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ABSTRACT
Modern high-performance System-on-Chip (SoC) design flows
highly depend on signoff tools to perform timing-constrained power
optimization through Engineering Change Orders (ECOs), which
involve gate-sizing and 𝑉𝑡ℎ-assignment of standard cells. However,
ECOs are highly time-consuming, and the power improvement is
unknown in advance. Ever since the industrial benchmarks released
by the ISPD-2012 gate-sizing contest, active research has been con-
ducted extensively. Nonetheless, previous works were mostly based
on heuristics or analytical methods whose timing models were over-
simplified and lacked formal validations from commercial signoff
tools. In this paper, we propose ECO-GNN, a transferable graph-
learning-based framework, which harnesses graph neural networks
(GNNs) to perform commercial-quality signoff power optimization
through discrete 𝑉𝑡ℎ-assignment. Our framework generates tool-
accurate optimization results instantly on unseen netlists that are
not utilized in the training process. Furthermore, we implement
a GNN-based explanation method to interpret the optimization
results achieved by our framework. Experimental results on 14 in-
dustrial designs, including a RISC-V-based multi-core system and
the renowned ISPD-2012 benchmarks, demonstrate that our frame-
work achieves up to 14X runtime improvement with similar signoff
power optimization quality compared with Synopsys PrimeTime.

1 INTRODUCTION
Engineering Change Orders (ECOs) are regularly used in modern
physical design (PD) flows to optimize power, performance and
area (PPA). Every top semiconductor design company runs multiple
iterations of signoff ECO to achieve the target PPA. However, in
advanced technology nodes, power optimization has become much
more complicated than optimizations on other design metrics such
as wirelength and timing, which is mainly due to the dominance
of leakage power and its complicated relation with the dynamic
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power [14]. Even though design implementation tools have devel-
oped various power optimization techniques throughout the years,
designers still heavily rely on signoff tools to recover power at the
signoff stage using ECO change-lists that involve gate-sizing and
𝑉𝑡ℎ-assignment.

Since gate-sizing requires further legalization and routing to
validate the design after the optimization, 𝑉𝑡ℎ-assignment is the
preferred approach during signoff ECO as it causes minimum dis-
turbance to the overall placed and routed layout. In Synopsys Prime-
Time, 𝑉𝑡ℎ-assignments during signoff ECO not only optimize the
leakage power, but also reduce the dynamic power simultane-
ously [21]. Nonetheless, this optimization conducted by PrimeTime
is time-consuming and the tool itself remains a blackbox for design-
ers. Therefore, in this work, we aim to develop a fast, explainable
signoff power optimization framework that has the ability to per-
form commercial quality signoff power optimization instantly as
well as the facility to explain the achieved optimization results.
𝑉𝑡ℎ-assignment refers to assigning an appropriate 𝑉𝑡ℎ type for

each design instance from a set of standard cell libraries to perform
power optimization without violating timing constraints [10]. Note
that for a given design instance, all the available 𝑉𝑡ℎ types have
the same footprint, and the total number of the available types is
limited to the discrete values of threshold voltages specified by
the technology. This optimization problem is proven to be NP-
hard [11], which implies great opportunities to employ machine
learning techniques for solving this problem.

Modern commercial signoff tools perform signoff power ECO
based on sophisticated in-house timing models. The models pre-
cisely calculate the timing budget for every design instance to help
the signoff engines conduct timing-constrained power optimization.
The optimization results achieved by these tools are considered
as golden QoR in the industry, however, there are two significant
drawbacks in the current industrial signoff flows, namely:

• Extremely long runtime.A signoff power ECO run often takes
several days on an industrial scale design and requires human-
in-the-loop for enhancement, which drastically bottlenecks the
chip development process.
• Obscure improvement. The power improvement is unknown
in advance. Designers tend to run multiple optimization configu-
rations in parallel in order to select the best one in the end, which
consumes significant amount of computing resources.

In this work, we overcome the above issues by presenting ECO-
GNN, which is a graph-learning-based framework that leverages
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graph neural networks (GNNs) to perform𝑉𝑡ℎ-assignments for fast
signoff power optimization. After learning supervisedly on sev-
eral designs with the assignment ground-truths given by Synopsys
PrimeTime, our framework has the ability to perform tool-accurate
signoff power optimization on unseen designs instantly without de-
grading the performance or introducing new design rule violations
(DRVs). To validate our framework, we consider Synopsys PrimeTime
as our baseline, and demonstrate that ECO-GNN achieves compa-
rable optimization results with up to 14X runtime improvement
on the ISPD-2012 benchmarks [12] and other real-world designs,
including a RISC-V based multi-core system.

The goal of this work is to provide designers a fast and accurate
signoff power optimization framework with high fidelity as the
industry-standard commercial tool, Synopsys PrimeTime. The key
contributions of this paper are summarized as follows:

(1) Our first major finding is that ECO-GNN learns the be-
haviour of Synopsys PrimeTime effectively and generates
comparable optimization results at inference time.

(2) Our second major finding is that ECO-GNN generally shows
better power saving but worse timing saving compared with
Synopsys PrimeTime. This indicates that ECO-GNN algo-
rithms are more effective in power optimization.

(3) Unlike commercial tools or previous works (see Section 2)
that require multiple iterations to assign appropriate 𝑉𝑡ℎ
types, our framework ECO-GNN only needs one-pass to
determine the final 𝑉𝑡ℎ type for every design instance.

