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Abstract—Monolithic 3-D (M3D) integration is a promising
technology for achieving high performance and low-power con-
sumption. However, the limitations of current M3D fabrication
flows lead to performance degradation of devices in the top tier
and unreliable interconnects between tiers. Fault localization at
the tier level is therefore necessary to enhance yield learning, For
example, tier-level localization can enable targeted diagnosis and
process optimization efforts. In this article, we develop a graph
neural network-based diagnosis framework to efficiently localize
faults to a device tier. The proposed framework can be used to pro-
vide rapid feedback to the foundry and help enhance the quality of
diagnosis reports generated by commercial tools. Results for four
M3D benchmarks, with and without response compaction, show
that the proposed solution achieves up to 32.86% improvement in
diagnostic resolution with less than 1% loss of accuracy, compared
to results from commercial tools. The proposed framework has
also been demonstrated to be transferable to perform diagnosis on
various design configurations without performance degradation.

Index Terms—Diagnosis graph neural network (GNN), mono-
lithic 3-D integration (M3D).

I. INTRODUCTION

AS MOORE’s law reaches physical limits, 3-D integra-
tion is now being adopted for integrated circuits (ICs). In

today’s 3-D technology, die/wafer bonding with through-silicon
vias (TSVs) is being used due to its minimal impact on current
fabrication flows. However, keep-out-zones around TSVs (nec-
essary to prevent wire damage due to tensile stress) can create
routing blockages and increase the chip footprint and total wire-
length. Monolithic 3-D (M3D) integration has emerged as a
promising technology to achieve higher performance and lower
power consumption compared to 2-D and die/wafer bonded
3-D ICs [1]. M3D leverages fine-grained monolithic intertier
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vias (MIVs) to achieve high-precision alignment and extremely
thin device layers [2]. The size of MIVs is of the same order of
magnitude as conventional back-end-of-line (BEOL) vias. As
a result, a large number of MIVs can be used in M3D designs,
leading to a significant reduction in wirelength.

Despite these advantages, M3D introduces several challenges
that must be addressed before this technology can be widely
adopted. Temperature management during fabrication is one
of the major concerns. Typically, thermal budgets of transis-
tor manufacturing processes exceed 1000 ◦C (e.g., for dopant
activation) [3]. However, in M3D designs, the fabrication of
upper-tier transistors in M3D designs with typical thermal bud-
gets causes damage to wires and cells underneath [4]. While
advanced processes have been developed to fabricate transistors
at a low temperature, they can cause up to 20% performance
mismatch between the devices in different tiers [5]. The reliabil-
ity of interconnects is another concern for M3D ICs. Standard
copper/low-k BEOL cannot be used between tiers because the
fabrication steps in the upper tiers pose contamination risks,
while low-k dielectrics are thermally unstable after annealing
processes [6]. As an alternative, tungsten has good thermal
stability, but its intrinsic resistance is six times larger than cop-
per, leading to an increase in RC delay in the lower tiers [7].
Moreover, MIVs in M3D designs are prone to defects as they
penetrate through the intertier dielectric. Surface roughness
can produce voids in the dielectric [8], which may lead to
voids in MIVs during etching, resulting in delay defects and
degradation of circuit performance [9]. These defects due to
immature manufacturing processes tend to be manifested as
systematic delay faults that are located in the same tier. It
is necessary to prevent such fabrication-related defects before
M3D can become ready for commercial exploitation. Delay-
fault diagnosis is therefore important in order to provide early
feedback to the foundry and facilitate yield learning.

In contrast to die/wafer bonding in stacked 3-D integra-
tion, tiers in M3D designs are fabricated in situ, which makes
it hard to ensure a known-good tier before assembly. Post-
assembly methods such as [10] are not applicable to M3D
due to the large area overhead for wrapper cells around MIVs.
In addition, delay-fault diagnosis catered to M3D designs is
especially important as tiers in M3D ICs suffer from different
systematic defects due to immature manufacturing processes.
Such tier-specific fabrication-related defects do not exist in
2-D designs; therefore, they are overlooked by previous work.
Xue et al. [11] leverages unsupervised learning to extract
good candidates in diagnosis reports. However, the extracted
candidates can be located in different tiers in M3D designs,
which is not sufficient to provide the high level of resolution
(i.e., fault localization) needed at the tier level. Koneru and
Chakrabarty [12] proposed a built-in-self-test (BIST) solution
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for MIV testing and diagnosis. However, the BIST structure
does not localize faults to a specific tier and requires dedicated
test tiers between each pair of device tiers, which increases
the manufacturing cost. In [13], an observation-point insertion
algorithm was developed for tier-level fault localization, but
the impact of this solution on fault diagnosis was not stud-
ied and the area overhead becomes prohibitive for the likely
scenario of a large number of MIVs. To make M3D inte-
gration feasible, there is a need for a diagnosis framework
that can efficiently localize faults to a tier. Such a diagno-
sis framework should provide early feedback to the foundry
before the time-consuming physical failure analysis (PFA). For
example, an immature manufacturing process can result in a
large number of chips failing on the tester with defects located
in the same tier. Tier-level fault localization makes it possi-
ble for the foundry to review its processes for the predicted
faulty tier without waiting for further analysis; therefore, yield
learning is accelerated. An effective diagnosis method should
also be compatible with existing diagnosis flows provided by
commercial tools to improve the quality of diagnosis.

In this article, we propose a novel machine learning-based
(ML-based) diagnosis framework for M3D ICs to locate faults
at the tier level. We focus on at-speed transition delay fault
(TDF) diagnosis because the M3D-specific defects discussed
above tend to be manifested in the form of delay faults that
impact circuit timing. Our method is able to localize faults
based on the circuit netlist and failure log files from the tester.
The key contributions of this article are as follows.

1) We develop two models, Tier-predictor and MIV-
pinpointer, based on graph neural networks (GNNs) to
locate faults at the tier level and in MIVs.

2) We develop a GNN-based policy to improve the quality
of diagnosis reports.

3) We ensure the compatibility of the proposed method
with conventional scan-based designs and commercial
tools, both with and without test compression.

4) We show that the proposed framework is transferable
such that diagnosis can be carried out for designs with
various design configurations.

5) We demonstrate that the proposed framework can be
synergistically combined with previous work to provide
the high level of resolution at the tier level.

6) The proposed framework simply utilizes the circuit
netlist and failure log files from the tester for mak-
ing predictions; therefore, test cost is minimized as no
additional test time is needed to generate diagnostic data.

