
Simulating and Estimating the Behavior of a Neuromorphic
Co-Processor

Catherine D. Schuman,
Raphael Pooser, Tiffany Mintz

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

[schumancd,pooserrc,mintztm]
@ornl.gov

Md Musabbir Adnan,
Garrett S. Rose

University of Tennessee
Knoxville, Tennessee 37996
[madnan,garose]@utk.edu

Bon Woong Ku, Sung Kyu Lim
Georgia Institute of Technology

Atlanta, Georgia
[bwku,limsk]@gatech.edu

ABSTRACT
Neuromorphic computing represents one technology likely to be
incorporated into future supercomputers. In this work, we present
initial results on a potential neuromorphic co-processor, including
a preliminary device design that includes memristors, estimates on
energy usage for the co-processor, and performance of an on-line
learning mechanism. We also present a high-level co-processor
simulator used to estimate the performance of the neuromorphic
co-processor on real applications. We discuss future use-cases of a
potential neuromorphic co-processor in the supercomputing envi-
ronment, including as an accelerator for supervised learning and
for unsupervised, on-line learning tasks. Finally, we discuss plans
for future work.

CCS CONCEPTS
• Hardware → Neural systems; Analysis and design of emerging
devices and systems;
ACM Reference format:
Catherine D. Schuman, Raphael Pooser, Tiffany Mintz, Md Musabbir Adnan,
Garrett S. Rose, and Bon Woong Ku, Sung Kyu Lim. 2017. Simulating and
Estimating the Behavior of a Neuromorphic Co-Processor. In Proceedings of
PMES’17: Second International Workshop on Post Moore’s Era Supercomputing,
Denver, CO, USA, November 12–17, 2017 (PMES’17), 7 pages.
https://doi.org/10.1145/3149526.3149529

1 INTRODUCTION
As we move into post-Moore’s law era computing, there are a
variety of potential technologies that may be incorporated into
supercomputers of the future. We have already seen the emergence
of heterogeneity into both supercomputers and clusters through the

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 with the U.S. Department of Energy. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
PMES’17, November 12–17, 2017, Denver, CO, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5126-3/17/11. . . $15.00
https://doi.org/10.1145/3149526.3149529

successful inclusion of graphics processing units (GPUs) into the
computational infrastructure of machines such as Oak Ridge Leader-
ship Computing Facility’s Titan and the inclusion of programmable
architectures such as FPGAs into commercially available clusters
such as Amazon Web Services. One of the technologies that is
likely to be included in the heterogeneous supercomputing nodes
of the future is neuromorphic computing [26]. Neuromorphic com-
puter architecture and operation are inspired by biological brains.
Neuromorphic computers are attractive in a post-Moore’s law era
computing landscape because they offer the potential for lower
power, the incorporation of beyond CMOS technologies, and native
machine learning capabilities, which are becoming significantly
more important in data-heavy supercomputing applications of the
future.

When considering the implications of including a neuromor-
phic computer as a supercomputing co-processor or in a high-
performance compute node, several characteristics must be consid-
ered. One of those components is the design of the neuromorphic
computer system itself, including the selection of circuitry that can
perform appropriate operations on a small power budget. Another
consideration is how the neuromorphic co-processor will be inte-
grated with a traditional CPU, in terms of a communication infras-
tructure. Both of these characteristics are primarily hardware-level
concerns, but they are inextricably linked to software, algorithms,
and applications-level concerns, as we consider the appropriate use
cases of the neuromorphic system. In determining the operation of
the neuromorphic system, on-chip learning capabilities, how they
might be utilized, and how they affect performance are also major
considerations.

In this work, we describe a neuromorphic co-processor model,
including a hardware implementation based on memristors and
an on-chip learning mechanism based on spike-timing dependent
plasticity. We present some preliminary work on this project, in-
cluding results based on low-level and high-level simulations. We
also discuss some potential applications for this system, and we
speculate on the implications of including such systems in future
supercomputers.