(4) Rather than treating our learning-driven framework as a
blackbox, we implement a GNN-based explanationmethod [24]
to quantitatively interpret the 𝑉𝑡ℎ-assignment predictions
made by our framework. Given a target node, the method
identifies the influential local sub-graph that has high con-
tribution to its 𝑉𝑡ℎ-assignment.

(5) To the best of our knowledge, this is the first work that for-
mulates signoff power optimization problem into a graph
learning problem, and validates the proposed framework us-
ing an industrial-leading commercial tool under an advanced
technology node.

2 RELATEDWORKS AND MOTIVATIONS
The research in 𝑉𝑡ℎ-assignment for power optimization has been
conducted extensively throughout the years. Previous works can
mainly be categorized into the following streams:

• Non-Analytical Methods: This category includes methods that
employ greedy-related [6, 10, 15], simulated annealing [5, 16], or
dynamic programming [8, 9] algorithms to find feasible solutions.
However, these approaches are highly sensitive to heuristics and
are often design-specific. Therefore, they cannot be generalized
to unseen designs or different technology nodes.
• Analytical Methods: Algorithms in this category often formulate
the discrete sizing problem into the Convex optimization [17, 20]
or Lagrangian optimization problem [8, 13, 18, 19] whose objec-
tive is to minimize the power under certain timing constraints.
These methods are considered to yield better and more reliable
optimization results than the non-analytical methods. However,
solving an optimization problem using numerical approaches is
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Figure 1: High-level view of our ECO-GNN framework, (a)
input netlist, (b) graph representation learning, (c) 𝑉𝑡ℎ pre-
diction. Note that (b) and (c) visualize the original netlist in
a clique-based representation.

extremely time-consuming, which makes these studies impracti-
cal for real-world usage.
• Machine Learning: Recently, machine learning emerges as a
promising approach to solve the 𝑉𝑡ℎ-assignment problem with
huge benefits in the optimization quality and runtime. The au-
thors of [2] leverage linear regression to find feasible solutions
based on path slack estimation. Another work [14] utilizes sup-
port vector machine (SVM) with lazy timing analysis to further
enhance the optimization quality. However, these studies neglect
that the final gate-type of each design instance highly depends
on the characteristics of its neighbors. Therefore, the machine
learning methods leveraged in these studies are not sufficient
to perform the power optimization accurately without spending
significant amount of time in feature engineering.
Apart from the specific drawbacks raised in each category afore-

mentioned, there are several common drawbacks in all of the previ-
ous works. First, the timing models or constraints that they utilize
are oversimplified and lack formal validations from commercial
tools. Therefore, their methods cannot be extended for advanced
technologies or industrial-scale designs. Second, the original ISPD-
2012 benchmarks [12] that most of them leverage for evaluations
are problematic. We analyze the benchmarks using Synopsys Prime-
Time, and discover that the original worst negative slack values
across all the designs range from −1𝑛𝑠 to −8𝑛𝑠 , where all the target
frequencies are less than 1𝐺𝐻𝑧. This simple fact makes previous
works unrealistic, because the power optimization is meaningful
only if the optimized designs are in signoff quality. Finally, none
of the previous works interpret the optimization results achieved
by their methods, where they all consider their optimization en-
gines/models as blackboxes.

In this paper, we solve all the limitations and drawbacks raised
above. We propose a transferable graph-learning-based signoff
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power optimization framework with high fidelity as the commercial
tool Synopsy PrimeTime. Furthermore, we leverage a GNN-based
explanation method [24] to interpret the 𝑉𝑡ℎ-assignments made by
our framework to ensure that our framework is reliable.

3 OVERVIEW OF ECO-GNN FRAMEWORK
Recently, GNNs have revolutionized many research areas, span-
ning from biology, social science, chemistry, and many others [4].
They perform effective graph representation learning, where the
goal is to construct meaningful node embeddings that accurately
characterize the nodes in the graph. In general, GNNs follow a
message passing scheme, where a feature vector of a node can be
considered as a message being iteratively transformed and passed
to its neighboring nodes. At the end of the graph learning process,
the initial node features are transformed into better representations
that can be utilized in downstream tasks such as link prediction,
node classification, and clustering [23].

Figure 1 presents a high-level view of our framework ECO-GNN.
Since VLSI netlists can be naturally represented as hypergraphs, in
this paper, we leverage a specific variant of GNNs named Graph-
SAGE [4] to conduct graph representation learning directly on the
netlist graphs. After getting the learned representations, we utilize
a softmax-based classification model to predict the𝑉𝑡ℎ-assignments
that optimize the signoff power. Note that the entire learning is
an end-to-end process. The classification loss that represents the
cross-entropy between our predictions and the ground-truths from
Synopsys PrimeTime is utilized to update the parameters inside
GNN and the classification model through gradient descent.

The detailed learning process shown in Figure 1 works as follows.
Given an input netlist as shown in Figure 1(a), to determine the𝑉𝑡ℎ-
assignment of the target cell (red-colored), we first leverage a GNN
to sample and aggregate the features from its neighboring cells as
shown in Figure 1(b). Then, we predict its 𝑉𝑡ℎ-assignment based
on the aggregated representation vector as shown in Figure 1(c).