The remainder of this article is organized as follows.
Section II provides an overview of M3D integration, logic
diagnosis, and GNN. Section III presents the proposed diag-
nosis framework. In Section IV, we conduct transferability
analysis and provide our solutions to improve the transfer-
ability of the GNN-based framework. Section V presents the
proposed candidate pruning and reordering algorithm. We
compare the effectiveness of our framework with a commercial
fault-diagnosis tool in Section VI. In Section VII, we discuss
the transferability of our framework between designs and pro-
vide guidance on choosing appropriate models for diagnosis.
Finally, Section VIII concludes this article.

II. BACKGROUND

A. Monolithic 3-D Integration

M3D integration processes active device tiers sequentially
on a single wafer. M3D integration has the potential to enable

a wide variety of applications. M3D NAND flash memory
has been commercially produced in recent years due to bet-
ter performance and lower cost compared to 2-D planar
NAND Flash [14]. In [15], an M3D nonvolatile random-access
memory (NVRAM) was proposed for AI accelerators. The
3-D-integrated interface helped in the alleviation of memory-
bounded problems, both during training and inference. In [16],
heterogeneous M3D systems, i.e., multiple technology nodes
for different tiers, were predicted to be promising solutions
for next-generation wireless communication.

Research efforts are also being devoted to M3D testing and
diagnosis. Chaudhuri et al. [13] developed an observation-
point insertion algorithm for tier-level fault localization. A
test pattern reshaping algorithm was proposed in [17] to
reduce PSN-induced voltage droop during M3D delay test-
ing. However, fault diagnosis for M3D-specific defects has not
been addressed in prior work. This is critical because tiers in
an M3D design suffer from different fabrication-related lim-
itations and process variations. For example, defects arising
from the relatively immature low-temperature processes and
the bonding interface of interlayer dielectric and upper tier’s
active layer typically influence transistors in the upper tiers,
while delay faults due to unreliable interconnects between tiers
affect the timing in the bottom tiers [5], [6]. Tier-level diag-
nosis is thus important to localize faults to a tier, enabling
efficient PFA and technology bringup.

B. Logic Diagnosis

Logic diagnosis is used to identify potential defect loca-
tions when a chip fails on the tester. A diagnosis process
aims to provide an accurate guide to the subsequent PFA step.
Three important measures are used to evaluate the quality of a
diagnosis algorithm: 1) diagnostic resolution; 2) accuracy; and
3) first-hit index (FHI) [18]. Diagnostic resolution is defined as
the number of fault candidates in a diagnosis report; accuracy
is determined by whether one of the candidates pinpoints the
ground-truth defect location. Ideally, the diagnostic resolution
should be 1, but it is hard to ensure that the only identified
candidate is the ground-truth defect location. An efficient diag-
nosis methodology needs to find a tradeoff between resolution
and accuracy. A diagnosis report is ranked with the most prob-
able candidate listed at the top. FHI refers to the index of the
first candidate that is actually a ground-truth defect location.
Smaller the FHI, better the diagnosis process.

Test compression is widely used in modern IC designs to
achieve a significant reduction in test time and data volume;
however, the test-compression environment increases the dif-
ficulty of identifying the ground-truth defect locations during
diagnosis. In the proposed framework, we aim at improving
diagnostic resolution for M3D designs, both with and without
response compaction. Our tier-level predictions are used to
enhance the quality of diagnosis reports generated by an auto-
matic test pattern generation (ATPG) tool. This is a key benefit
of the proposed solution—it is synergistic and compatible with
commercial tools. In addition, ML-aided MIV diagnosis can
help in the early characterization of defective MIVs.

C. Graph Neural Network

GNN is an ML method that processes data on graphs.
In the field of IC design, GNN has attracted special atten-
tion because it can carry out computations directly in non-
Euclidean domains. ML models, such as recurrent neural
networks and convolutional neural networks, are not effective
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Fig. 1. GNN-based fault diagnosis flow.

for graph-structured data because they operate on Euclidean
data, such as images and text sequences. However, different
graphs have different numbers of nodes/edges and irregular
node connections. A preprocessing phase is therefore required
to map graph structures to simplified representations, due to
which topological dependency of each node may be lost during
preprocessing [19].

GNNs have been applied to solve different types of IC
design problems in recent years. In [20], a GNN-based model
for distributed circuit designs is developed. The proposed
model is able to replace the time-consuming eletromigration
simulators to accurately predict the electromigration proper-
ties. Xie et al. [21] leveraged the graph attention network
to help estimate individual net length within a circuit before
placement. Furthermore, ML is well suited to IC diagnosis
because a large volume of data is collected throughout the
production and product lifetime [22]. This advantage and the
effectiveness of GNN motivate us to design a GNN-based
framework for tier-level diagnosis. For our diagnosis problem,
GNN models can learn the complex, nonlinear relationship
between a fault location (root-cause) and the failure response
(effect). The trained models can then be used to directly predict
the faulty tier and MIVs by providing only the failure log
from the tester as input. This is significantly faster than run-
ning fault simulation for each candidate fault and matching the
failure response with what we got from the tester. Therefore,
the proposed solution can provide feedback to the foundry and
improve ATPG diagnosis reports without runtime overhead.

The transferability of ML is an important property that
enables pretrained models to be applicable to new data without
retraining [23]. Transfer learning has been shown to be effec-
tive on graph-structured data and GNNs [24], [25]. In the field
of IC diagnosis, the circuit under diagnosis (CUD) can be syn-
thesized with different configurations. Furthermore, various
partitioning methods have been developed for M3D designs
to partition standard cell gates into device tiers [26], [27].
Collecting data and training new models for each CUD require
additional runtime and computational efforts, which negates
the benefits of leveraging ML models in the diagnosis pro-
cess. This motivates us to develop a transferable framework
that can be directly applied to new circuits without retraining.
An efficient framework should accurately localize faults to a
device tier and help improve the quality of diagnosis reports
for CUDs with different design configurations.

III. PROPOSED FAULT LOCALIZATION FRAMEWORK

In this section, we describe our GNN-based framework
for tier-level fault diagnosis in M3D ICs. Fig. 1 presents a
flowchart for the proposed diagnosis method. The first step is
to convert the CUD into a graph object. Next, given a fail-
ure log file from the tester, we simultaneously generate our

(a) (b)

Fig. 2. Illustration of the proposed heterogeneous graph structure. (a) Circuit
netlist. (b) Heterogeneous graph.

GNN-based predictions and launch the ATPG diagnosis pro-
cess. Finally, we utilize the prediction results to reorder and
prune candidates from the ATPG diagnosis report to gener-
ate the final candidate list. Our framework is implemented in
PyTorch with the deep graph library (DGL) package [28].

