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ABSTRACT This article presents monolithic-3-D (M3D) SRAM arrays using multiple tiers of carbon
nanotube (CNT) transistors. The compiler automatically generates single-tier 2-D SRAM subarrays and
multitier 3-D SRAM subarrays with different tiers for cells and peripheral logic. Moreover, the compiler can
integrate multiple subarrays of different dimensions to generate larger capacity SRAM arrays. The compiler
is demonstrated in a commercial-grade M3D process design kit (PDK) with two tiers of carbon nanotube
transistors (CNFETs). Simulations show that the M3D CNT SRAM design can improve the properties of
memory compared to the 2-D CNT SRAM design. In a 32-kB memory implementation, the M3D design can
reduce footprint, latency, and energy by 33%, 10%, and 19%, respectively. The compiler is used to show the
feasibility of fine-grain logic and SRAM stacking in M3D technology.

INDEX TERMS CNFET, memory compiler, monolithic-3-D (M3D), electronic design automation (EDA),
SRAM.

I. INTRODUCTION

MONOLITHIC 3-D (M3D) integrated circuits (ICs)
using fine-grain nanoscale interlayer vias (ILVs)

promise significant energy-efficiency improvements over
2-D ICs [1]. However, M3D requires sequential fabrication
of multiple layers of transistors in one substrate, where the
circuit components in different tiers are interconnected via
high-density 3-D vias. The need for high-temperature pro-
cessing of silicon-based MOSFET (1000 ◦C) during sequen-
tial fabrication of one tier can degrade the reliability and
performance of devices in previously fabricated tiers [1]–[5].
The recent works on silicon-basedM3D processes are explor-
ing techniques that address the high-temperature processing
challenges [6], [7].

Carbon nanotube FET-based M3D process has emerged as
an attractive alternative to the silicon-basedM3D process [2],
[4], [8]–[11]. This is because CNFET can be fabricated at
the temperature below 425 ◦C, which eliminates potential
defects of devices and interconnections on previously fab-
ricated tiers [2]. Hence, in a CNT-based M3D IC, on/off
currents of CNFET transistors in different tiers are close

to each other. CNFET also promises high energy efficiency
in designing logic and memory circuits [8], [9]. Shulaker
et al. [12], [14] and Hills et al. [13] have demonstrated appli-
cations of CNFET-based M3D processes. Srimani et al. [2]
have demonstrated commercial-grade M3D process design
kits (PDKs) and the operation of logic and SRAM.

In this article, we present an SRAM compiler for
CNFET-M3D using the PDK developed by Srimani et al. [2].
Although there are few prior works on SRAM cell design in
M3D silicon [15] or CNFET [2], to the best of our knowl-
edge, there is no SRAM compiler for CNFET-based M3D.
Fig. 1 shows a schematic of the M3D stack that includes two
CNFETs layers and six metal layers. Our compiler leverages
similar CNFET performance in different tiers in two ways.
We first exploit this observation to generate a large SRAM
array by combining stackable single-tier subarrays designed
in individual tiers. These stackable single-tier subarrays are
referred to as the STF, i.e., Single tier of FETs contains
bit-cells and peripherals, all in a single tier. The stackable
single-tier design is achieved by separating metal layers used
in each SRAM tier, as shown in Fig. 1. As subarrays in
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FIGURE 1. Schematic layer organization of M3D PDK used in our
design (redrawn after [2]). The two tiers of CNFETs are included
in this process.

different tiers have similar performance, we can efficiently
integrate them to generate a large array.

Second, we present 3-D SRAM subarrays composed of
multiple tiers of the transistor where bit-cells in one tier and
peripheral circuits in other tiers are connected using fine-
grain ILVs. As transistors in different tiers have similar per-
formance, the folding of the peripheral circuits into multiple
tiers allows reducing footprint while maintaining (or improv-
ing) performance. We present two different types of multitier
SRAM subarrays. An MTF-BL subarray contains Multiple
tiers of FETs with bitline (BL) peripherals in a second layer
of transistors. An MTF-ALL subarray contains Multiple
tiers of FETs with all peripherals in wordline (WL) and BL
peripherals in one tier of transistors and bit-cells in a different
tier.

Our memory compiler flow generates the layout files
[library exchange format (LEF) and graphical data system
(GDS)] and the timing file [liberty timing file (LIB)] for
the SRAM memory with different types of subarrays with
varying dimensions. Our compiler supports the scaling capac-
ity of the generated SRAM by integrating multiple subar-
rays. First, the compiler can generate the physical design of
an SRAM block by integrating smaller subarrays using an
H-tree architecture. Second, the further scaling of memory
capacity is achieved by connecting multiple SRAM blocks
using Network-on-Chip (NoC) to generate an SRAM array.
We demonstrate the application of the CNFET M3D SRAM
compiler for generating SRAM subarrays, blocks, and arrays
of varying capacities. We apply the compiler to generate the
physical design of a system architecture with a multicore
processor in one tier integrated with an SRAM array in the
other tier. Each core locally connects to a smaller capacity
SRAMblock, but all SRAMblocks are connected via an NoC
to create a large capacity array but with multiple distributed
access ports.