The goal of this work is to construct a “general framework” that
achieves commercial-quality signoff power optimization results
at inference time (the testing time of the model). Note that our
framework does not assume any pre-defined netlist structure, so it
is generalizable to every design. After learning on a few designs,
it has the facility to determine the 𝑉𝑡ℎ-assignments on the unseen
ones that optimize the signoff power. The detailed algorithms of
our framework are described in Section 5.

4 DESIGN OF EXPERIMENTS
In this work, we follow the experimental setting of the ISPD-2012
power optimization contest as many previous works [6, 10, 14–16,
18, 19], where all the cells in a given design are initially in the lowest
𝑉𝑡ℎ type (tightest timing constraint). As mentioned in Section 2, we
re-synthesize the ISPD benchmarks using TSMC 28nm technology
node to ensure all the designs are in signoff performance before
conducting the power optimization through 𝑉𝑡ℎ-assignments.

4.1 Problem Formulation
Given a netlist 𝐺 = (𝑉 , 𝐸), where 𝑉 denotes the instances in the
design, and 𝐸 represents the logical connections. Assume that for
each instance 𝑣 ∈ 𝑉 , there are 𝑛 𝑉𝑡ℎ-assignments available from

Table 1: 20 initial node features used in our GNN. We obtain
them using an initial PPA analysis.

type # dim. description
max output slew 1 max transition of output pin
max input slew 1 max transition of input pin(s)
wst output slack 1 worst slack of output pin
wst input slack 1 worst slack of input pin(s)
output cap limit 4 max driving cap of output pin per𝑉𝑡ℎ
max leakage 4 max leakage per𝑉𝑡ℎ
tot input cap 1 sum of input pin cap
tot fanout cap 1 output net cap + input pin cap of fan-outs
tot fanout slack 1 sum of worst slack of fan-outs
wst fanout slack 1 worst. slack of fan-outs
avg fanin cap 1 average cap of fan-ins
wst fanin slack 1 worst slack of fan-ins
tot sibling cap 1 sum of input pin cap of siblings
tot sibling slack 1 sum of worst slack of siblings

a
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Figure 2: Initial feature construction of cell 𝑑 , where its fan-
ins {𝑎, 𝑏}, siblings {𝑐, 𝑒}, and fan-outs {𝑓 , 𝑔} are taken into
consideration.

the standard cell libraries. Let 𝑥 𝑗𝑣 = 1 if instance 𝑣 is realized with
𝑗-th 𝑉𝑡ℎ choice in the libraries and 𝑥 𝑗𝑣 = 0 otherwise. We formally
define the signoff power optimization problem as follow:

minimize
|𝑉 |∑
𝑖=1

𝑛∑
𝑗=1

𝑃 (𝑣 𝑗
𝑖
)𝑥 𝑗𝑣𝑖 , (1)

where 𝑃 (𝑣 𝑗
𝑖
) represents the signoff power of instance 𝑣𝑖 when 𝑗-th

choice of 𝑉𝑡ℎ-assignment is realized such that the worst negative
slack (WNS) along with the total negative slack (TNS) do not de-
grade after the assignments, and no new DRVs are added.

4.2 Initial Node Features
Before leveraging GNN to conduct graph learning, we define an
initial feature vector for each design instance as shown in Table 1.
The term “initial” indicates that during the graph learning process,
these original features are transformed to other representations
that are more beneficial for the classification model to determine
the appropriate 𝑉𝑡ℎ-assignments that optimzie signoff power.

Features in Table 1 are extracted from technology files, SPEF files,
and timing reports. These 20 features are chosen based on domain
knowledge and parameter sweeping experiments. Most of them are
related to timing, because during the signoff power optimization,
an instance’s 𝑉𝑡ℎ-assignment changes only if the WNS and TNS do
not degrade, and no DRV is introduced. Figure 2 further illustrates
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Figure 3: Illustration of our ECO-GNN learning process. The inputs include a netlist graph represented in an adjacencymatrix
𝐴 and its initial featuresℎ0𝑣 defined in Table 1. First, we perform graph learning to generate the node embeddings that represent
the netlist better than the initial features. Figure 4 provides details of the GNN structure used. Next, with the learned node
embeddings, we conduct softmax-based classification to determine the final𝑉𝑡ℎ-assignment that optimizes the signoff power.

Table 2: Dimension of matrices used in our work (see Figure
3). 𝑣 denotes the number of gates in the circuit.

matrix meaning dimension
𝐴 adjacency matrix of the netlist graph 𝑣 × 𝑣
ℎ0𝑣 initial node features from PPA analysis 𝑣 × 20
ℎ𝑘𝑣 node embedding extracted by GNN 𝑣 × 128
𝑃 𝑉𝑡ℎ-assignments from softmax function 𝑣 × 4

the feature construction process. To determine the initial features of
a target instance 𝑑 , we take the information of its fanins (instances
{𝑎, 𝑏}), siblings (instances {𝑐, 𝑒}), and fanouts (instances {𝑓 , 𝑔})
into account. However, these manually engineered features are not
sufficient to predict the 𝑉𝑡ℎ-assignments that optimize the design
signoff power. To get better node representations, we leverage
GNNs to perform the graph representation learning.