A. Heterogeneous Graph Structure

The first step in our framework is to transfer a CUD into
a heterogeneous graph, which incorporates different types of
nodes and links in the graph structure. There are two levels
in the heterogeneous graph. At the circuit level, the CUD is
converted to a graph, where each fault site (i.e., every pin of
a gate) forms a node, while edges are composed of input-
pin-to-output-pin and net-stem-to-net-branch connections. In
addition to fault sites, we also represent each MIV as a node in
the graph. This is important because MIVs are prone to delay
defects in M3D designs (see Section I). However, conventional
TDF testing does not provide such fine-grained resolution. A
post-processing step is required in conventional TDF testing to
evaluate whether there is an MIV between a top-tier gate and
a bottom-tier gate and whether such an MIV is faulty. Given a
CUD with n gates, the time complexity of this step is O(n2).
By adding MIV nodes in the proposed graph structure, each
MIV can be pinpointed in constant time.

Next, we construct nodes and edges at the top level of
the CUD, denoted as Topnodes and Topedges, respectively,
to complete the heterogeneous graph structure. A Topnode
corresponds to an observation point (i.e., the input of a scan
flop) during scan testing. Each Topnode is connected to all
the nodes in its fan-in cone by Topedges. Fig. 2 illustrates the
construction of our graph structure from a CUD. After graph
construction, we apply ATPG patterns and conduct simulation
with multiple logic values [29] to memorize transitions [i.e.,
whether a node switches from 0(1) to 1(0)]. We also find the
shortest path between both ends of a Topedge. The number
of nodes and the number of MIVs in such a shortest path
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TABLE I
FEATURES IN A HETEROGENEOUS GRAPH

Fig. 3. Pseudocode for the back-tracing algorithm.

establish the Topedge features. Details of features in a het-
erogeneous graph are shown in Table I. Note that to convert
a CUD to a graph and memorize transitions with TDF pat-
terns, every gate and net is explored, so the time complexity
is O(|V| + |E|), where |V| is the number of nodes at the cir-
cuit level, and |E| is the number of edges at the circuit level.
Moreover, we leverage breadth-first search (BFS) to collect the
fan-in cone of each Topnode during the top-level graph con-
struction. Because our circuit-level graph is unweighted, paths
found by BFS between the source node and traverse nodes are
guaranteed to be the shortest. Hence, Topedge features can
be calculated simultaneously during the graph construction,
where the time complexity is O(|V| + |E|) [30]. Other features
listed in Table I are built in constant time. Therefore, the over-
all time complexity for the heterogeneous graph construction
is O(|V| + |E|).

The top-level graph strengthens the relationships between
observation points and their fan-in nodes; this is important for
logic diagnosis because only the fan-in nodes can be the candi-
date fault locations when observation points capture erroneous
responses. Although the generation of Topnodes and Topedges
requires additional runtime and memory, it needs to be run
only once for each benchmark and can be reused for every
failure log file; therefore, the runtime and memory overhead
are not concerns and the cost is easily amortized.

B. Back-Tracing

Fig. 3 sketches the steps involved in back-tracing. Lines
2–12 iterate through every erroneous output response. Line 3
finds the pattern p with which the current response is observed
on the tester and collects a set T of Topnodes that connect to
the test output where the response is captured. Lines 4–10
iterate through all the nodes in the input cones of Topnodes

TABLE II
INITIAL NODE FEATURES IN A SUBGRAPH. LENGTH

OF A TOPEDGE IS THE SHORTEST DISTANCE BETWEEN

ITS SOURCE AND DESTINATION NODES

in T . Note that only nodes whose signal values switch during
scan capture when p is applied are capable of activating delay
faults and producing an erroneous response. Therefore, line 7
collects the union of such nodes to form a suspect list corre-
sponding to the current response. In line 11, the intersection of
suspect lists for every erroneous response becomes the final
candidate list for the input failure log file. Finally, line 13
extracts all nodes in the candidate list to generate a subgraph
for the subsequent GNN models. Note that the top level in
the proposed heterogeneous graph is solely used to acceler-
ate the back-tracing process. After back-tracing, only nodes at
the circuit level are extracted to create a homogeneous sub-
graph. The topological dependency at the top level is encoded
as numerical features of the extracted subgraph.

The time complexity of the above back-tracing procedure
can be analyzed as follows. Given a failure log file with nr
erroneous responses, lines 2–12 are executed nr times to find
the candidate list. Let the number of gates in the graph G be nG.
During the evaluation in lines 4–10, each node in the fan-in
cone is analyzed at most |T| times, where |T| is a constant
referred to as the number of Topnodes connected to an output
channel; hence the time complexity is O(nG). In line 13, the
time complexity of finding the intersection of two subsets of
G is O(nG). The other steps are completed in constant time.
Therefore, the overall time complexity is O(nrnG).

C. Proposed GNN Models

We utilize the graph convolutional network (GCN) [31] to
train our Tier-predictor and MIV-pinpointer. Subgraphs gener-
ated after the back-tracing step are fed into the GCN models,
with the initial node features listed in Table II. Features at the
circuit level are extracted based on the topological dependency
in the CUD, which has been shown to be effective in solv-
ing EDA problems using GNNs [21]. Moreover, we encode
the connections at the top level (e.g., the length of Topedges
and the number of MIVs passed through by Topedges) as
numerical features to represent the relationships between each
node and scan outputs. To demonstrate the importance of the
selected features, we leverage the GNNExplainer [32] to iden-
tify the significance of each feature to the classification labels.
Significance scores are shown in Table II. A feature is more
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important for the classification task if its significance score is
closer to 1. Clearly, features at the top level are of the same
importance as features at the circuit level. This is because the
length of Topedges and the number of MIVs passed through
by Topedges demonstrate how difficult each fault effect can be
captured by scan outputs and whether the propagation paths
are prone to MIV defects, respectively. Such features are key
factors that affect the testing and diagnosis processes, where
failure logs are generated. As both features at the circuit level
and features at the top level contribute to the classification task,
we utilize all the selected features to train our GCN models.

To gather information and learn from neighbors of a node n,
GCN layers are added to aggregate its features as follows [31]:

h(l+1)
n = σ

(
b(l) + �i∈N (n)

h(l)
i W(l)

√|N (i)|√|N (n)|

)
(1)

where h(l)
n is node features of n at the lth layer, σ is an activa-

tion function, N (n) is the set of neighbors of node n, |N (n)|
is the number of neighbors of node n, b(l) is the learnable
bias at the lth layer, and W(l) is the learnable weight at the lth
layer.