2 RELATEDWORK
Memristors have become increasingly popular in the neuromor-
phic computing community for the last decade due to their low
energy operation, potential for high density, and their behavioral
similarities to biological synapses [17, 19, 23]. Implementations
utilizing memristors have been used as both independent synapse
implementations [1, 12] and in memristive crossbars [2, 8]. Metal

https://doi.org/10.1145/3149526.3149529
https://doi.org/10.1145/3149526.3149529

PMES’17, November 12–17, 2017, Denver, CO, USA C. Schuman et al.

oxide memristors have been commonly used [25], though there is
also exploration of other memristor types, including organic and
polymer-based memristors [4, 9]. We estimate the energy calcu-
lations in this work based on hafnium-oxide memristors, but any
memristor model could be substituted in our simulation framework.
Perhaps more importantly, our high-level simulator does not rely on
memristor-based operation, so other low-level circuit types could
be utilized as well.

High-level simulators of neuromorphic systems have also been
developed, such as Xnet [6] and MNSIM [34], both of which are
simulators for memristor-based hardware. Perhaps the most related
high-level simulator to the one developed in this work is the NeMo
simulator [29], which has been specifically used to simulate spiking
neural networks of the structure that are used in IBM’s TrueNorth
neuromorphic system [3]. NeMo also utilizes a parallel discrete
event simulator, in particular Rensselaer’s Optimistic Simulation
System (ROSS) [7]. Our initial high-level simulator implementation
does not utilize optimistic execution as part of the parallel discrete
event simulation, though it can be extended in the future to do so
in order to improve performance as needed.

3 NEUROMORPHIC CO-PROCESSOR
SIMULATION DESCRIPTION

A key component to our co-processor co-design is the develop-
ment of both low-level and high-level simulation models. We have
utilized circuit simulators such as Cadence Spectre to define how
simple circuits behave, but it is not realistic to utilize circuit-level
simulators to estimate the behavior of a device on the scale of a co-
processor, which will contain at least hundreds of circuit elements.
As such, we have developed a high-level simulator, where behaviors
of large systems can be analyzed. The results from the low-level
simulator, including energy estimates for different behaviors, can
be utilized in the high-level simulator to predict the behavior of
a real co-processor. Our high-level simulator is written in C++,
and models leaky integrate-and-fire neurons and synapses with
spike-timing dependent plasticity (STDP). The activity of a network
is simulated using a discrete-event simulation. To allow for large
network sizes to be implemented, we have developed a parallel
version of our simulator. In this parallel discrete event simulation,
a network is divided across multiple compute nodes, and events are
communicated between nodes using the message passing interface
(MPI). We have created our own neuromorphic simulator so that we
may easily include different hardware characteristics, restrictions,
and performance estimates in the future, as we plan to use the same
simulator for other hardware implementations. For example, al-
though we currently utilize a metal oxide memristor-based synapse,
we may explore other synapse and neuron implementations in the
future, such as optical neurons or polymer or organic memristors.

One of the key characteristics of neuromorphic computers is their
potential for on-line, on-chip learning. Though there are neuromor-
phic systems that do not implement on-chip learning, including
TrueNorth [3], we believe that it is highly important that on-chip
learning be included as part of a neuromorphic system. Moreover,
we also believe that it is important to consider training and/or learn-
ing as part of the overall estimates of performance of neuromorphic

systems. In most reported results of neuromorphic computers, per-
formance estimates are given for a pre-trained network or for the
inference step only. Since training and learning can be of consider-
able computational cost, we want to be able to quantify how they
affect performance of a neuromorphic co-processor. As such, we
include the ability to collect performance results during both our
training and learning steps.

4 PRELIMINARY RESULTS
In this section, we present some preliminary results of our investi-
gation of a neuromorphic co-processor. We first present an initial
exploration of chip layout for a neuromorphic coprocessor. Then,
we discuss utilizing a low-level simulation to obtain estimates on
energy required for completing certain operations. We briefly dis-
cuss the implementation of an on-chip learning mechanism based
on spike-timing dependent plasticity (STDP) and discuss the im-
plications of choosing different clock rates for the co-processor
on the STDP process. We then present results on the scalability of
a high-level simulator and give a brief discussion of how we can
integrate results from the low-level and high-level simulators to
estimate performance of the system.

4.1 Low-Level Design Exploration

Figure 1: Neurons and synapses laid out in crossbar fashion.

