 MEMORY MACROS. VALUES ARE

NORMALIZED W.R.T. 2-D IMPLEMENTATION

Moreover, this reduces the net lengths, resulting in significant
power reduction and performance increase.

Table II highlights the huge PPA savings of Hier-3D and
the resulting Power Performance Cost (PPC) metric computed
using the methodology presented in [24] as PPC = Frequency
/ (Die Cost × Power). We see an impressive 2.2× PPC
improvement, where all individual metrics are noticeably
improved, which is quite unique. This result reflects the
benefits of our flow in terms of higher die stack utilization.

We similarly implement the MemPool Cluster using TSMC
16 nm process to evaluate the impact of the technology node
on Hier-3D’s results, reported in Table III. Technology scaling
further accentuates Hier-3D’s PPC improvement, mainly from
the higher reduction in silicon area, which we attribute to the
difference between memory and logic scaling. Indeed, logic
benefits more from innovative CMOS scaling features than
memory, scaling more aggressively through fin depopulation.
In contrast, the minimum size of a memory bit cell is relatively
constant for FinFET-based standard cell architectures. The
relative number of placement sites of logic versus memory

area(die) − area(memory)

area(site)
(13)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

1966 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

TABLE III
64-TILE MEMPOOL CLUSTER 2-D VERSUS MACRO-3D VERSUS

HIER-3D, USING TSMC 16 nm PROCESS. NORMALIZED

VALUES W.R.T. 2-D IMPLEMENTATION

Fig. 9. Placement (to scale) of the Cortex-A53 4-core designs using TSMC
16 nm process: 2-D versus Macro-3D/Sequential-2D versus Hier-3D.

increases by 1.2× from 28 nm to 16 nm for the MemPool
Cluster, offering additional silicon area gains. This trend
will aggravate for 10 nm and below. The tile’s silicon area
requirement for the memory will become larger than the
standard cell area required to implement the logic, which
will cause a lower standard cell density in the logic die
with more whitespace to be recovered in the memory-on-logic
partitioning scheme.

2) Cortex-A53 Design Results: The PPA results of the
single-core implementations are similar across all key metrics.
The Macro-3D/Sequential-2D quad-core floorplan stacks two
L2 data macros on top of each other, reducing the design
footprint. However, a significant amount of silicon area in the
upper die remains unused, as shown in Fig. 9. The Hier-3D
floorplan instantiates the 2-D single-core abstraction, leaving
the four single-core footprints unutilized in the upper die.
Therefore, the top-level memory macros and SCU standard
cells can be placed on top of the single cores, further reducing
the silicon area. In the quad-core implementation, Hier-3D
optimizes all the limiting competing paths between the SCU
standard cells to the L2 data macros, the single-cores, and the
IOs, thanks to the denser floorplan and increased routability,
yielding a significant frequency increase. Table IV shows that
the Hier-3D flow surpasses the Macro-3D flow in frequency
and power, with drastic improvement in the silicon area.

TABLE IV
4-CORE CORTEX-A53 2-D VERSUS SEQUENTIAL-2D VERSUS

MACRO-3D VERSUS HIER-3D, USING TSMC 16 nm PROCESS. 2.4M
CELLS, 2.5M NETS, AND 165 MEMORY MACROS. VALUES ARE

NORMALIZED W.R.T. 2-D IMPLEMENTATION. 2-D SILICON

AREA DOES NOT INCLUDE CUTOUTS

Fig. 10. Placement (to scale) of the Mali-G52 2-EE designs using TSMC
16 nm process: 2-D versus Macro-3D/Sequential-2D versus Hier-3D.

3) Mali-G52 Design Results: We floorplan the Hier-3D
GPU using a 2-D bin-packing method, assigning the upper and
lower edge macros of the 2-D floorplan into two separate bins.
The packed macros are placed next to the 2-D EE abstractions
on the bottom die, allowing the top-level standard cells to fully
utilize the upper die, as shown in Fig. 10.