After learning is completed, node features at the final GCN
layer are used for prediction. A graph pooling layer [33] is
inserted at the end of the structure of Tier-predictor to create
the graph representation. This representation is a 2-D vec-
tor, denoted as [ptop, pbottom], and it provides the probabilities
of defects being in the top tier and bottom tier, respectively.
Note that the proposed Tier-predictor can perform diagnosis
on M3D designs with more than two tiers by extending the
dimension of the graph representation vector to be the number
of tiers in the CUDs. Without loss of generality, we demon-
strate our framework with two-tier designs in this work. For the
MIV-pinpointer, local information near the candidate MIVs is
much more important than global features. Hence, node clas-
sification is used to pinpoint the set of defective MIVs. The
learned node features {h} ∈ R

2 are directly used to calcu-
late the probability that an MIV has a defect. Note that the
proposed GNN models are not restricted to M3D designs. If
2-D circuits are partitioned into distinct regions, Tier-predictor
can be utilized to perform region-level fault localization; MIV-
pinpointer can pinpoint faulty interconnects between regions.
As no change is needed for feature extraction and model con-
struction, the proposed GNN models are expected to achieve
similar results when applied to conventional 2-D ICs.

IV. TRANSFERABILITY OF THE PROPOSED GNN-BASED
DIAGNOSIS FRAMEWORK

In an M3D IC design flow, design configurations, such as
clock frequency, area, and design-for-testability (DfT) struc-
tures, can result in different M3D netlists. Such differences
do not change the functionality of the design; however, the
way how each fault is detected might be affected during test-
ing, leading to different failure output responses for diagnosis.
Transferability on the same benchmark with different design
configurations is therefore necessary for the proposed frame-
work to be applicable to real-world scenarios. In this section,
we carry out the transferability analysis on the proposed tier-
level fault localization framework. We evaluate the proposed
GNN-based framework on four two-tier M3D benchmarks,
namely, advanced encryption standard (AES) and Tate Bilinear
Pairing (Tate) from OpenCores, and netcard and leon3mp from

TABLE III
DESIGN MATRIX OF M3D BENCHMARKS. Nsc (Nch): NUMBER OF SCAN

CHAINS (CHANNELS); Ng : GATE COUNT; AND FC: FAULT COVERAGE

Fig. 4. Data generation flow for the proposed diagnosis framework.

the ISPD 2012 benchmark suite. We also provide a data aug-
mentation solution to improve the transferability of our GNN
models.

To evaluate the transferability of the proposed diagno-
sis framework, we generated datasets for each benchmark
with various design configurations. Fig. 4 shows our data
generation flow. Given a 2-D netlist at the register-transfer
level (RTL), we conducted synthesis with the open-source
Nangate 45-nm standard cell library using Synopsys Design
Compiler. The synthesized netlists were partitioned into M3D
with the partitioning algorithm proposed in [34]. Next, test-
compression hardware was inserted using the embedded deter-
ministic test (EDT) methodology (Siemens EDA Tessent),
followed by the TDF pattern generation. Without loss of gen-
erality, the compaction ratio is set to 20× in all benchmarks,
that is, at most 20 scan chains are connected to one test output
channel using a response compactor. We also inserted bypass
signals that enable the designs to scan out uncompressed
responses without passing through response compactors. The
design matrix of our M3D benchmarks is shown in Table III.
To generate datasets for diagnosis, we randomly injected one
TDF at a time in a circuit and carried out logic simulations
with the TDF patterns to obtain erroneous output responses.
These responses were collected into a failure log file, which
created a sample in the datasets. We generated 5000 samples
for each benchmark, with and without response compaction,
respectively. The M3D netlist, TDF patterns, and the collection
of failure logs from the data generation flow became inputs of
the proposed diagnosis framework, as shown in Fig. 1.

Besides the design configuration, denoted as Syn-1, used
for training, we generated additional datasets for each bench-
mark with different design configurations for the purpose of
transferability analysis, including: 1) TPI: test point (TP)-
inserted netlists; 2) Syn-2: netlists synthesized with another
clock frequency; and 3) Par: netlists partitioned using the M3D
partitioning algorithm in [27]. TPs are widely used DfT struc-
tures to help in improving test coverage and reducing pattern
counts. We set the maximum number of TPs to be 1% of
the number of gates in the design and utilized ATPG tools to
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Fig. 5. Feature visualization of Tate benchmark with various design
configurations.

determine TP locations. Note that designs with different clock
frequencies are resynthesized and repartitioned into M3D from
the RTL level. Test patterns are regenerated after TP insertion.
These changes can lead to significant variations in gate types,
spatial distribution of gates, and how each fault is detected.
Our goal is to create a transferable GNN-based framework that
can be directly applied to these designs without retraining.

To analyze the transferability of our GNN models, we first
leveraged principle component analysis (PCA) [35] to visual-
ize the distribution of feature vectors listed in Table II. The
visualization for the Tate benchmark is shown in Fig. 5. Each
sample represents a feature vector of a subgraph generated by
our back-tracing algorithm, where each subgraph corresponds
to an injected fault and the associated failure log. Clearly, fea-
ture distributions of all netlists are greatly overlapped even
though different design configurations lead to variations in
test patterns and gate types. This is because such netlists have
equivalent functionality; subgraphs obtained from our back-
tracing algorithm tend to have similar feature distributions and
topological dependencies. This similarity demonstrates that the
selected features and the proposed back-tracing algorithm is
not biased by different design configurations when performing
diagnosis on the same benchmark design. Therefore, Tier-
predictor and MIV-pinpointer are able to learn from a small
number of netlists and inference on others without retraining.

We further demonstrate the transferability of the proposed
framework by comparing a transferred model to models trained
from each design configuration. Note that the amount and
the diversity of the dataset are important factors to affect the
performance of ML models. To enhance the transferability
of the proposed framework, we develop a data augmenta-
tion method by collecting samples from randomly partitioned
M3D netlists. As shown in Fig. 5, varying design configura-
tions does not generate anomalous samples that can lead to
an adverse impact during training. Therefore, for the purpose
of training, we randomly partition 2-D netlists into M3D to
create various spatial distributions of logic gates. This helps in
enhancing the diversity of the dataset and preventing the GNN
model from being biased toward any design configuration.

Fig. 6 shows the accuracy of Tier-predictor and MIV-
pinpointer for the Tate benchmark, respectively. Note that
Dedicated Model is trained individually for each design
configuration, while Transferred Model is trained with sam-
ples from Syn-1 and two randomly partitioned netlists. For
both Tier-predictor and MIV-pinpointer, Transferred Model
can achieve nearly the same accuracy as Dedicated Model.
Transferred Model even outperforms Dedicated Model for the

Fig. 6. Accuracy of the proposed GNN models with Tate benchmark.