An overview of the memristive crossbar-based neuromorphic
fabric considered here is illustrated in Figure 1. The key advantage
of using a crossbar implementation is the high density achieved
by implementing synapses as memristors that exist at each cross-
point. The crossbar also acts as an analog matrix-vector multiplier,
a common operation for neuromorphic algorithms, but with dra-
matically reduced hardware relative to CMOS counterparts [16].
This usage of a memristive crossbar also helps reduce the overall
energy-consumption of the neuromorphic co-processor. For the
architecture considered, twin memristors are used as synapses and

Simulating a Neuromorphic Co-Processor PMES’17, November 12–17, 2017, Denver, CO, USA

Figure 2: Full-chip layout of our 10x10 memristive neural
network design.

are driven by complimentary signals from the pre-neuron to real-
ize both positive and negative weights. Spikes driven through the
twin memristor synapses are multiplied by the weights (memristor
conductance) via Ohm’s Law with the weighted inputs summed
along the columns via Kirchoff’s Law. The post-neurons (bottom of
Figure 1) are then responsible for integrating this resulting sum and
comparing against a threshold to determine if a firing condition
has been met.

We have explored an initial chip layout for the neuromorphic
co-processor to specify the hardware design constraints at early
stage. Figure 2 shows the full-chip layout of our 10x10 memristive
neural network. We have utilized NCSU FreePDK45 (45nm Process
Design Kit) [13] and added the design rules for the memristor and
analog components including a Metal-Insulator-Metal capacitor to
guarantee the functionality and manufacturability of the layout.
The memristor-based synapses (< 1µm2) are very small relative
to individual neurons (∼ 100µm2), leading to very high density
connections between pre-neurons and post-neurons. Thanks to the
high fabrication density of memristors, this crossbar architecture
not only reduces the entire footprint of neuromorphic co-processor,
but also provides layout regularity, which aids the scalability of the
overall network.

4.2 Low-Level Energy Estimates
We have executed low-level simulations of neuromorphic circuits to
determine the performance of a neuromorphic co-processor using
Cadence Spectre. These simulations allow us to evaluate simple
circuits and simple operations. One factor we can measure using
this simulation is the energy consumption of a circuit. For example,
there are three major operations that make up the behavior of
our proposed neuromorphic fabric: accumulation, training, and
idle. The accumulation phase is when a spike traveling along the
synapse has reached the post-neuron and its weight is being added
to the post-neuron’s charge. The training phase occurs during the
STDP phase (see Section 4.3 for more detail).

Energy requirements for our implementation for the different
operating phases are presented in Table 1. The values listed here
account for the memristive synapse as well as the synaptic control
circuit of the pre-neuron. While our implementation is capable
of tracking 5 clock cycles before and after a post-neuron fire for
STDP purposes, we could restrict our circuit to track fewer cycles.
Correspondingly, we have shown the energy requirements when

we restrain our circuit to 3 cycle or 1 cycle tracking. As expected,
there is a reduced energy requirement if we track for less number
of cycles. It should also be noted that energy calculations are based
on memristance range of 5kΩ to 50kΩ with a clock frequency of
25MHz. While these values have been assumed conservatively for
the device mentioned in [5], with a higher clock frequency and
higher value of memristance, energy requirements will be even
less.

Table 1: Energy per spike of a neuromorphic system includ-
ing the proposed synapse

Tracking Accumulation Training Idle
(pJ) (pJ) (pJ)

1 cycle 1.25 2.42 0.07
3 cycle 1.32 3.11 0.61
5 cycle 1.48 3.36 0.69

4.3 STDP Results
One of the key components of neuromorphic architectures is their
ability to do on-line, on-chip learning. This is commonly imple-
mented with spike-timing dependent plasticity (STDP). Different
hardware characteristics can result in different behavior of STDP.
In this section, we demonstrate that our proposed circuit can ac-
complish STDP, and we also show the effect of different clock rates
on how STDP performs.

A simulation result from Cadence Spectre on a simple neuron-
synapse-neuron circuit is shown in Figure 3 to demonstrate how
potentiation and depression work. Different levels of potentiation
and depression conditions are generated in the simulation. Assum-
ing the synapse is excitatory, the initial weight of the synapse is
positive. In the beginning, the pre-neuron and post-neuron fires are
farther apart in time. Hence, the potentiation and depression is less,
as it can be seen from Gef f waveform. When the fires are closer,
potentiation and depression is larger. For the pre-neuron fires that
occur immediately before (after) the post-neuron fire, potentiation
(depression) is the strongest. For that case, Gef f rises and falls
very sharply. In Figure 3, the synapse is first depressed and then
potentiated so that depressions always begin from the same initial
positive weight.