5 ECO-GNN ALGORITHM
5.1 Overview of the Algorithm
Figure 3 shows a detailed illustration of the learning process in ECO-
GNN framework. Given a netlist graph 𝐺 = (𝑉 , 𝐸), our framework
first takes the initial node features defined in Table 1 as inputs.
Then, it leverages GraphSAGE [4], a variant of GNNs to perform
graph learning. The goal of graph learning is to obtain the node
representations that better capture the underlying characteristics
of the given netlist than the intial features. After graph learning,
the learned representation vector of each node 𝑣 ∈ 𝑉 is projected
to a logit vector 𝑃𝑣 through a softmax-based classification model,
which is a neural network. The vector 𝑃𝑣 represents the probability
distribution of node 𝑣 belonging to different 𝑉𝑡ℎ flavors that are
available in the standard cell libraries.

Table 2 shows the size of matrices used in our framework. The
adjacency matrix𝐴 represents the logical connections in the netlist,
and the initial node features {ℎ0𝑣 ∀𝑣 ∈ 𝑉 } are the cell attributes
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Figure 4: Our GNN architecture that maps the initial node
features (20) into learned embedding features (128).

shown in Table 1. Note that the whole learning process, from graph
learning to 𝑉𝑡ℎ classification, is end-to-end differentiable. There-
fore, the parameters in the GNN and classification modules can be
updated simultaneously using gradient descent.

5.2 GNN: Feature Aggregator
The goal of graph learning is to construct accurate node embeddings
through effective feature aggregation. GNN functions as a feature
aggregator that transforms the initial features ℎ0𝑣 for each node
𝑣 ∈ 𝑉 into better representations ℎ𝐾𝑣 by sampling and aggregating
the features within 𝑣 ’s 𝐾-hop neighborhood. This aggregation pro-
cess is performed iteratively, where for each hop 𝑘 ∈ {1, ..., 𝐾}, a
dedicated neural network (NN) W𝑘 is developed to perform the
transformation. These 𝐾 dedicated NNs together form the GNN
module in our framework as shown in Figure 4. Since the number
of neighbors of a node scales exponentially as the hop-count in-
creases, we fix the sampling size 𝑠𝑘 at each hop 𝑘 to improve the
computational efficiency and to prevent overfitting.

Following the graph learning approach presented in [4], in this
work, for each node 𝑣 ∈ 𝑉 , we obtain its representation vector ℎ𝑘𝑣
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at level1 𝑘 by aggregating its representation ℎ𝑘−1𝑣 at the previous
level with the features of its neighbors 𝑁𝑘 (𝑣) sampled at 𝑘-hop as

ℎ𝑘−1
𝑁𝑘 (𝑣) = maxpool

(
{W𝑎𝑔𝑔

𝑘
ℎ𝑘−1𝑢 , ∀𝑢 ∈ 𝑁𝑘 (𝑣)}

)
,

ℎ𝑘𝑣 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(
W𝑝𝑟𝑜 𝑗

𝑘
· concat[ℎ𝑘−1𝑣 , ℎ𝑘−1

𝑁𝑣 (𝑣) ]
)
,

(2)

where 𝑊 𝑎𝑔𝑔

𝑘
and 𝑊 𝑝𝑟𝑜 𝑗

𝑘
denote the aggregation and projection

matrices respectively, which together form the weights of the NN
dedicated in sampling and aggregating features at the 𝑘-hop neigh-
borhood. In the implementation, we set 𝑘 ∈ {1, 2, 3}, and each NN
(𝑊1,𝑊2,𝑊3) in the GNN module has an output dimension of 128.
Note that the numbers 128 and 3 are chosen empirically based on
parameter sweeping experiments.2

In summary, the initial feature vector ℎ0𝑣 for each node 𝑣 ∈ 𝑉
is transformed to ℎ𝐾=3𝑣 in 𝑅128. The GNN model utilized in our
framework can be considered as a “node filter”, because it iterates
through every design instance to find better node representations
that can be utilized in the latter classification task of determining
the 𝑉𝑡ℎ-assignments that optimize the design signoff power.

5.3 Loss Function
After leveraging GNN to perform graph representation learning,
we take the learned node embeddings {ℎ𝐾𝑣 ∈ 𝑅128,∀𝑣 ∈ 𝑉 } as the
inputs of our softmax-based classification model, which is a neural
network, in order to determine the appropriate 𝑉𝑡ℎ-assignment
for each design instance. As shown in Figure 3, the end of the
classification model connects to a softmax function that outputs 𝑃 ,
which is a |𝑉 | × 𝑛 matrix denoting the probability of each node 𝑣
belonging to 𝑛 different 𝑉𝑡ℎ flavors, where ∀𝑣 ∈ 𝑉 , ∑𝑛𝑐=1 𝑃𝑣𝑐 = 1.
Note that 𝑛 is limited to the discrete 𝑉𝑡ℎ values specified by the
technology. The technology we utilize in this work is TSMC 28nm
which has 𝑛 = 4. A novelty of this work is that we map the discrete
𝑉𝑡ℎ-sizing problem into a multi-class classification problem, where
the classification loss function is defined as:

L = −
|𝑉 |∑
𝑖=1

𝑛∑
𝑐=1

𝑌𝑖𝑐𝑙𝑜𝑔(𝑃𝑖𝑐 ), (3)

where 𝑌 ∈ 𝑅 |𝑉 |×𝑛 denotes the 𝑉𝑡ℎ-assignments made by the Syn-
opsys PrimeTime ECO engine, which are taken as ground-truths.
Essentially, our loss function (Equation 3) represents the cross-
entropy between 𝑌 and 𝑃 distributions. By minimizing Equation 3,
we can update the parameters in the entire ECO-GNN framework.