Syn-2 and Par netlists, whose samples were not included
during the training of Transferred Model. This is because
Transferred Model has learned from a highly diverse training
dataset obtained from randomly partitioned netlists. Therefore,
with the proposed data-augmentation solution, Tier-predictor
and MIV-pinpointer can be transferred to perform diagnosis
on the same benchmark with various design configurations.
Such transferability is extremely important for emerging M3D
technologies because the design flow is not standardized and
there is a lack of post-silicon data. Reusing pretrained models
on new netlists significantly reduces the runtime for diagno-
sis and provides quick feedback to the foundry and design
groups. These advantages help us to improve yield learning
and shorten the time-to-market.

V. PROPOSED CANDIDATE PRUNING AND
REORDERING POLICY

In this section, we describe the proposed GNN-based can-
didate pruning and reordering policy. We utilize prediction
results from Tier-predictor and MIV-pinpointer to enhance the
quality of diagnosis reports generated by ATPG tools. Given
a failure log file from the tester, the tier-level localization
and ATPG diagnosis are conducted in parallel to generate
prediction results and a diagnosis report, respectively. Such
a diagnosis report provides a list of candidates that are pre-
dicted to be the defect locations by ATPG tools. The proposed
candidate pruning and reordering policy aims to improve the
quality of the diagnosis report by removing unlikely candi-
dates and moving the ground-truth defect location to the top
of the list.

A. Overview

An overview of the proposed candidate pruning and reorder-
ing policy is shown in Fig. 7. Given a failure log file from the
tester, we utilize ATPG and our fault localization framework to
produce a diagnosis report and the predicted tier-level defect
locations. Next, as MIVs are prone to delay defects in M3D
designs (see Section I), we first evaluate the prediction from
MIV-pinpointer to extract all faulty MIVs. All candidates in
the report that are equivalent to such MIVs are moved to the
top of the report. This can help diagnosis engineers to prior-
itize MIV faults during the subsequent PFA. After evaluating
MIV-pinpointer, we extract the predicted faulty tier from Tier-
predictor and use its probability as a confidence score. We
compare such a score to a threshold value, denoted as Tp,
to determine the confidence level of the predicted faulty tier,
where Tp is derived from a PR curve generated during train-
ing. If the prediction from Tier-predictor has low confidence,
we reorder the diagnosis reports by moving all candidates in
the faulty tier to the top of the lists. Otherwise, we utilize the
proposed GNN-based Classifier to decide whether to prune
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TABLE IV
DETAILS OF THE CONFUSION MATRIX FOR THE PROPOSED TIER-PREDICTOR

Fig. 7. Flowchart for candidate pruning and reordering.

candidates. The pruning process removes all candidates in the
tier predicted to be fault-free from diagnosis reports to improve
both diagnostic resolution and FHI.

B. Precision–Recall Curve

In the field of classification problems, a confusion matrix
is a popular visualization method to show the effectiveness
of an algorithm. The description of a confusion matrix for
the proposed Tier-predictor is shown in Table IV. We clas-
sify a sample as Actual Positive if the tier predicted to be
faulty is equivalent to the tier-level ground-truth defect loca-
tion. Otherwise, the sample is classified as Actual Negative.
Predicted Positive and Predicted Negative are distinguished
by comparing the probability of the predicted faulty tier to a
classification threshold between 0 and 1. Samples with prob-
abilities larger than the threshold are categorized as Predicted
Positive, while others are represented as Predicted Negative.
By switching the threshold value, various distributions of
Predictive Positive and Predictive Negative can be generated.

Based on distributions in confusion matrices, receiver oper-
ating characteristic (ROC) curves and PR curves are widely
used to visualize the performance of an algorithm at all clas-
sification thresholds. Compared to ROC curves, PR curves
can provide more insights when the datasets are highly imbal-
anced [36]. For the proposed Tier-predictor, a skew distribution
between Actual Positive and Actual Negative tends to be
formed as Tier-predictor can achieve up to 90% accuracy.
Therefore, we choose the PR curve to evaluate our tier-level
localization framework. The precision and recall are defined
as follows:

Precision = True Positive

True Positive + False Positive
(2)

Recall = True Positive

True Positive + False Negative
. (3)

To plot PR curves, we alter the classification threshold to cal-
culate the corresponding Precision and Recall values. As the

threshold increases, Precision tends to increase while Recall
tends to decrease. This is because a large threshold increases
the difficulty of classifying samples as Predicted Positive, lead-
ing to a low False Positive and a high False Negative. In
the proposed candidate pruning and reordering policy, sam-
ples classified as Predicted Positive (i.e., Ture Positive +
False Positive) become inputs of the GNN-based Classifier.
Candidates in such samples can be pruned to help in improving
the quality of the corresponding diagnosis reports. However,
pruning False Positive samples leads to a loss of diagno-
sis accuracy because the ground-truth defect locations are
removed from the diagnosis reports. To avoid a large num-
ber of False Positive samples, we utilize PR curves to find the
best threshold as TP in the proposed candidate pruning and
reordering policy. As our objective is to improve the quality
of diagnosis reports with a loss of diagnosis accuracy below
1%, the threshold TP is determined by calculating the mini-
mum classification threshold in the PR curve of the training
dataset such that Precision is larger than or equal to 99%.

C. GNN-Based Classifier

After obtaining TP from PR curves, samples
with high-confidence Tier-predictor predictions (i.e.,
max(ptop, pbottom) ≥ TP) are represented as Predicted
Positive. Next, we train the proposed GNN-based Classifier
focusing on Predicted Positive samples to determine whether
to prune or reorder candidates in the corresponding diagnosis
reports. Note that the pruning process can improve both
diagnostic resolution and FHI for True Positive samples
without any loss of diagnosis accuracy. For False Positive
samples, the ground-truth defect locations are removed due
to incorrect Tier-predictor predictions, leading to an adverse
impact on the subsequent PFA. The objective of the proposed
Classifier is to prioritize Predicted Positive samples and to
distinguish True Positive from False Positive. This allows
the pruning process to significantly improve the quality
of diagnosis reports while minimizing accuracy loss. In
addition, TP obtained during training may not be the best
classification threshold for diagnosing netlists with various
design configurations, leading to an increase in the number
of False Positive samples. The transferability of Classifier
helps in extracting such samples appropriately to prevent any
significant loss in diagnosis accuracy.