Table V shows a 15 % increase in frequency while reducing
the total silicon area compared to 2-D and a substantial
die cost reduction compared with the two other 3-D flows.
Modifications of the macro placement would yield further wire
length reduction and PPC improvements at the expense of the
silicon area gains.

C. Advanced Hier-3D Capabilities

Here, we present the advanced capabilities of Hier-3D using
the MemPool design as our test case.

1) Whitespace Modeling: To verify the advantages of our
proposed whitespace modeling, we focus on two 2-D exam-
ples. Note that this methodology can be applied similarly
to 3-D implementations, but the analysis in 2-D helps to
understand the general advantages of whitespace. The LEF
modifications virtually come at no cost, and the additional
placement area opened by the whitespace modeling offers
incremental PPA improvements, as presented in Table VI.

First, we use whitespace modeling to open up placement
space on the group boundary for the cluster level, as seen

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

BETHUR et al.: HIER-3D: A METHODOLOGY FOR PHYSICAL HIERARCHY EXPLORATION OF 3-D ICs 1967

TABLE V
2-EXECUTION ENGINE MALI-G52 2-D VERSUS SEQUENTIAL-2D

VERSUS MACRO-3D VERSUS HIER-3D, USING TSMC 16 nm PROCESS.
4.4 M CELLS, 4.8M NETS, AND 141 MEMORY MACROS. VALUES

ARE NORMALIZED W.R.T. 2-D IMPLEMENTATION

TABLE VI
WHITESPACE MODELING ON 2-D MEMPOOL CLUSTER AND GROUP

DESIGNS. PPA METRICS ARE FOR INTERGROUPS AND

INTERTILES ONLY, RESPECTIVELY

Fig. 11. Whitespace modeling in 2-D: opening the group boundary for the
cluster implementation using TSMC 28 nm process (= left), and reserving
a small square in the middle of the tile for the group implementation using
TSMC 16 nm process (= right). The same whitespace modeling can also be
performed on different flows including 3-D flows but was not explored here.

in Fig. 11. This allows cells to be placed by the tool in
the whitespace, increasing the tool’s optimization capabilities
for placing these cells and buffers in the highly congested
middle of the floorplan, resulting in a smaller buffer area
and wirelength reduction without a DRC increase. Second,
we purposedly reserve placement resources in the middle of
the tile to allow the tool to directly insert feedthrough buffers
in these locations at the group level, as seen in Fig. 11.
This allows long routes overlapping the tiles to be buffered
without detouring outside the tile blockages, reducing delays.
This also provides significant buffer area reduction as, without
whitespace, rerouting wires to completely avoid the large tile
blockages often results in considerable wire detours, requiring
expensive buffering to manage delay degradation.

2) Architecture Exploration (Hierarchy Restructuring):
One of the main benefits of Hier-3D is that it offers a natural
way to explore hierarchy and its effect on the 3-D physical

Fig. 12. MemPool physical and logical architecture exploration, using
TSMC 28 nm process. Enlarging the SPMs from 1 KiB to 2 KiB (= left).
Repartitioning of the tile instruction cache from the tile level to the group
level (= right).

TABLE VII
16-TILE MEMPOOL GROUP HIER-3D ARCHITECTURE EXPLORATION,

USING TSMC 28 nm PROCESS. 1.3M CELLS, 3.3M NETS, AND

384 MEMORY MACROS. VALUES ARE NORMALIZED W.R.T.
BASE HIER-3D IMPLEMENTATION

implementation. To that effect, we restructured the MemPool
netlist to move the tile’s instruction cache logic and 1 KiB to
the group level—we used Cadence Genus to restructure the
netlist and generate new SDCs, and manually placed the IO
pins. This allows a smaller tile footprint and better utilization
of both tiers, as the tile partitioning no longer creates a
silicon area requirement imbalance. The layouts of the group
implementation are shown in Fig. 12, and the PPA results
are tabulated in Table VII. These show a reduced footprint
area with an increased placement density while maintaining
comparable performance.