5.4 Training Methodology
Algorithm 1 summarizes the training process. Lines 3–10 illustrate
the sampling and aggregating process in graph learning, where for
each node 𝑣 ∈ 𝑉 , we aggregate its neighboring features at each
hop 𝑘 ∈ 𝐾 through Equation 2. Note that before performing each
aggregation, we normalize the node representations at previous
level as shown in Line 2 and Line 9. This normalization accelerates

1Level is corresponding to the hop-count. When aggregating the features of a node at
level 𝑘 , the information within its 𝑘-hop neighborhood is considered.
2We varied them while monitoring the overall power saving vs. training time tradeoff.
Due to the page limit, we omit the related experimental results. But, a general trend
shows that the higher the values are, the more the power saving is at the cost of
training time. But, the power saving saturates after some point.

Algorithm 1 ECO-GNN training methodology.
We use default values of 𝐾 = 3, 𝛼 = 0.001, 𝑠1 = 25, 𝑠2 = 20, 𝑠3 =

15, 𝛽1 = 0.9, 𝛽2 = 0.999.
Input: (1) 𝐺 (𝑉 , 𝐸): netlist graph, (2) 𝐴 |𝑉 |× |𝑉 | : adjacency matrix,

(3) 𝑌 : tool optimization results, (4) 𝑛: number of available 𝑉𝑡ℎ
flavors, (5) {ℎ0𝑣,∀𝑣 ∈ 𝑉 }: initial features. (6) 𝐾 : depth of aggre-
gation level, (7) {𝑠𝑘 ,∀𝑘 ∈ {1, ..., 𝐾}}: sampling size at k-hop
neighborhood, (8) {W𝑘 ,∀𝑘 ∈ {1, ..., 𝐾}}: parameters of NN at
hop 𝑘 , (9) 𝛼 : learning rate, (10) {𝛽1, 𝛽2}: Adam parameters.

Output: {𝑦}: learned node representations.
1: while {W𝑘 } do not converge do
2: ℎ0𝑣 ←

ℎ0𝑣
∥ℎ0𝑣 ∥2

,∀𝑣 ∈ 𝑉 ′ ⊲ initial features from Table 1
3: for 𝑘 ← 1 to 𝐾 do
4: for 𝑣 ∈ 𝑉 ′ do ⊲ sample and aggregate by Equation 2
5: 𝑁𝑘 (𝑣) ← Sample 𝑠𝑘 neighbors at 𝑘-hop
6: ℎ𝑘

𝑁𝑘 (𝑣) = maxpool
(
{W𝑎𝑔𝑔

𝑘
ℎ𝑘−1𝑢 , ∀𝑢 ∈ 𝑁𝑘 (𝑣)}

)
7: ℎ𝑘𝑣 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(
W𝑝𝑟𝑜 𝑗

𝑘
· concat[ℎ𝑘−1𝑣 , ℎ𝑘

𝑁𝑣 (𝑣) ]
)

8: end for
9: ℎ𝑘𝑣 ←

ℎ𝑘𝑣
∥ℎ𝑘𝑣 ∥2

,∀𝑣 ∈ 𝑉 ′ ⊲ reduce gradient oscillation
10: end for
11: for 𝑣 ∈ 𝑉 ′ do ⊲ minimize Equation 3
12: 𝑝𝑣 ← 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑁𝑁

𝑘
· 𝑓 𝐾𝑣 )

13: 𝑔𝑣 ← ∇𝜃 [
∑𝑛
𝑐=1 𝑌𝑖𝑐𝑙𝑜𝑔(𝑝𝑣𝑐 )]

14: {W𝑘 } ← 𝐴𝑑𝑎𝑚(𝛼, {W𝑘 }, 𝑔𝑣, 𝛽1, 𝛽2)
15: end for
16: end while

the overall training process by reducing the oscillation of gradi-
ent descent. Based on the learned representation vectors, in Lines
11–15 we calculate the cross-entropy loss (Equation 3) from the
softmax-based classification model, and leverage a gradient descent
optimizer named Adam [7] to update the parameters in the frame-
work by minimizing the loss function. The overall training process
takes about 12 hours on the 9 training designs shown in Table 3
with a machine that has a 2.40 GHz CPU and a NVIDIA RTX 2070
graphic cards with 16 GB memory.

5.5 Complexity Analysis
The time complexity of ECO-GNN is linear with respect to the
netlist size. Since the sampling size (𝑠𝑘 ) at each aggregation level is
constrained, GNN modules spend constant time in visiting every
design instance and collecting features from its neighbors. Due to
the large sparsity of the netlist adjacency matrix, we realize the
adjacency matrix 𝐴 shown in Table 2 in the compressed sparse row
(CSR) format [22]. Therefore, the space complexity of ECO-GNN is
pseudo-linear rather than quadratic with respect to the netlist size.