Using the conductance values from Spectre simulation, expo-
nential STDP behavior can be seen in Figure 4. The graph shows
the change of conductance as a percentage of maximum conduc-
tance (Gmax) versus timing difference between pre-neuron and
post-neuron fires.Using the same memristor model in MATLAB,
a similar graph can be generated. This MATLAB model closely
approximates the simulation data but slightly overestimates the
conductance change. This is a consequence of the voltage drop
across the transistors in the Cadence circuit level implementation
that is not present in the MATLAB model.

The change in synaptic weight is directly related to the switching
time of memristors. Also, the change in memristance is proportional
to the amount of time for which voltage across the memristor
exceeds the switching threshold. Hence, the clock frequency has
significant impact on STDP behavior, as the pulse width defines

PMES’17, November 12–17, 2017, Denver, CO, USA C. Schuman et al.

Figure 3: Waveforms depicting the weight change of the
synapse in accordance with the STDP rule

Figure 4: Dependence of the STDP behavior of the proposed
synapse on the clock frequency

how long the synapse is depressed or potentiated. In Figures 3 and
4, the conductance change is achieved with a clock frequency of
25 MHz. If we increase the clock frequency to 100 MHz, we get
smaller changes in memristance since the pulse widths are smaller.
The small changes in memristances cause small change in synapse
conductance. Also, as we are tracking the same number of firing
events for a higher clock frequency, we are tracking for less amount
of time as compared to that for a lower frequency.

We utilize a combination of these results from the low-level
simulator and our high-level simulator to study whether we need
smaller changes in memristance to accomplish desired tasks. In
general, higher clock rates will correspond to greater power con-
sumption. Different applications may have different requirements
in terms of power restrictions. Using a combination of our high and
low level simulations, one can study the effect of the changes in
STDP on performance and determine the appropriate clock rate for
their performance needs.

4.4 High-Level Simulator Results
The high-level simulator for our project is written in C++ to allow
for speed of simulation, and we utilize MPI to enable communica-
tion between compute nodes running in parallel. The simulation is
implemented as a discrete event simulation, with the distributed
version employing a simple, conservative synchronized parallel
discrete event simulation algorithm. A high-level simulator is im-
portant for estimating the behavior of a co-processor for relatively
large networks (greater than 100 neurons) in a reasonable amount
of time. For example, our low-level simulations in Sections 4.2 and
4.3 require approximately three hours to simulate 320 cycles on a
network with nine neurons and seven synapses. Using the high-
level simulator, we can simulate the behavior of large networks
(greater than 10,000 neurons and and greater than 100,000 synapses)
in a relatively short amount of time (less than ten minutes for a
10,000 cycle simulation).

For larger network sizes and longer simulation runs, it is bene-
ficial to utilize our distributed neuromorphic network simulation.
Figures 5a and 5b shows the time (in seconds) to simulate a 10,000
neuron, 100,000 synapses network and a 100,000 neuron, 1,000,000
synapses network (respectively) for 10,000 clock cycles on the super-
computer Titan2 at Oak Ridge National Laboratory. As can be seen
in the figure, increasing the number of processes (each of which
is assigned to its own core on Titan) improves performance to a
point. The best results for the smaller network size (results shown
in Figure 5a) is achieved using 256 cores, with a total processing of
over 28 million events per second. The performance decreases for
512 and 1024 cores, indicating that there are communication bounds
for a network of that size and connectivity level. With the larger
network size (results shown in Figure 5b), the best performance is
achieved at 512 cores, indicating that as the network size increases,
it may be beneficial to increase the number of cores.We have not yet
explored different connectivity levels, though we intend to pursue
that in future work.

The events processed here are the accumulation events that
occur at a neuron when one of its incoming synapses is activated
and fire events. We do not include adjustments of synaptic weights
due to STDP as types of events, but it is worth noting that, on
average, synaptic depression occurs on every accumulation event
on a neuron for all incoming synapses on that neuron, and synaptic
potentiation occurs for every fire on a neuron for all incoming
synapses for that neuron. If the event calculation metric includes
those types of events, then the number of events processed per
second for this network aremultiplied by approximately 10 (because
of the 10:1 synapse-to-neuron ratio), to processing 280 million
events per second for the 10,000 neuron, 100,000 synapse network.