Memory Size Increase: To study the generality of the
strengths of Hier-3D with more difficult implementation
constraints, we look at the effects of increasing the capacity
of MemPool tile’s shared L1 data memory macros from 1 KiB
to 2 KiB. This increases the utilization of the top tier and
reduces the imbalance at the tile level. However, this does
not require changing the tile footprint and allows to keep the
footprint in our Hier-3D group constant. Similar experiments
with Macro-3D were carried out in [7] with promising results
but lacking the flexibility of Hier-3D logic-on-logic capabil-
ities. The corresponding placement and routing layouts are
shown in Fig. 12. Table VII shows this change induces limited
degradation in the PPA of the group, despite the much denser

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

1968 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

Fig. 13. Comparison of the number of vias used per shared 2-D net in
the Hier-3D 16-tile MemPool Group implementations, using TSMC 28 nm
process. The group with 2 KiB shared memory macros (512 KiB total) benefits
from a nonnegligible number of nets alternating between two tiers, yielding
a relief of congestion in the top tier.

Fig. 14. Cost optimization in our multistage SA flow. The cost function
is normalized across the stages to visualize the improvement. Due to our
multistaged approach, we see a decrease in the overall cost post-cost saturation
from stage 1 of SA.

TABLE VIII
VERIFICATION OF OUR AUTOMATED FLOORPLANNING ON THE

MEMPOOL SINGLE-TILE, USING TSMC 16 nm PROCESS

floorplan. The noticeable effect is the abrupt increase in the
number of F2F bumps. The tool can mitigate congestion using
metal layer sharing, i.e., using routing resources of the bottom
tier. This is corroborated by Fig. 13, which reports the number
of F2F bumps used per shared net, i.e., a net that connects two
top cells but is routed in the bottom tier. This positive effect
leads to more efficient routes in heavily congested areas and is
enabled by our detailed LEF abstraction. Overall, the Hier-3D
PPA of the group with 2 KiB memory macros is comparatively
much superior to the one reported in [7].

3) Automated Floorplanning: Before presenting the auto-
mated floorplanning implementation results, we illustrate how

Fig. 15. 2-D floorplans of the MemPool tile using different macro-specific
cost weights in TSMC 16nm process. (a) Is the floorplan where the macros are
not pushed to the boundary due to a low weight assigned to Macro-Specific
cost in the overall cost function. (b) Is the floorplan where the assigned weight
is higher putting the macros on the corner.

the cost functions evolve throughout the multistage SA flow in
Fig. 14. As shown by the stage 2 cost decrease, the multistage
SA escapes the cost saturation of stage 1.

In our study, we compare the manual floorplans with the
automated floorplans, using the reference floorplans from [7]
and [22] for the manual floorplans. In general, extensive
human expertise, effort, and numerous iterations of P&R runs
feedback are required in manual floorplanning to achieve high-
quality macro placement solutions. This method is also not
scalable runtime-wise, given the latency of P&R from hours to
days. On the other hand, the automated floorplanning solution
delivers floorplans with competitive PPA in a minute for small
benchmarks, which may rise to only a few minutes for more
considerable benchmarks.

Table VIII summarizes the floorplanning results. While the
proposed solutions do not consistently beat the manual solu-
tions, our proposed auto-floorplanning solutions have minimal
manual intervention and faster turnaround time than the human
method. Still, our goal is to quickly generate satisfactory
floorplans serving as starting points that can be refined later. In
this regard, the automated solutions can enable faster system-
level simulations for architectural experiments, which can
tolerate less accurate PPA feedback.