We observe that M3D subarray designs can improve the
properties of the memory compared to 2-D subarray designs.
The combination of WL and BL, used for the comparison,
is 64WL × 64BL, 64WL × 128BL, 128WL × 64BL,

FIGURE 2. Schematic of SRAM subarray.

and 128WL × 128BL. The footprint, read energy, write
energy, and read latency can be reduced by 27.8%–39.8%,
1.7%–2.8%, 4.7%–8%, and 9.7%–11.3%, respectively.
In addition, the properties of the SRAM block also can be
improved by using MTF designs instead of STF designs.
32 kB of SRAM block can achieve a 24.8% lower footprint
and 9.5% lower energy.

II. M3D SRAM ARCHITECTURES AND COMPILER
A. SUBARRAY ARCHITECTURES
The SRAM subarrays include bit-cells, address decoders and
drivers, sense amplifiers (SAs), and write-driver circuits (see
Fig. 2). We use the single-ended dynamic SA (see Fig. 2).
Before WL is raised high, the signal EN is high and pre-
discharges the node X, thereby precharging OUT to high.
During reading, the signal EN is made ‘‘low,’’ which turns
the pMOS (P1) ON. If the SRAM bit-cell is storing a ‘‘0,’’
the BL discharges, thereby turning on the pMOS P2, which
charges the node X and discharges OUT to low. If the SRAM
cell is storing an ‘‘1,’’ the BL remains high, which ensures
the node X and OUT remains low and high, respectively.
All the logics are custom-designed and automatically placed
by the SKILL code. We assume all BLs are read/written
in parallel, i.e., no BL interleaving or column multiplexing
inside the subarray. All the columns are read out in parallel
and multiplexed outside of the subarray to create the designed
data width (32 bit).

Fig. 3 shows the STF, MTF-BL, and MTF-ALL subarray
microarchitectures. All these microarchitectures follow the
same schematic design (see Fig. 2), but different placements.
For both STF and MTF designs, the bit-cell arrays remain in
a 2-D arrangement. The key difference resides in the place-
ment and arrangement of peripheral circuitry. The physical
implementation of bit-cells and all peripherals limit layer
usage to one of the two tiers (layers) of CNFETs and the two
immediate layers of metal (one above and below the FET,
each) (see Fig. 1) to prevent metal usage overlap between
top tier and bottom tier designs. This allows M3D stacking of
bit-cells and peripherals without the need for reimplementing
physical layouts.

In the STF subarray, peripheral circuits are placed in the
same tier as bit-cells following conventional 2-D subarray
arrangements. Our compiler supports the design of STF
subarrays in both tiers of transistors provided by the PDK.
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FIGURE 3. Subarray peripheral/bit-cell arrangement for (a) 2-D
STF, (b) MTF-BL, and (c) MTF-ALL subarrays.

From post-PEX simulations, Tier-2 STF subarrays demon-
strate only 4% and 6% reductions in read energy and latency,
respectively, compared to Tier-1 STF designs. The detailed
analysis shows that the difference is mainly contributed by
different parasitics involved when changing tiers. However,
for comparison with MTF designs, Tier-1 STF designs are
used as the baseline due to the fact that Tier-1 STF and MTF
designs all use the same tier (Tier-1) for implementing bit-
cells.

Fig. 3(b) shows the MTF-BL subarray architecture. The
WL drivers are placed in Tier-1 along with bit-cells, but
WL address decoders and BL peripherals are in Tier-2.
As BL peripherals and WL drivers reside in different
tiers, additional functionality is added to scale/distribute
the BL driver output stage as subarray dimensions change.
This allows trimming the BL driver for small subarrays
to reduce footprint/performance overhead. Fig. 3(c) shows
MTF-ALL architecture where all peripherals are in Tier-2.
The arrangement is such that, with peripherals and bit-cells
rotated/flipped, it can ensure that output edges of peripherals
are aligned along the center axes of the bottom bit-cell arrays.
This structure prevents BL peripherals from blocking WL
access and vice versa by segmenting all peripheral instanti-
ating to twice. However, the central location of peripherals
also separates the access pins to different edges, which needs
to be considered during automated generation for multiple
interconnected subarrays.

FIGURE 4. Centered placement of peripherals reduces worst
case mismatch.

FIGURE 5. Multiple ILV path for writing with MTF stacked
peripherals.