Utilizing this simulation in the future, we will be able to map
our more detailed events measurements to the energy estimates
discussed in Section 4.2 to estimate the overall energy or power
for different applications. Additionally, this simulation will also
allow us to explore what effect different hardware decisions has on
performance for real applications. For example, the length of the
learning cycle training (as discussed in Table 1) is on such feature
where we can evaluate how the length of the learning cycle actually
affects learning on a real application, both in terms of the network’s

2Titan: https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/

https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/

Simulating a Neuromorphic Co-Processor PMES’17, November 12–17, 2017, Denver, CO, USA

(a) Scaling results for a 10,000 neuron, 100,000 synapse network for
10,000 clock cycles.

(b) Scaling results for a 100,000 neuron, 10,00,000 synapse network for
10,000 clock cycles.

Figure 5: Dependence of scaling results for our parallel dis-
crete event simulator on network size. The two y-axes show
the time in seconds to complete the simulation (on the left,
in blue) and million of events processed per second (on the
right, in red).

ability to learn and on the resulting energy usage. Similarly, we
can evaluate the different STDP behavior described in Figure 4 in
terms of both effect on learning ability of networks and on speed of
performance of a real chip (for different clock rates), as there may
be applications that require higher clock rates but less fidelity in
the learning itself (or vice versa). On the whole, the combination of
low- and high-level simulators allow us to explore implications of
hardware decisions in a real way, rather than relying on either low-
level estimations alone (which are only feasible for trivial networks)

or on high-level estimations alone (which do not provide the level
of detail required for some performance estimations).

5 FUTURE USE CASES
There are a variety of potential applications of a neuromorphic
co-processor within a real high performance computing (HPC) or
supercomputing environment. Most of these applications have to
do with intelligent data processing. One potential clear application
of spiking neuromorphic co-processors is for deploying spiking
neural networks on supervised data classification tasks. Spiking
neural networks have been trained for a variety of classification
tasks, including image classification [11, 14], speech classification
[28], and numerical data classification [33]. One of the main uses
of supercomputing systems is for modeling and simulation of var-
ious scientific phenomena [27]. These modeling and simulation
tasks typically generate a large amount of data that may need to
be analyzed and/or classified [30]. Pre-trained neuromorphic co-
processors on HPC compute nodes alongside the architectures that
are completing the modeling and simulation tasks and generating
data, could analyze the data on the compute node itself, reduc-
ing data transfer and storage costs, and providing scientists with
real-time results for their modeling and simulation experiments.

Depending on the training method utilized for the supervised
classification task, we may also be able to utilize the neuromor-
phic co-processor as part of the training process (without chang-
ing the underlying architecture). For example, our neuromorphic
co-processor implements spike-timing dependent plasticity as an
on-chip learning mechanism, which can be utilized as a training
mechanism. Training mechanisms that require testing an instance
of a neuromorphic system on a particular task, including evolution-
ary/genetic algorithms [21, 33], can also utilize the co-processor
during the training step. For networks trained utilizing an algo-
rithm such as back-propagation, the “forward-pass” of the algo-
rithm can also be executed on the chip itself. As such neuromorphic
co-processors are also well-suited for completing or aiding in com-
pleting machine learning-style tasks on supercomputers.

An increasingly specific use of spiking neuromorphic systems
is as the reservoir in reservoir computing applications [24], such
as liquid state machines. Liquid state machines have been shown
to be useful in pattern recognition tasks, including speech recogni-
tion [32] and other temporal and spatiotemporal recognition tasks
[15]. Spiking neuromorphic networks, including those that utilize
memristors in their implementation, have been shown to perform
well as reservoirs in liquid state machine applications.

Much of the data generated by scientific simulations falls into
the category of temporal or spatiotemporal. State-of-the-art ma-
chine learning methods such as convolutional neural networks
have been shown to perform well on spatial data, but the results
on temporal data are relatively limited, though there is significant
work in this area including three-dimensional convolutional neural
networks [18] and long-short term memory networks [31]. Because
of their native temporal processing power, spiking neuromorphic
systems can be utilized as part of an overall machine learning co-
processor structure to help deal with temporal data collection and
analysis, perhaps alongside a custom convolutional neural network
processor, like Google’s Tensor Processing Unit [20] or graphics

PMES’17, November 12–17, 2017, Denver, CO, USA C. Schuman et al.

processing units (GPUs) that have been optimized for convolutional
neural networks [22].