For the proposed Classifier, an imbalanced dataset is a
major challenge during training. Because our Tier-predictor
can achieve extremely high accuracy, the number of True
Positive samples is significantly larger than False Positive sam-
ples. From our experiments, a ratio of around 90:1 is observed
for the Tate benchmark. Such an unbalanced dataset leads
to a distorted model that tends to ignore the minority class.
Oversampling is a common technique used to increase the
size of the minority class and make it similar to the size
of the majority class. Several oversampling algorithms have
been proposed in previous work [37], [38]. However, existing
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TABLE V
QUALITY OF ATPG DIAGNOSIS REPORTS FOR M3D BENCHMARKS WITHOUT RESPONSE COMPACTION

algorithms cannot be directly applied to graphs because they
mainly focus on Euclidean data. A conversion step is required
to map graph data to simplified representations, while such a
conversion can lead to a loss of topological dependencies in the
graphs. Therefore, we develop a novel oversampling algorithm
by inserting dummy buffers into samples in the minority class.
For each sample, we append one buffer at the output of each
node once at a time to create synthetic samples. The synthetic
samples help to increase the population of the minority class
without affecting the functionality of CUDs. During the over-
sampling process, consecutive buffers are added to each node
to generate minority data until the dataset becomes balanced.

With the balanced dataset, we leverage the network-based
deep transfer learning [39] to train the proposed Classifier.
We first append the pretrained hidden layers from Tier-
predictor to Classifier, followed by trainable classification
layers. Pretrained layers are used to extract informative fea-
tures from Tier-predictor; classification layers are responsible
for determining whether to prune or reorder the reports accord-
ing to the extracted features. A graph pooling layer is inserted
at the end of Classifier to generate the probabilities of pruning
and reordering. Such probabilities guide in how to fine-tune
the diagnosis reports to improve the quality of the diagnosis
process.

D. ATPG Report Pruning and Reordering

Using the results from our GNN models, we prune and
reorder candidates in the ATPG diagnosis report to improve
the diagnostic resolution and the FHI. Fig. 8 presents an exam-
ple of our pruning and reordering process. We first collect all
candidates listed in the diagnosis report generated by ATPG.
Results of the MIV-pinpointer are then analyzed to extract can-
didate fault sites in the diagnosis report that are equivalent to
the MIVs predicted to be faulty. Such fault sites are placed at
the top of the final report to prioritize MIV faults during the
subsequent failure analysis. As MIVs are prone to defects in
emerging M3D integration [9], FHI can be improved in this
way. Next, the maximum of [ptop, pbottom], denoted as p, is
compared with Tp to determine the confidence level of the
Tier-predictor prediction. If such a prediction has high confi-
dence (i.e., p ≥ TP), we utilize Classifier to decide whether to
prune or reorder candidates. Otherwise, the reordered report
is generated.

Fig. 8. Example of the ATPG report pruning and reordering process.

To reorder candidates, all fault sites in the top (bottom)
tier are moved toward the top of the report if ptop > pbottom
(pbottom > ptop). For pruning, candidates in the tier predicted
to be fault-free are filtered out from the final report because
such candidates are unlikely to be the ground-truth fault loca-
tion. Note that filtering out candidates may occasionally lead
to a loss of accuracy. However, when Tier-predictor points out
the incorrect tier as being faulty, the accuracy loss may be
recovered by the MIV-pinpointer if the ground-truth fault is
equivalent to the MIV fault localized by the MIV-pinpointer.
With the pruning and reordering process, the ground-truth
defect locations can be placed near the top of the lists, lead-
ing to better FHI than the ATPG diagnosis reports. Pruning
also helps in improving diagnostic resolution by reducing the
number of redundant candidates.

VI. EXPERIMENTAL RESULTS

A. Diagnosis on Benchmark M3D Designs

We first examine the quality of our diagnosis framework
using 750 samples (15% of the generated dataset) for bench-
mark M3D designs with various design configurations. The
quality of ATPG diagnosis reports is shown in Table V. We
compare diagnostic resolution, accuracy, and FHI of diagnosis
reports obtained after the pruning and reordering step with a
baseline fault localization algorithm in [11], which has been
demonstrated to achieve significant improvement in diagnos-
tic resolution for conventional 2-D designs. Note that in the
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TABLE VI
EFFECTIVENESS OF DELAY FAULT-LOCALIZATION IN M3D BENCHMARKS WITHOUT RESPONSE

COMPACTION USING A 2-D BASELINE [11] AND THE PROPOSED FRAMEWORK

experimental results section in [11], only the results from
the first-level classifier in the proposed two-level classification
framework are chosen to prevent a large loss of accuracy. As
diagnosis accuracy is also the top priority during the candidate
pruning and reordering process, we compare the results from
the first-level classifier in the baseline with our framework.

Table VI shows the results for each benchmark without
response compaction, where the values in parenthesis are
changes from the ATPG diagnosis reports listed in Table V.
Note that the GNN models in our experiments are trained with
datasets from Syn-1 and two randomly partitioned netlists.
Netlists with different configurations are evaluated to demon-
strate the transferability of our framework. For AES and
Tate, the improvement in diagnostic resolution and FHI of
the proposed framework with GNN standalone are less obvi-
ous than the improvement obtained from the baseline. This is
because ATPG diagnosis reports tend to provide good reso-
lution with candidates only in the faulty tier. Therefore, the
candidate pruning and reordering process does not consider-
ably benefit from the tier-level localization to improve the
quality of diagnosis reports. In contrast, the baseline approach
analyzes each candidate one at a time to determine whether
such a candidate should be removed from the diagnosis report.

It is expected that the baseline can achieve better improvement
in diagnostic resolution and FHI than the proposed framework
for small benchmarks. However, for netcard and leon3mp,
ATPG reports are likely to contain candidates in both tiers as
the complexity of designs increases. By pruning and reorder-
ing candidates based on the predictions of our GNN models,
the proposed framework can enhance the quality of diagnosis
reports more significantly than the baseline approach, without
any unacceptable loss in accuracy.

An important advantage of the proposed framework is its
compatibility with existing algorithms for conventional 2-D
designs to provide the resolution at the tier level and fur-
ther improve the quality of diagnosis reports. We first utilize
the proposed framework to carry out tier-level localization,
followed by the baseline approach to evaluate the remaining
candidates after the pruning and reordering process. Compared
to the results with standalone GNN and the baseline, the com-
bined approach improves the diagnostic resolution and FHI
without additional loss of accuracy. Such improvements can
achieve more than 55% for the netcard benchmark with the
TPI configuration. As the proposed framework can be carried
out alongside the ATPG diagnosis and the candidate prun-
ing and reordering process can be embedded in the candidate
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TABLE VII
QUALITY OF ATPG DIAGNOSIS REPORTS FOR M3D BENCHMARKS WITH RESPONSE COMPACTION

analysis step, no test time overhead is needed to combine the
proposed framework with the baseline approach.