2-D: To understand the influence of cost functions on the
Automated Floorplan solutions, we select the Macro-Specific
cost from Section IV and evaluate its effect on PPA. Fig. 15
shows the floorplans obtained with small and high Macro-
Specific costs. The floorplan a) has macros not strictly on
the boundary due to a lesser weight to the Macro-Specific
cost, and floorplan b) is obtained with the weight set much
higher. We observe that the total power and wirelength reduced
significantly when macros were on the corner by 28% and 12%
respectively. This can be attributed to better usage of routing
resource and better standard cell placement when macros are
on the corner. Similarly, the other cost functions in Section IV
influence the overall PPA.

Our automated floorplanning methodology designed for 3-D
designs is applied to 2-D designs by skipping the partitioning
and ignoring the components of the cost of 3-D during SA.
As shown in Table VIII, the automated floorplan solution
performs better than the manual one. Still, some area penalty
is depicted in Fig. 16.

3-D: Based on the assignments from the 3-D automated
floorplanning, we used Hier-3D to implement the leaf level
as the bottom die and the memory macros of the top die.
Then we proceeded to implement the top die’s standard cells.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

BETHUR et al.: HIER-3D: A METHODOLOGY FOR PHYSICAL HIERARCHY EXPLORATION OF 3-D ICs 1969

Fig. 16. Placement (to scale) of the MemPool single-tile designs using TSMC
16 nm process: 2-D manual versus 2-D automated floorplan.

Fig. 17. Placement (to scale) of the MemPool single-tile designs using TSMC
16 nm process: 3-D manual versus 3-D automated floorplan.

Fig. 17 and Table VIII shows that the 3-D implementation is
not as good as the manual version, especially regarding the
wirelength and the number of F2F bumps. The latter can be
improved by being more stringent when accepting 3-D moves
that worsen the cut during floorplanning.

VII. CONCLUSION

We propose a full-chip RTL-to-GDSII physical design
solution that offers a commercial-quality F2F-bonded 3-D
IC physical layout for large hierarchical designs. Our flow
includes new critical ideas, such as the routing and placement
constraint propagation in the double metal stack view, stack
inversion, and an optional whitespace modeling, enabling
multitier cell placement. This design flow steppingstone vastly
expands the design space exploration options and can help
explore physical hierarchy more efficiently on a multilevel
for 3-D ICs. Our proposed automated 3-D floorplanning
methodology assists in executing this exploration and reduces
its turnaround time. Our extensive experiments on large
complex hierarchical designs of an open manycore processor
and industrial ARM application and graphics processors show
our flow offers 15 to 43 % power × delay reduction and
more than 1.2× combined power, performance, and area/cost
improvements compared with 2-D.

REFERENCES

[1] C. Niessen, “Hierarchical design methodologies and tools for VLSI
chips,” Proc. IEEE, vol. 71, no. 1, pp. 66–75, Jan. 1983.

[2] S. Panth, K. Samadi, Y. Du, and S. K. Lim, “High-density integration of
functional modules using monolithic 3D-IC technology,” in Proc. Asia
South Pacific Design Autom. Conf. (ASP-DAC), 2013, pp. 681–686.

[3] J. Knechtel, I. L. Markov, and J. Lienig, “Assembling 2-D blocks into
3-D chips,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 31, no. 2, pp. 228–241, Feb. 2012.

[4] A. Agnesina et al., “Hier-3D: A hierarchical physical design method-
ology for face-to-face-bonded 3D ICs,” in Proc. ACM/IEEE Int. Symp.
Low Power Electron. Design, 2022, pp. 1–6.

[5] A. Agnesina et al., “AutoDMP: Automated dreamplace-based macro
placement,” in Proc. Int. Symp. Phys. Design, 2023, pp. 149–157

[6] A. Mirhoseini et al., “A graph placement methodology for fast chip
design,” Nature, vol. 594, no. 7862, pp. 207–212, 2021.

[7] M. Cavalcante et al., “MemPool-3D: Boosting performance and
efficiency of shared-l1 memory many-core clusters with 3D integra-
tion,” in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2022,
pp. 394–399.