5.6 Handling Unseen Designs
A highlight of this work is that a trained ECO-GNN framework
has the ability to perform commercial-quality signoff power op-
timization on unseen designs at inference time. This capability is
independent of the netlist structure or the netlist size, because to
determine the 𝑉𝑡ℎ-assignments that optimize the signoff power in
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an unseen design, we only need to take the initial features and
the adjacency matrix as inputs, and ECO-GNN will determine the
appropriate 𝑉𝑡ℎ-assignments through constant time inferencing.
Unlike PrimeTime and previous works that require multiple itera-
tions to determine the final 𝑉𝑡ℎ-assignments, our framework is a
one-pass tool that generates tool-accurate results instantly.

5.7 Inner Workings of GNN Predictions
Unlike previous works who consider their optimization engines as
blackboxes, in this paper, we implement a GNN-based explanation
method [24] to interpret the 𝑉𝑡ℎ-assignment predictions made by
our framework ECO-GNN. Given a set of target instances {𝑣} ∈ 𝑉
in a netlist graph 𝐺 = (𝑉 , 𝐸), the goal is to find an influential sub-
graph 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆 ) that has high contribution to the decision
of {𝑣}’s 𝑉𝑡ℎ-assignments. The objective of finding such sub-graph
𝐺𝑆 can be quantitatively formulated as maximizing the mutual
information (MI) between the original graph 𝐺 and the sub-graph
𝐺𝑆 as:

max
𝐺𝑆

𝑀𝐼 (𝐺,𝐺𝑆 ) = 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝐺 = 𝐺𝑆 ), (4)

where 𝐻 (·) denotes the entropy of the given distribution and 𝑌
represents the 𝑉𝑡ℎ prediction distribution of the target instances.
Since 𝐻 (𝑌 ), the entropy of the prediction distribution based on the
original graph, is a constant, maximizing Equation 4 is equivalent
to minimizing the conditional entropy 𝐻 (𝑌 |𝐺 = 𝐺𝑆 ) which can be
formulated as:

𝐻 (𝑌 |𝐺 = 𝐺𝑆 ) = −E𝑌 |𝐺=𝐺𝑆
[𝑙𝑜𝑔 (𝑃𝜃 (𝑌 |𝐺 = 𝐺𝑆 ))] , (5)

where 𝜃 denotes the parameters of the trained ECO-GNN frame-
work. Note that due to the fact that the number of neighbors of the
target nodes increases exponentially as the hop-count increases,
in the implementation, we constrain 𝐺𝑆 to search within the one-
hop neighbors of the target instances {𝑣}. In the context of the
actual netlist, 𝐺𝑆 represents the cells that are either the fanins,
fanouts, or siblings of {𝑣} as well as the message passing flows
(edge connectivities) that demonstrate how important features are
aggregated. We believe this interpretability would give designers
precious insights on what the framework has learned and whether
the 𝑉𝑡ℎ-assignments are reliable or not.

6 EXPERIMENTAL RESULTS
In this section, we demonstrate the achievements of our ECO-GNN
framework, which is implemented in Python3 with Tensorflow 1.0
library. We leverage 7 designs from the ISPD-2012 benchmark [12]
and 7 other industrial designs to conduct the experiments. All
14 designs are synthesized under TSMC 28nm technology node
by Synopsys Design Compiler 2015, and placed and routed using
Cadence Innovus v18.1. To validate the signoff power optimization
results of ECO-GNN, we use Synopsys PrimeTime 2018 to perform
timing and power analysis, and consider the PrimeTime ECO engine
as the baseline across all experiments.

6.1 Benchmarks Details and Timing Corners
As mentioned in Section 2, due to the unrealistic nature of the
ISPD-2012 benchmark that the worst negative slacks in the orig-
inal designs range from −1𝑛𝑠 to −8𝑛𝑠 , we re-implement all seven
ISPD designs using TSMC 28nm technology node and commercial

Table 3: Our benchmarks and their attributes inTSMC28nm.

Design Name # Nets # FFs # Cells Usage
RocketCore 93,812 16,784 90,859

training

AES-128 90,905 10,688 113,168
NOVA 138,171 29,122 136,537
ECG 85,058 14,018 84,127
LDPC 42,018 2,048 39,377
DMA 10,898 2,062 10,215

PCI_BRIDGE 1,381 310 1,221
DES_PERF 48,523 8,802 48,289

B19 34,399 3,420 33,784
TATE 185,379 31,409 184,601

testing
JPEG 231,934 37,642 219,064

VGA_LCD 56,279 17,054 56,194
LEON3MP 341,263 108,724 341,000
NETCARD 317,974 87,317 316,137

PD tools. Aside from the ISPD benchmarks, we introduce 7 other
renowned industrial designs, including JPEG, TATE, LDPC, AES-
128, NOVA, ECG from OpenCores.org, and RocketCore [1] which is
a RISC-V-based multi-core system. To substantiate the generality
of our framework, we utilize 9 designs in the training process, and
perform the validations on the 5 unseen ones. The characteristics
of these 14 designs are shown in Table 3.

Following the experimental settings of the ISPD-2012 contest
where all the designs are synthesized with one timing corner and
one 𝑉𝑡ℎ flavor which has the tightest timing constraint, in this
work, we synthesize all the designs using typical corner and ultra-
low 𝑉𝑡ℎ flavor (tightest timing constraint) in TSMC 28nm for fair
comparisons. In the PrimeTime ECO for signoff power optimization,
each design instance is enabled to be swapped into one of the three
other 𝑉𝑡ℎ flavors, which are low, high, and ultra-high types, or
remain as the ultra-low type (4 choices in total). Therefore, the
solution space of our 𝑉𝑡ℎ-assignment problem is 4 |𝑉 | , which is
almost impossible for designers to perform design exploration in
an exhaustive manner.