A unique property of the CNFET M3D process is the
use of back-gated CNFET (see Fig. 1). A key advantage of
back-gate FET geometries is the reduction in gate-to-plug
capacitance [16], which reduces overall WL capacitance and
BL capacitance in M3D SRAM. Our compiler utilizes the
back-gate structure by placing bit-cells in the bottom tier and
BL peripherals in the top tier, where BLs occupy the metal
layers between tiers. This arrangement allows multiple ILVs
to be constructed for resistance reduction and minimizes par-
asitic capacitance applied from surrounding devices/metals to
WLs that occupy the bottommost metal layer.

MTF subarrays created by stacking peripherals directly
on top of the bit-cell array allow several advantages. The
first advantage is reduced mismatch seen by peripherals (see
Fig. 4). MTF designs allow flexible placement of peripher-
als compared to traditional 2-D structures. By centering the
stacked peripherals, up to 2× reduction in worst case mis-
match can be achieved. As worst case conditions have been
cut short, improvement in read/write performance can also
be observed. The second advantage is a benefit enabled by
the ability to manufacture dense ILVs in M3D technologies.
Instead of utilizing ILVs for digital signals, MTF subarray
structures use multi-ILV paths to create low-resistance con-
nections between WLs/BLs and their corresponding drivers
(see Fig. 5). Reduced resistance not only allows faster BL
andWL switching but also reduces I-R drop, which can affect
write stability for far-end bit-cells.

B. SRAM BLOCK AND ARRAY ARCHITECTURE
We compile a large capacity SRAM array by integrating
multiple smaller capacity subarrays. First, we use an H-tree
architecture to integrate the smaller subarrays to compile
an SRAM block (see Fig. 6). Next, we combine multiple
memory blocks using an NoC to design an SRAM array (see
Fig. 7).
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FIGURE 6. SRAM block design: (a) high-level placement and
(b) H-tree architecture.

FIGURE 7. Multiport memory network architecture.

1) ARCHITECTURE OF THE SRAM BLOCK
An H-tree is a hierarchical design where each node of the tree
accumulates data from lower level nodes.We refer to the logic
necessary to combine the subarrays within the H-tree as the
top module. The compiler can integrate any size and type of
subarrays as the leaf nodes of an H-tree. We place the H-tree
router in the empty space among the submodules. During
reading, the H-tree router multiplexes multiple incoming data
ports from a lower level in the hierarchy to a single output port
to the higher level in the hierarchy. During writing, the H-tree
router demultiplexes the incoming data port from the higher
level in the hierarchy to one of the output ports to the lower
level in the hierarchy.

2) ARCHITECTURE OF THE SRAM ARRAY
An SRAM array is implemented by connecting multiple
SRAM blocks using a memory NoC (see Fig. 7). The cur-
rent compiler generates a mesh NoC where each SRAM
block is connected to a router. We use the open-source NoC
router, which has a virtual channel (VC) for the deadlock-
free algorithm [17]. The router controls the read/write access
to individual SRAM blocks and manages the data movement
within the memory NoC.

3) DATAFLOW OF SRAM ACCESS
Our design creates a distributed multiport memory where
each router acts as an I/O port. Individual logic blocks can
be connected to one router and access the entire memory.
When there is a memory access request from the logic blocks,
the memory network automatically calculates the index of the
target SRAM block from the input address. Depending on
the physical distance between the target SRAM block and the

requesting logic block, the access request can traverse zero,
one, or multiple hops in the network.

C. EVALUATION AND DESIGN SPACE EXPLORATION
The latency, area, and energy of the subarrays are evaluated
using SPICE simulations of the extracted netlists. The SRAM
block, including the H-tree network and the routers of the
memory NoC in the entire array, is synthesized to meet the
target memory frequency while ensuring single cycle com-
munication between successive levels in H-tree and nearest
routers in the NoC.

To evaluate the energy consumption of the array, we syn-
thesize and perform the PNR of each level of the hierarchy
independently. To calculate the dynamic energy of an SRAM
block, we recognize that only a single subarray and only
one node in each level of the H-tree are active every cycle.
The static energy for the entire SRAM block is computed.
The energy for accessing the entire array includes the energy
of one SRAM block and the number of active routers (i.e.,
hops in NoC). As the number of hops for access can vary
and is only available from a detailed architectural simulation,
this article considers all the routers are active (the worst case
scenario).

The compiler allows exploring various dimensions of sub-
arrays, the capacity of SRAM blocks (i.e., number of levels
in the H-tree hierarchy), and the number of SRAM blocks
(i.e., number of nodes in the mesh NoC) for a given memory
capacity to meet a design goal, such as the minimum footprint
or minimum energy. The subarray options include the type of
the subarray (STF, MTF-BL, and MTF-ALL) and different
dimensions of a given subarray type, all of which determine
the access latency/energy of individual subarrays. Generat-
ing a memory array with smaller capacity SRAM blocks
will lead to more hops while accessing a distant address.
However, as a smaller capacity of SRAM block have lower
read/write latency/energy, the cost of local accesses will be
reduced.