Note that the proposed candidate pruning and reordering
policy may occasionally remove the ground-truth defect loca-
tion from the diagnosis report. To compensate for the loss
of accuracy, we generate a backup dictionary, which records
the candidates being pruned corresponding to each failure
chip. Diagnosis engineers can therefore search in the backup
dictionary for further analysis whenever the root cause of a
failure is not found based on the pruned report. With this
compensation method, our framework is guaranteed to achieve
the same accuracy as ATPG. Although the backup dictio-
nary requires additional memory, its size depends on the
number of candidates being pruned in each sample, which
can be estimated by the difference in diagnostic resolution
between ATPG diagnosis reports and reports generated by the
proposed framework. As shown in Table VI, the largest dif-
ference among the four benchmarks is Syn-2 for netcard; the
size of the corresponding backup dictionary is only 246 kB.
Therefore, the memory overhead of the proposed method is
within acceptable limits.

In addition to diagnostic resolution and FHI, the resolution
at the tier level during diagnosis is important for M3D designs
to facilitate yield learning. As the baseline approach does not
directly provide such a resolution, tier-level localization can
be achieved by analyzing the remaining candidates after fault
localization. If all candidates are in the faulty tier, the cor-
responding report is successfully localized at the tier level;
otherwise, tier-level localization is not accomplished. For the
proposed framework, tier-level localization is obtained from
the predictions of our Tier-predictor. Tier localization values
in Table VI are the percentages of reports being localized at
the faulty tier using the baseline and the proposed framework,
respectively. Note that we do not consider the reports that have
been localized during the ATPG diagnosis process (i.e., ATPG
diagnosis reports only contain candidates in one tier) in the
calculation. Clearly, the proposed framework can accurately
identify the faulty tier for all benchmark M3D designs with
various design configurations. The baseline approach is not
effective for tier-level localization because the tier structure
and fabrication-related defects in M3D do not exist in 2-D
designs. Therefore, the tier-level location of each candidate is
overlooked during fault localization. The effectiveness of the

baseline approach on tier-level localization decreases when the
size of the CUD becomes large as the number of candidates
increases in diagnosis reports. Although the diagnostic res-
olution and FHI are significantly improved, candidates after
fault localization are likely to be located in both tiers. The
evaluation of tier localization demonstrates that the baseline
approach is not sufficient to provide a high level of resolution
at the tier level for M3D designs. With the proposed frame-
work, the faulty tier can be identified early in the diagnosis
process to provide quick feedback to the foundry and facilitate
yield learning.

The quality of ATPG diagnosis reports and results for
benchmark designs with response compaction are shown in
Tables VII and VIII, respectively. Note that both the diagnostic
resolution and accuracy of designs are worse than the results
without compaction. This is expected because the scan cells
that capture erroneous responses cannot be pinpointed without
bypass signals. The search space is therefore increased, leading
to a reduction in diagnostic resolution and accuracy. However,
the proposed framework is shown to be effective with com-
pressed patterns. Reports generated by this framework achieve
up to 30.5% improvement in diagnostic resolution and 42.4%
improvement in FHI with a very low accuracy loss. For tier-
level localization, the proposed framework localizes faults at
the tier level more effectively than the baseline approach.
Furthermore, our approach does not require additional hard-
ware or test data and is compatible with any combinational
(e.g., XOR-based) response compactor. Evaluation of netlists
with different configurations clearly demonstrates the trans-
ferability of our framework. This advantage is significant for
the emerging M3D technology as there is no standardized
design flow. Therefore, M3D netlists with various synthesis
and partitioning results can be generated. GNN models in our
framework can be transferable to perform diagnosis directly
on such netlists without retraining.

B. Runtime Analysis

We next conduct the runtime analysis of the proposed
framework, including the training phase and the framework
deployment. The training phase contains preprocessing steps
for feature construction and the training processes of the
proposed GNN models. The runtime for the deployment of
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TABLE VIII
EFFECTIVENESS OF DELAY FAULT-LOCALIZATION IN M3D BENCHMARKS WITH RESPONSE

COMPACTION USING A 2-D BASELINE [11] AND THE PROPOSED FRAMEWORK

Fig. 9. Runtime for the deployment of the proposed framework.

our framework is shown in Fig. 9. Given a failure log file,
ATPG diagnosis and GNN model inferencing are carried out
simultaneously, followed by the candidate pruning and reorder-
ing process to update the ATPG diagnosis report. Table IX
shows the runtime for training and deploying the proposed
framework. Note that the values for the deployment are the
total runtime needed to complete diagnosing test sets (i.e.,
750 samples) for benchmarks with Syn-2 design configuration.
In the training phase, the runtime for the feature construction
is proportional to the size and the number of test patterns
of the CUD. However, feature construction is required to be
conducted only once and can be reused for every failure log
file during inferencing; therefore, the cost can be amortized.
For the framework deployment, GNN model inferencing is

TABLE IX
RUNTIME ANALYSIS OF THE PROPOSED FRAMEWORK

FOR BENCHMARK M3D DESIGNS

much faster than the ATPG diagnosis process. The runtime
overhead of adding our framework on commercial tools is the
subsequent candidate pruning and reordering process, which
is relatively small compared to TATPG.

To quantify the effectiveness of the proposed framework
on the subsequent PFA, we assume that the PFA requires x
seconds to analyze one candidate in a diagnosis report. Let
Ttotal be the total runtime to identify the ground-truth defect
location. For the ATPG flow, Ttotal(ATPG) can be calculated
as TATPG + FHIATPG × x, where FHIATPG is the FHI in the
ATPG diagnosis report. While for the proposed framework,
Ttotal(proposed framework) equals to max(TATPG, TGNN) +
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TABLE X
EFFECTIVENESS OF MULTIPLE DELAY FAULTS-LOCALIZATION IN M3D BENCHMARKS USING ATPG DIAGNOSIS AND THE PROPOSED FRAMEWORK

Fig. 10. Difference in runtime for PFA between the ATPG flow and the
proposed framework.