A key capability of many spiking neuromorphic systems, includ-
ing the co-processor structure presented here, is the ability to do
on-line, on-chip learning. This is especially useful in a data-rich,
label-poor environment, in which unsupervised machine learning
methods are most useful. Spiking neuromorphic systems with STDP
or STDP-like learning mechanisms have already been shown to
have on-line, unsupervised capabilities in terms of applications
such as data clustering [10]. We expect that the full unsupervised
learning capabilities of spiking systems are still unknown, but that
they will continue to improve as spiking neuromorphic systems
become increasingly available for more general use through the
development of simulators and hardware as well as the associated
software environments for utilizing them.

Similarly, we expect that there are non-neural network applica-
tions that will be able to utilize the architectural and computational
characteristics of spiking neuromorphic systems. One example for
non-neural network applications for neuromorphic systems is to
implement graph algorithms. Since networks (i.e., graphs of nodes
and edges) underly the architectural description of spiking neu-
romorphic systems, there are likely creative ways to map graph
analysis on those systems. Once again, as spiking neuromorphic
systems and their associated software environments (such as the
ones described herein) become increasingly available, we expect
that more andmore users will develop custom applications for those
systems, including both neural network and non-neural network
applications.

6 DISCUSSION AND FUTUREWORK
We believe that 3D IC will be a key technology to support com-
munications between our neuromorphic co-processor and its von
Neumann host. The currently popular through-silicon-via (TSV) or
the newly emerging monolithic inter-tier via (MIV) technologies
offer massive connections between the tiers that can be exploited
for ultra-high bandwidth and low energy communication. We are
currently working to build models and circuit elements to support
inter-tier communication in a 3D IC, where a neuromorphic learn-
ing chip is stacked with a von Neumann multi-core chip. These
models and designs along with their simulation results will be
used in our high-level neural network simulator to obtain accu-
rate energy and bandwidth benefits in large-scale neural networks
described in Section 5.

For our high-level simulator, we plan to explore optimistic event
execution models as part of our simulation framework to improve
the overall performance of the simulator. We also intend to continue
to improve portability for the system, so that new low-level energy
estimates can be easily evaluated in the structure. As part of that
evaluation, we will explore the incorporation of other memristor
types, such as spin-based memristors or organic memristors. We
also tend to investigate at least one implementation that does not
utilize memristors in our evaluation framework in order to compare
performance.

In Section 5, we described a variety of future use cases of a neu-
romorphic co-processor. We are in the process of implementing a
reservoir computing application for our neuromorphic co-processor,

andwe intend to explore both supervised and unsupervised learning
approaches within our low- and high-level simulation frameworks,
specifically as applied to time-series or other temporal data. We
plan to coordinate with computational scientists who utilize mod-
eling and simulation code bases on existing supercomputers such
as Titan and explore how neuromorphic systems may be utilized
in analyzing data generated by those systems.

7 CONCLUSION
In this work, we presented a potential neuromorphic co-processor
design and discuss some results associated with high- and low-
level simulations of that system. We speculate on potential future
use-cases for such a co-processor. It is clear that future computers
will have increasingly heterogeneous architectures. Based on the
results presented herein and our continued work, we believe that
neuromorphic systems are not only viable as co-processors, but
they exhibit a variety of characteristics that make them suitable
for solving real tasks that exist in today’s systems and will exist in
future computing systems as well.

ACKNOWLEDGEMENTS
Research sponsored in part by the Laboratory Directed Research
and Development Program of Oak Ridge National Laboratory, man-
aged by UT-Battelle, LLC, for the U. S. Department of Energy.

This research used resources of the Oak Ridge Leadership Com-
puting Facility, which is a DOE Office of Science User Facility sup-
ported under Contract DE-AC05-00OR22725.

REFERENCES
[1] Shyam Prasad Adhikari, Hyongsuk Kim, Ram Kaji Budhathoki, Changju Yang,

and Leon O Chua. 2015. A circuit-based learning architecture for multilayer
neural networks with memristor bridge synapses. IEEE Transactions on Circuits
and Systems I: Regular Papers 62, 1 (2015), 215–223.

[2] A Afifi, A Ayatollahi, and F Raissi. 2009. Implementation of biologically plausible
spiking neural network models on the memristor crossbar-based CMOS/nano
circuits. In Circuit Theory and Design, 2009. ECCTD 2009. European Conference on.
IEEE, 563–566.

[3] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John
Arthur, Paul Merolla, Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam,
et al. 2015. Truenorth: Design and tool flow of a 65 mw 1 million neuron pro-
grammable neurosynaptic chip. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 34, 10 (2015), 1537–1557.