[8] J. Wuu et al., “3D V-cache: The implementation of a hybrid-bonded
64MB stacked cache for a 7nm x86-64 CPU,” in Proc. IEEE Int. Solid-
State Circuits Conf. (ISSCC), 2022, pp. 428–429.

[9] D. Wong and C. Liu, “A new algorithm for floorplan design,” in Proc.
ACM/IEEE Design Autom. Conf., 1986, pp. 101–107.

[10] L. Cheng, L. Deng, and M. D. F. Wong, “Floorplanning for 3-D VLSI
design,” in Proc. ASP-DAC Asia South Pacific Design Autom. Conf.,
2005, pp. 405–411.

[11] G. Sisto et al., “Design enablement of fine pitch face-to-face 3D system
integration using die-by-die place & route,” in Proc. Int. 3D Syst. Integr.
Conf. (3DIC), 2019, pp. 1–4.

[12] L. Bamberg et al., “Macro-3D: A physical design methodology for face-
to-face-stacked heterogeneous 3D ICs,” in Proc. Design, Autom. Test
Eur. Conf. Exhibit. (DATE), 2020, pp. 37–42.

[13] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proc. Papers Twenty-Five Years
Electron. Design Autom., 1988, pp. 241–247.

[14] A. B. Kahng, R. Varadarajan, and Z. Wang, “RTL-MP: Toward practical,
human-quality chip planning and macro placement,” in Proc. Int. Symp.
Phys. Design, 2022, pp. 3–11.

[15] D. Z. Pan, B. Halpin, and H. Ren, “Timing-driven placement,” Handbook
Algorithms Phys. Design Autom., pp. 423–446, Nov. 2008.

[16] P. Spindler and F. M. Johannes, “Fast and accurate routing demand
estimation for efficient routability-driven placement,” in Proc. Design,
Autom. Test Eur. Conf. Exhibit., 2007, pp. 1–6.

[17] C.-L. E. Cheng, “RISA: Accurate and efficient placement routability
modeling,” in Proc. Proc. IEEE/ACM Int. Conf. Comput.-Aided Design,
1994, pp. 690–695.

[18] F. C. Crow, “Summed-area tables for texture mapping,” in Proc. Annu.
Conf. Comput. Graph. Interact. Techn., 1984, pp. 207–212.

[19] S. Pentapati, A. Agnesina, M. Brunion, Y.-H. Huang, and S. K. Lim.
“On Legalization of die bonding bumps and pads for 3D ICs,” in Proc.
Int. Symp. Phys. Design, 2023, pp. 62–70.

[20] D. Bertsimas and J. Tsitsiklis, “Simulated annealing,” Statist. Sci., vol. 8,
no. 1, pp. 5–10, 1993.

[21] A. Agnesina, K. Chang, and S. K. Lim, “VLSI placement parameter
optimization using deep reinforcement learning,” in Proc. Int. Conf.
Comput.-Aided Design, 2020, pp. 1–9.

[22] M. Cavalcante, S. Riedel, A. Pullini, and L. Benini “MemPool: A shared-
L1 memory many-core cluster with a low-latency interconnect,” in Proc.
Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2021, pp. 701–706.

[23] E. Beyne et al., “Scalable, sub 2μm pitch, cu/SiCN to cu/SiCN hybrid
wafer-to-wafer bonding technology,” in Proc. IEEE Int. Electron Devices
Meeting (IEDM), 2017, pp. 32.4.1–32.4.4.

[24] A. Agnesina et al., “Power, performance, area and cost analysis of
memory-on-logic face-to-face bonded 3D processor designs,” in Proc.
IEEE/ACM Int. Symp. Low Power Electron. Design (ISLPED), 2021,
pp. 1–6.

Nesara Eranna Bethur received the M.S. degree
in electrical and computer engineering from the
Georgia Institute of Technology, Atlanta, GA, USA,
in 2023.