Tupdate + FHIupdate × x, where FHIupdate is the updated FHI
in the final report after candidate pruning and reordering. The
difference Tdiff = Ttotal(ATPG) − Ttotal(proposed framework)
over the test set for each benchmark with Syn-2 configuration
is shown in Fig. 10. Note that positive Tdiff demonstrates that
leveraging the proposed framework can save time for identi-
fying the ground-truth defects compared to the ATPG tool. As
the runtime for each candidate in the PFA process increases,
the amount of time saved from the proposed framework
becomes more significant. Our framework is most effective
in reducing runtime for the netcard benchmark because the
improvement in FHI after candidate pruning and reordering
can achieve up to 42.7%. For other benchmarks, Tdiff is at
least 103 seconds when x is larger than 10 s. The reduction
in runtime for PFA enables us to efficiently identify the root
causes of defective chips. This is important for the emerg-
ing M3D integration technology to increase the manufacturing
processes and shorten the time-to-market.

VII. DISCUSSION

A. Diagnosis on Designs With Multiple Faults

In M3D, different tiers suffer from different fabrication-
related systematic defects due to immature manufacturing
processes (see Section I). Such defects tend to cause multiple
delay faults throughout the faulty tier, which significantly
impacts the timing of the circuit and increases the complexity
of logic diagnosis. Tier-level localization becomes important
to identify the faulty tier early in the diagnosis process to
accelerate yield learning. Therefore, the proposed framework
is extended to perform diagnosis on defective designs that have
multiple faults in the faulty tier.

To simulate the designs with tier-specific systematic defects,
we randomly inject 2–5 TDFs in one tier and carry out
fault simulation to create the failure log file. We generate
5000 failure log files for each benchmark with Syn-1 con-
figuration for the purpose of training. The testing datasets
are composed of 750 samples for benchmarks with Syn-2

configuration to demonstrate the effectiveness and transfer-
ability of the proposed framework. Results of multiple delay
faults localization are shown in Table X. Note that a diagnosis
report is counted as accurate if all injected faults in the CUD
are included in the candidate list. ATPG reports for the net-
card benchmark suffer from low accuracy because the number
of test patterns for netcard is much more than other bench-
marks. Injecting multiple faults in the design leads to failure
log files with a large number of failing patterns and failure
output responses, increasing the searching space and making
it difficult to accurately narrow down candidate fault locations.
Although diagnosis accuracy is limited by ATPG reports, the
proposed framework provides the resolution at the tier level
with 88.0% accuracy. This advantage compensates for the low
diagnosis accuracy as the foundry can review its manufactur-
ing processes directly based on predictions of the proposed
Tier-predictor even if the ground-truth defect locations can-
not be identified from the diagnosis reports. Moreover, the
quality of diagnosis reports for all benchmarks is enhanced
by the improvement in FHI. Such an improvement prevents
the subsequent PFA from wasting time on analyzing fault-free
candidates. The analysis of multiple faults localization demon-
strates that the proposed framework is applicable to perform
diagnosis on designs with tier-specific systematic defects. As
such defects are needed to be eliminated before M3D can
become ready for commercial exploitation, feedback from the
proposed framework is essential for the foundry to accelerate
yield learning and improve the immature fabrication processes.

B. Diagnosis With Standalone Tier-Predictor and
MIV-Pinpointer

In the proposed framework, Tier-predictor is utilized to
predict the faulty tier and provide guidance on the candidate
pruning and reordering process; MIV-pinpointer aims at iden-
tifying faulty MIVs. To evaluate their impacts on improving
the quality of diagnosis reports, we carry out a detailed anal-
ysis by performing diagnosis with each model standalone.
Note that in order to clearly demonstrate the influence of
MIV-pinpointer, we augment the size of the test set by 10%
with MIV fault-injected samples only.

Table XI shows the effectiveness of fault localization
with individual models and with both models on the AES
benchmark with Syn-1 configuration. Tier-predictor achieves
better improvement in diagnostic resolution and FHI than
MIV-pinpointer as the candidate pruning and reordering pro-
cess improves the quality of reports mainly based on tier-level
predictions. However, diagnosis with Tier-predictor standalone
suffers from more than 1% loss of diagnosis accuracy. This
is because MIVs do not belong to any tiers in the M3D
designs. If an MIV fault is presented, the candidate prun-
ing process may occasionally remove such a faulty MIV from
the diagnosis report when the prediction from MIV-pinpointer
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TABLE XI
EFFECTIVENESS OF DELAY FAULT-LOCALIZATION WITH

INDIVIDUAL MODELS OF THE PROPOSED FRAMEWORK

is not considered. In contrast, the changes in the quality
of diagnosis reports from MIV-pinpointer are not obvious
because MIV-pinpointer standalone only moves the predicted
faulty MIVs to the top of reports without pruning or reorder-
ing the remaining candidates. No improvement is achieved
if such faulty MIVs have already been placed at the top of
candidate lists during ATPG diagnosis. However, predictions
from MIV-pinpointer can compensate for the loss of accu-
racy caused by Tier-predictor as we prioritize MIV faults
when updating the diagnosis reports. If an MIV is predicted
to be faulty, it can no longer be pruned by the subsequent
candidate pruning and reordering process. This effect can be
clearly observed by the results when both Tier-predictor and
MIV-pinpointer are applied. Compared to Tier-predictor stan-
dalone, the loss of accuracy is improved to be below 1% when
MIV-pinpointer helps in reserving susceptible MIV faults in
the reports, which is significant to prevent misleading candi-
dates from the PFA. Therefore, both models are of the same
importance in the proposed framework to achieve tier-level
localization and improve the quality of diagnosis reports.

VIII. CONCLUSION

We have proposed a GNN-based framework to conduct
tier-level fault diagnosis simply based on the CUD netlist
and failure log files from the tester. Two GNN models,
namely, Tier-predictor and MIV-pinpointer, have been trained
to predict which tier and MIVs have defects. We have con-
ducted the transferability analysis between various design
configurations and proposed a data-augmentation method to
improve the transferability of the proposed framework. We
have also provided a GNN-based candidate reordering and
pruning algorithm using our predictions to improve the qual-
ity of ATPG diagnosis reports. We have shown that with a
very low accuracy loss, the diagnostic resolution and the FHI
are significantly improved for the OpenCore and ISPD bench-
marks. We have demonstrated that our framework is effective
for designs with test compression without additional resource
requirements, and it is compatible with commercial tools and
existing algorithms to provide the high level of resolution at
the tier level. We have discussed the transferability of the
proposed framework between benchmark M3D designs and
provided guidance on choosing appropriate models for diag-
nosis. We have also provided a detailed analysis of performing
diagnosis with individual Tier-predictor and MIV-pinpointer
and highlighted their impacts on improving the quality of
diagnosis reports.
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