6.2 Optimization Results on Unseen Designs
In this experiment, we compare the signoff power optimization
results achieved by our framework ECO-GNN with the commercial
tool Synopsys PrimeTime. To substantiate the generality of ECO-
GNN, we only use 9 designs for training, and perform validations
on the 5 unseen ones as shown in Table 3. Note that to perform
meaningful and reasonable signoff power optimization, each design
is originally implemented in signoff frequency, where the𝑊𝑁𝑆 is
close to 0. The optimization constraints are that the𝑊𝑁𝑆 and𝑇𝑁𝑆
do not degrade and no violation is introduced after the optimization.

Table 4 demonstrates the optimization results. Compared with
PrimeTime, ECO-GNN achieves up to 14X runtime improvement
with similar optimization quality. Unlike previous works that do
not utilize commercial signoff tools for validations, we demonstrate
that our framework performs tool-accurate signoff power optimiza-
tion without degrading the original signoff performance of each
unseen design. Note that each design in Table 4 has different target
frequencies, which proves that the optimization achieved is not
confined by design characteristics. The inference time of ECO-GNN



A Fast Learning-Driven Signoff Power Optimization Framework ICCAD ’20, November 2–5, 2020, Virtual Event, USA

utra-low Vt
low Vt
high Vt
ultra-high Vt
target (low Vt)

Figure 5: Graph learning explanation on b19 benchmark.
The majority of the neighbors are ultra-high 𝑉𝑡ℎ , but cells
with lower 𝑉𝑡ℎ types have higher importance to the target
node. As a result, low 𝑉𝑡ℎ is assigned to the target node.

is measured on a machine with 2.40 GHz CPU and a NVIDIA RTX
2070 graphics card with 16GB memory, where Synopsys PrimeTime
is ran on a machine with 2.50 GHz CPU and 8 cores enabled.

Table 4 also reports the micro F1-score as the evaluation metric
of the classification task, owing to the fact that our framework
ECO-GNN is performing supervised learning that we take the 𝑉𝑡ℎ-
assignments from Synopsys PrimeTime as ground-truths in the train-
ing process. Note that micro F1-score represents the accuracy of
multi-class classification. In the table, we observe that ECO-GNN
performs the the 𝑉𝑡ℎ-assignments in high fidelity as PrimeTime.

Finally, due to the fact that𝑉𝑡ℎ-assignments directly optimize the
design leakage power, Figure 6 further shows the instance-based
leakage power consumption maps of the unseen designs, which
are corresponding to the optimization results presented in Table 4.
In the figure, we compare the leakage power consumption of each
instance in the original designs with the ones after using ECO-
GNN to perform signoff power optimization. Across all designs,
we observe that ECO-GNN effectively reduces the overall leakage
power without introducing extra hotspots.

6.3 Discussion of Optimization Results
PowerPerspective.As shown in Table 4, the optimizations through
𝑉𝑡ℎ-assignments achieved by our framework and PrimeTime im-
prove both leakage power and total signoff power. This is because
we follow the experimental settings from the ISPD-2012 contest [12]
as many previous works [6, 10, 14–16, 18, 19]. The setting suggests
all the cells to be in ultra-low𝑉𝑡ℎ (tightest timing constraint) before
the optimization. Therefore, for a design instance, a swap from
ultra-low 𝑉𝑡ℎ to other 𝑉𝑡ℎ types in TSMC 28nm not only improves
its static power (leakage) but also the dynamic power as the capaci-
tance load is reduced.
Timing Perspective. As shown in the table, we observe that the
𝑊𝑁𝑆 and𝑇𝑁𝑆 get improved as well. This comes from the fact that
although PrimeTime will not upsize the𝑉𝑡ℎ type of the cells that are
on critical (negative slack) paths, the driving load of such cells may

still be reduced if some of its fanout cells that are not on critical
paths are swapped to higher 𝑉𝑡ℎ types, which in the end improves
the overall timing as a by-product.

6.4 GNN Explanation
Instead of viewing our framework ECO-GNN as a blackbox, we
validate our optimization results by explaining the𝑉𝑡ℎ-assignments
made by our framework. Figure 5 demonstrates the explanation
results on the b19 design, where we plot the graph learning compu-
tational graph centered on the target node colored in red along with
its neighbors using force-directed placement drawing [3]. Note that
although we present single-instance explanation in this experiment
for clarity, the proposed explanation method can be leveraged to
perform the explanation of multi-instance as well.

To explain the 𝑉𝑡ℎ-assignment on the target node (red), we iden-
tify the important message passing flows within the local sub-graph.
As mentioned in Section 5.7, we constrain the explanation method
to search within the one-hop neighborhood. Therefore, every neigh-
boring node in Figure 5 is either the fanin, fanout, or sibling of the
target node. However, as shown in the figure, the influential fea-
tures may not be passed directly from the neighbors to the target
even though they are one-hop neighbors. This is because the mes-
sage passing scheme in graph learning is bi-directional. For better
illustration, in Figure 5, we plot two directed edges for each bi-
directional edge in the graph learning computational graph to show
how the influential features are being passed.