[4] Fabien Alibart, Stéphane Pleutin, Olivier Bichler, Christian Gamrat, Teresa
Serrano-Gotarredona, Bernabe Linares-Barranco, and Dominique Vuillaume.
2012. A memristive nanoparticle/organic hybrid synapstor for neuroinspired
computing. Advanced Functional Materials 22, 3 (2012), 609–616.

[5] Karsten Beckmann, Josh Holt, Harika Manem, Joseph Van Nostrand, and
Nathaniel C Cady. 2016. Nanoscale Hafnium Oxide RRAM Devices Exhibit
Pulse Dependent Behavior and Multi-level Resistance Capability. MRS Advances
(2016), 1–6.

[6] Olivier Bichler, David Roclin, Christian Gamrat, and Damien Querlioz. 2013.
Design exploration methodology for memristor-based spiking neuromorphic
architectures with the Xnet event-driven simulator. In Nanoscale Architectures
(NANOARCH), 2013 IEEE/ACM International Symposium on. IEEE, 7–12.

[7] Christopher D Carothers, Kalyan S Perumalla, and Richard M Fujimoto. 1999.
Efficient optimistic parallel simulations using reverse computation. ACM Trans-
actions on Modeling and Computer Simulation (TOMACS) 9, 3 (1999), 224–253.

[8] Djaafar Chabi, Weisheng Zhao, Damien Querlioz, and Jacques-Olivier Klein. 2011.
Robust neural logic block (NLB) based onmemristor crossbar array. In Proceedings
of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures. IEEE
Computer Society, 137–143.

[9] Yu Chen, Gang Liu, Cheng Wang, Wenbin Zhang, Run-Wei Li, and Luxing Wang.
2014. Polymer memristor for information storage and neuromorphic applications.
Materials Horizons 1, 5 (2014), 489–506.

Simulating a Neuromorphic Co-Processor PMES’17, November 12–17, 2017, Denver, CO, USA

[10] Peter U Diehl and Matthew Cook. 2015. Unsupervised learning of digit recogni-
tion using spike-timing-dependent plasticity. Frontiers in computational neuro-
science 9 (2015).

[11] Peter U Diehl, Daniel Neil, Jonathan Binas, Matthew Cook, Shih-Chii Liu, and
Michael Pfeiffer. 2015. Fast-classifying, high-accuracy spiking deep networks
through weight and threshold balancing. In Neural Networks (IJCNN), 2015 Inter-
national Joint Conference on. IEEE, 1–8.

[12] Chao Du,WenMa, Ting Chang, Patrick Sheridan, andWei D Lu. 2015. Biorealistic
implementation of synaptic functions with oxide memristors through internal
ionic dynamics. Advanced Functional Materials 25, 27 (2015), 4290–4299.

[13] NCSU EDA. 2011. NCSU FreePDK45. (2011). http://www.eda.ncsu.edu/wiki/
FreePDK:Contents

[14] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur, and
Dharmendra S Modha. 2015. Backpropagation for energy-efficient neuromorphic
computing. In Advances in Neural Information Processing Systems. 1117–1125.

[15] Eric Goodman and Dan Ventura. 2006. Spatiotemporal pattern recognition via
liquid state machines. In Neural Networks, 2006. IJCNN’06. International Joint
Conference on. IEEE, 3848–3853.

[16] MiaoHu, Hai Li, Yiran Chen, QingWu, Garrett S. Rose, and RichardW. Linderman.
2014. Memristor Crossbar-Based Neuromorphic Computing System: A Case
Study. IEEE Transactions on Neural Networks and Learning Systems 25, 10 (2014),
1864–1878.

[17] Giacomo Indiveri, Bernabé Linares-Barranco, Robert Legenstein, George Delige-
orgis, and Themistoklis Prodromakis. 2013. Integration of nanoscale memristor
synapses in neuromorphic computing architectures. Nanotechnology 24, 38 (2013),
384010.

[18] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 2013. 3D convolutional neural
networks for human action recognition. IEEE transactions on pattern analysis
and machine intelligence 35, 1 (2013), 221–231.

[19] Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B Bhadviya, Pinaki
Mazumder, and Wei Lu. 2010. Nanoscale memristor device as synapse in neuro-
morphic systems. Nano letters 10, 4 (2010), 1297–1301.