He joined Advanced Micro Devices Inc. Austin,
Austin, TX, USA, as a Senior Silicon Design
Engineer in 2023. Previously, he worked as a Design
Engineer II with Cadence Design Systems Inc.,
Bengaluru, India, from 2019 to 2021. He was also
a Technical Intern with Synopsys Inc., Bengaluru,
India, in 2019. His research interests include design

methodology for 3DIC, as well as the application of machine learning and
algorithms in EDA.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

1970 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 7, JULY 2024

Anthony Agnesina received the M.S. and Ph.D.
degrees in electrical and computer engineering from
the Georgia Institute of Technology, Atlanta, GA,
USA, in 2017 and 2022, respectively, and the
Diplôme d’Ingénieur from CentraleSupélec, Gif-sur-
Yvette, France, in 2016.

He joined NVIDIA Research, Santa Clara, CA,
USA, in 2022. His research interests are in 3-D inte-
grated circuits, applied machine learning to EDA,
and algorithms for computer-aided design of VLSI
circuits.

Dr. Agnesina received the 2022 ACM/IEEE International Symposium on
Low Power Electronics and Design (ISLPED) Best Paper Award.

Moritz Brunion received the bachelor’s and mas-
ter’s degrees in electrical and computer engineering
from the University of Bremen, Bremen, Germany,
in 2019 and 2022, respectively.

He is currently a Researcher with IMEC, Leuven,
Belgium, and his current research focuses on
technology-driven interconnect architecture design.

Alberto Garcia-Ortiz (Senior Member, IEEE)
received the diploma degree in telecommunica-
tion systems from the Polytechnic University of
Valencia, Valencia, Spain, in 1998, and the Ph.D.
degree (summa cum laude) from the Department of
Electrical Engineering and Information Technology,
Institute of Microelectronic Systems, Darmstadt
University of Technology, Darmstadt, Germany, in
2003.

He worked with Newlogic, Austria, Europe, for
two years. From 2003 to 2005, he worked as a

Senior Hardware Design Engineer with IBM Deutschland Development and
Research, Böblingen, Germany. After that, he joined the start-up AnaFocus,
Spain, where he was responsible for the design and integration of AnaFocus’
Next Generation Vision Systems-on-Chip. He is currently a Full Professor
for the chair of integrated digital systems with the University of Bremen,
Bremen, Germany. His interests include low-power design and estimation,
communication-centric design, 3-D integration, and hardware accelerators
for AI.

Dr. Garcia-Ortiz received the “Outstanding Dissertation Award” in 2004
from the European Design and Automation Association. In 2005, he received
from IBM an innovation Award for contributions to leakage estimation. Two
patents are issued with that work. He serves as an Editor for Journal of Low
Power Electronics and is a Reviewer of several conferences, journals, and
European projects.

Francky Catthoor (Fellow, IEEE) received the
Ph.D. degree in electrical engineering (EE) from
the Katholieke Universiteit Leuven (KULeuven),
Leuven, Belgium, in 1987.

Between 1987 and 2000, he has headed several
research domains in the area of synthesis techniques
and architectural methodologies. Since 2000 he is
strongly involved in other activities with IMEC,
Leuven, Belgium, including co-exploration of appli-
cation, computer architecture and deep submicron
technology aspects, biomedical systems and IoT

sensor nodes, and photo-voltaic modules combined with renewable energy
systems, where he is currently a Senior Fellow. He is also a part-time Full
Professor with the EE department, KULeuven.

Dr. Catthoor has been an Associate Editor for several IEEE and ACM
journals.

Dragomir Milojevic received the M.S. and Ph.D.
degrees in electrical engineering from the Université
Libre de Bruxelles (ULB), Brussels, Belgium, in
1994 and 2004, respectively.