Figure 5 shows that the 𝑉𝑡ℎ-assignment made by ECO-GNN on
the target node is reliable, because we observe that the final 𝑉𝑡ℎ
type of the target node is more influenced by its minority neighbors
who are in lower 𝑉𝑡ℎ types rather than the majority neighbors that
are in the ultra-high𝑉𝑡ℎ type. This aligns well with common design
knowledge. Since cells in lower 𝑉𝑡ℎ types have larger capacitance,
tighter constraints will be imposed on their drivers compared with
cells in high-level 𝑉𝑡ℎ types. Therefore, we conclude that the 𝑉𝑡ℎ-
assignment made by ECO-GNN on the target cell is reliable.

6.5 Why Does ECO-GNNWork?
In the experiments, we demonstrate that ECO-GNN achieves com-
mercial quality signoff power optimization results with negligible
runtime compared with Synopsys PrimeTime. The achievements
of our framework can be accounted by two reasons. First, the ini-
tial modeling features (Table 1) accurately capture the underlying
characteristics of each design instance that are related to the sig-
noff power optimization. Specifically, the timing related features
provide solid information for our framework to select appropriate
𝑉𝑡ℎ-assignments that optimize signoff power with the consideration
of timing budget. Second, GNNs are highly powerful for solving
the optimization problems on graphs. The final 𝑉𝑡ℎ-assignment of
an instance highly depends on the information of its neighborhood
structure. Therefore, unlike previous works [2, 14] who use tradi-
tional machine learning techniques to predict the 𝑉𝑡ℎ-assignment
of an instance solely based on its handcrafted features, our frame-
work acts as a graph filter that aggregates an instance’s neighboring
information to more accurately determine its final 𝑉𝑡ℎ-assignment
through the classification model. Finally, with the validations from
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Table 4:𝑉𝑡ℎ re-assignment impact on power, timing, and runtime between ECO-GNN and Synopsys PrimeTime. Selected designs
are unseen during training. Note that both leakage and total power reduce from𝑉𝑡ℎ re-assignment, because our initial designs
before ECOoptimization are using ultra-low𝑉𝑡ℎ only as suggested in [12]. Timing also improves because of the gate capacitance
reduction from higher 𝑉𝑡ℎ .

Design Target Optimization Leakage Power Total Power WNS TNS Runtime F1-Score
Frequency Engine (𝑚𝑊 ) (𝑚𝑊 ) (𝑝𝑠) (𝑝𝑠) (𝑠𝑒𝑐) (𝑚𝑖𝑐𝑟𝑜)

TATE 1.2𝐺𝐻𝑧
Before Opt. 38.3 345.0 -2.4 -3.2 -

0.90PrimeTime 1.84 282.7 -0.5 -0.6 141
ECO-GNN 1.72 280.6 -0.9 -1.8 16 (9X)

JPEG 1.1𝐺𝐻𝑧
Before Opt. 57.5 376.8 -13.1 -228.7 -

0.85PrimeTime 3.4 294.6 -5.7 -69.6 120
ECO-GNN 3.8 296.9 -11.4 -182.4 15 (8X)

VGA_LCD 1.8𝐺𝐻𝑧
Before Opt. 18.0 212.7 -3.4 -14.1 -

0.89PrimeTime 3.7 184.6 -2.6 -4.4 69
ECO-GNN 3.5 183.3 -3.2 -11.8 5 (14X)

LEON3MP 700𝑀𝐻𝑧
Before Opt. 101.4 576.6 -16.3 -246.0 -

0.88PrimeTime 15.1 459.8 -8.4 -76.7 341
ECO-GNN 12.2 454.9 -12.8 -209.3 28 (12X)

NETCARD 1𝐺𝐻𝑧
Before Opt. 78.1 651.5 -2.4 -4.2 -

0.86PrimeTime 9.9 544.3 -0.8 -1.1 302
ECO-GNN 6.9 537.6 -1.2 -2.7 26 (12X)

JPEGTATE VGA_LCD LEON3MP NETCARD
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Figure 6: Leakage power consumption of each design instance before and after using ECO-GNN to perform optimizations. The
designs are unseen during training, and the unit is𝑚𝑊 .

the explanation method, we conclude that this work successfully
presents a solution to the long lasting 𝑉𝑡ℎ-assignment problem.

In spite of the superior performance achieved, we still see some
limitations of the proposed framework. We observe that Synopsys
PrimeTime consistently delivers better timing results, and ECO-
GNN does not consistently improve the signoff power from the
commercial tool. In fact, this is resulted from the modeling er-
rors occurred in the learning process. Although we take the 𝑉𝑡ℎ-
assignments from Synopsys PrimeTime as the ground-truths, there
always exists a gap between the predictions of our framework and
the actual assignments made by the tool. Nonetheless, the goal of
this work is not to replace commercial signoff tools, but to provide
PD engineers a fast, accurate, and reliable estimation of the amount
of power recovery to expect from the signoff tools.

7 CONCLUSION AND FUTUREWORK
Wehave proposed ECO-GNN, a transferable signoff power optimiza-
tion framework that provides commercial-quality signoff power
optimization results instantly on unseen designs. Furthermore, we
have presented a GNN-based explanation method to demonstrate
the reliability of our framework. In the future, we plan to validate
ECO-GNN on other advanced technologies and to extend it to deal
with more PD stages so that fast GNN-based optimization can be
performed throughout the entire PD flow.
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