[20] Norm Jouppi. 2016. Google supercharges machine learning tasks with TPU cus-
tom chip. See https://cloudplatform. googleblog. com/2016/05/Google-supercharges-
machine-learning-tasks-with-custom-chip. html (2016).

[21] Nikola Kasabov, Nathan Matthew Scott, Enmei Tu, Stefan Marks, Neelava Sen-
gupta, Elisa Capecci, Muhaini Othman, Maryam Gholami Doborjeh, Norhanifah
Murli, Reggio Hartono, et al. 2016. Evolving spatio-temporal data machines based
on the NeuCube neuromorphic framework: design methodology and selected
applications. Neural Networks 78 (2016), 1–14.

[22] Sik Kim and Yongjin Kwon. 2017. Unified Platform for AI and Big Data Analytics.
Journal of Computer and Communications 5, 08 (2017), 1.

[23] Bernabé Linares-Barranco and Teresa Serrano-Gotarredona. 2009. Memristance
can explain spike-time-dependent-plasticity in neural synapses. (2009).

[24] Mantas Lukoševičius, Herbert Jaeger, and Benjamin Schrauwen. 2012. Reservoir
computing trends. KI-Künstliche Intelligenz (2012), 1–7.

[25] Baker Mohammad, Maguy Abi Jaoude, Vikas Kumar, Dirar Mohammad Al Ho-
mouz, Heba Abu Nahla, Mahmoud Al-Qutayri, and Nicolas Christoforou. 2016.
State of the art of metal oxide memristor devices. Nanotechnology Reviews 5, 3
(2016), 311–329.

[26] Don Monroe. 2014. Neuromorphic computing gets ready for the (really) big time.
Commun. ACM 57, 6 (2014), 13–15.

[27] Tim Palmer. 2015. Build imprecise supercomputers: energy-optimized hybrid
computers with a range of processor accuracies will advance modelling in fields
from climate change to neuroscience. Nature 526, 7571 (2015), 32–34.

[28] S Park, A Sheri, J Kim, J Noh, J Jang, M Jeon, B Lee, BR Lee, BH Lee, and H Hwang.
2013. Neuromorphic speech systems using advanced ReRAM-based synapse. In
Electron Devices Meeting (IEDM), 2013 IEEE International. IEEE, 25–6.

[29] Mark Plagge, Christopher D Carothers, and Elsa Gonsiorowski. 2016. NeMo: A
Massively Parallel Discrete-Event Simulation Model for Neuromorphic Architec-
tures. In Proceedings of the 2016 annual ACM Conference on SIGSIM Principles of
Advanced Discrete Simulation. ACM, 233–244.

[30] Daniel A Reed and Jack Dongarra. 2015. Exascale computing and big data.
Commun. ACM 58, 7 (2015), 56–68.

[31] Tara N Sainath, Oriol Vinyals, Andrew Senior, and Haşim Sak. 2015. Convo-
lutional, long short-term memory, fully connected deep neural networks. In
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Confer-
ence on. IEEE, 4580–4584.

[32] Benjamin Schrauwen,Michiel DâĂŹHaene, David Verstraeten, and Jan VanCamp-
enhout. 2008. Compact hardware liquid state machines on FPGA for real-time
speech recognition. Neural networks 21, 2 (2008), 511–523.

[33] Catherine D Schuman, James S Plank, Adam Disney, and John Reynolds. 2016.
An evolutionary optimization framework for neural networks and neuromorphic
architectures. In Neural Networks (IJCNN), 2016 International Joint Conference on.
IEEE, 145–154.

[34] Lixue Xia, Boxun Li, Tianqi Tang, Peng Gu, Xiling Yin, Wenqin Huangfu, Pai-Yu
Chen, Shimeng Yu, Yu Cao, Yu Wang, et al. 2016. MNSIM: Simulation platform

for memristor-based neuromorphic computing system. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2016. IEEE, 469–474.

http://www.eda.ncsu.edu/wiki/FreePDK:Contents
http://www.eda.ncsu.edu/wiki/FreePDK:Contents

	Abstract
	1 Introduction
	2 Related Work
	3 Neuromorphic Co-Processor Simulation Description
	4 Preliminary Results
	4.1 Low-Level Design Exploration
	4.2 Low-Level Energy Estimates
	4.3 STDP Results
	4.4 High-Level Simulator Results

	5 Future Use Cases
	6 Discussion and Future Work
	7 Conclusion
	References