He holds the position of a Professor with Digital
Electronics and Systems Design, ULB. In 2004, he
joined IMEC, Leuven, Belgium, working on mul-
tiprocessor and network-on-chip architectures for
low-power multimedia systems. Since 2008, he has
been working on enablement of 3-D stacked ICs,
and system and design technology co-optimization

of advanced technology nodes, and design methodologies for technology
aware 3-D ICs.

Manu Komalan (Member, IEEE) received the
integrated master’s degree in nanotechnology from
Amity University, Noida, India, in 2011, the
first Ph.D. degree in electrical engineering from
Katholieke Universiteit Leuven, Leuven, Belgium, in
2017, and the second Ph.D. degree in computer sci-
ence from the Universidad Complutense de Madrid,
Madrid, Spain, in 2017.

He then joined IMEC, Leuven, Belgium, as a
Memory System Architecture Researcher, where he
worked as a Program Manager with the Memory

INSITE Program, from 2019 to 2021 on activities involving exploration,
analysis, and optimization of NVMs across the different layers of abstraction,
and is currently an Architect and a Manager with the Compute Systems
Architecture Unit, wherein, his focus is systems design for the AI and HPC
domain.

Matheus Cavalcante (Student Member, IEEE)
received the M.Sc. degree in integrated electronic
systems from the Grenoble Institute of Technology
(Phelma), Grenoble, France, in 2018. He is currently
pursuing the Ph.D. degree with the Digital Circuits
and Systems Group of Prof. L. Benini, ETH Zürich,
Zürich, Switzerland.

His current research interests include the design
of very-large-scale circuits and high-performance
systems, namely vector and manycore architec-
tures, and their co-optimization with emerging VLSI
technologies.

Samuel Riedel (Member, IEEE) received the B.Sc.
and M.Sc. degrees in electrical engineering and
information technology with ETH Zürich, Zürich,
Switzerland, in 2017 and 2019, respectively, where
he is currently pursuing the Ph.D. degree with the
Digital Circuits and Systems Group of L. Benini.

His research interests include computer archi-
tecture, focusing on manycore systems and their
programming model.

Luca Benini (Fellow, IEEE) received the Ph.D.
degree from Stanford University, Stanford, CA,
USA, in 1997.

He is a Chair of Digital Circuits and systems
with ETH Zürich, Zürich, Switzerland, and is a Full
Professor with the Universita di Bologna, Bologna,
Italy. His research interests are in energy-efficient
parallel computing systems, smart sensing micro-
systems, and machine learning hardware.

Dr. Benini is a Fellow of the ACM and a member
of the Academia Europaea.

Sung Kyu Lim (Fellow, IEEE) received the B.S.,
M.S., and Ph.D. degrees from the Computer Science
Department, University of California at Los Angeles,
Los Angeles, CA, USA, in 1994, 1997, and 2000,
respectively.

He is a Professor with the School of Electrical
and Computer Engineering, Georgia Institute of
Technology, Atlanta, GA, USA, in 2001. He is
the author of Practical Problems in VLSI Physical
Design Automation (Springer, 2008) and Design for
High Performance, Low Power, and Reliable 3D

Integrated Circuits (Springer, 2013). He has published more than 400 papers
on 2.5-D and 3-D ICs. His research focus is on the architecture, design, test,
and electronic design automation (EDA) solutions for 2.5-D and 3-D ICs. His
research is featured as Research Highlight in the Communication of the ACM
in January, 2014.

Dr. Lim received the National Science Foundation Faculty Early Career
Development (CAREER) Award in 2006, the ACM SIGDA Distinguished
Service Award in 2008, the Best Paper Award from the IEEE TRANSACTIONS

ON ELECTROMAGNETIC COMPATIBILITY and the IEEE TRANSACTIONS

ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS

in 2022, and the Best Paper Award from several conferences in EDA,
including ACM Design Automation Conference in 2023. He joined the
Defense Advanced Research Projects Agency in 2022 as a Program Manager
with the Microsystems Technology Office.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 19,2025 at 19:23:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