III. SIMULATION RESULTS
A. RUN TIME OF COMPILER
The run time of the compiler is measured on a desktop with
an i7-9700 core and 16-GB memory. The subarray layout
generation takes less than 1 min. The analysis takes 30 and
120 min for a 64WL × 64BL and a 128WL × 128BL sub-
array, respectively. The run time to compile an SRAM block
depends on the number of levels in the H-tree, where each
level requires 20–30 min. The generation of a 2-MB SRAM
array with 4 × 4 SRAM blocks (128 kB) and mesh NoC
requires 120 min.

B. SUBARRAY COMPILATION RESULTS
Fig. 8 visualizes the layout of different subarray types.

1) FOOTPRINT ANALYSIS
Fig. 9(a) shows the 2-D footprint area for different subar-
ray dimensions normalized to 64WL × 64BL STF subarray
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FIGURE 8. Visualization of layouts of different subarray
(64WL × 64BL) structures.

FIGURE 9. Subarray area analysis: (a) footprint and (b) bit-cell
density.

footprint. MTF designs show a lower footprint than the
STF design. However, the benefit reduces for larger subar-
rays where peripheral circuits have relatively lower contribu-
tions. MTF-ALL structures suffer from peripheral overhead
at small subarray dimensions. This is because peripherals
placed in Tier-2 extend beyond the bit-cell array boundaries in
Tier-1. This overhead is addressed by scaled drivers in MTF-
BL, which provides the lowest footprint for 64WL × 64BL
subarray.

2) CELL-DENSITY ANALYSIS
Fig. 9(b) shows the bit-cell density for different subarray
architectures. In traditional 2-D structures, the reduced cell
density limits the usage of small subarrays. The cell den-
sity can be increased by 1.32× by changing STF subarray
dimensions from 64WL × 64BL to 128WL × 128BL. MTF
subarrays with 64WL × 64BL can achieve superior bit-cell
density than 128WL × 128BL STF.

3) READ LATENCY AND ENERGY ANALYSIS
Fig. 10 compares the read performance and read/write
energy per bit of different types of subarrays. The data are
normalized to the energy and latency of STF subarrays at the
same dimensions. We observe that the MTF-ALL designs
show lower read latency and read energy compared to the STF

FIGURE 10. Normalized subarray’s comparison for different
subarrays on (a) read energy per bit, (b) read latency, and
(c) write energy per bit.

subarrays for all subarray dimensions. MTF-BL structures
show lower read latency for small subarrays but higher read
latency for large subarrays due to the additional parasitics
introduced when the driver output stage is distributed across
longer BLs for large subarrays.

4) WRITE ENERGY ANALYSIS
As the write energy is dominated by the parasitic resistance
and capacitance along the BL, we observe a reduction in write
energy for both MTF designs at smaller subarray dimensions.
However, similar to read access metrics, a marginal increase
in write energy forMTF-BL due to the higher parasitics intro-
duced to/by distributed drivers is also observed for larger sub-
array dimensions. MTF-ALL subarrays, on the other hand,
demonstrate a reduction in write energy for all subarray
dimensions.

C. SRAM BLOCK COMPILATION RESULTS
Fig. 11 shows the top view and the side view of an SRAM
block. The STF-Stack design represents the stacking of
Tier-1 and Tier-2 STF arrays to create the entire capacity.
In this example, 32 kB of SRAM block is designed with
128WL × 128BL subarrays. Sixteen subarrays are used in
MTF designs, while STF designs in each tier use eight subar-
rays. A 32-bit bus width is assumed for simulation. The fre-
quency target for the PNR follows the subarrays’ maximum
frequency (see Fig. 10).

1) FOOTPRINT ANALYSIS
Fig. 12(a) shows the footprint comparison results (normalized
to footprint generated by 64WL × 64BL STF subarray).
As expected, the subarray with a larger dimension reduces
the total footprint. The STF-Stack shows a lower footprint as
the STF subarrays are stacked using both Tier-1 and Tier-2.
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FIGURE 11. Layout of compiled arrays
(32 kB with 128WL × 128BL subarrays).

FIGURE 12. SRAM block (32 kB) analysis. (a) Normalized
footprint. (b) Subarray’s energy per total energy. (c) Normalized
total energy.

The MTF-ALL shows a smaller footprint than the MTF-BL
as all peripherals are in 3-D.

2) ENERGY ANALYSIS
The minimum energy design of an SRAM block depends
on the tradeoff between subarray and top module energy.
A larger dimension increases subarray energy but reduces the
top module’s energy as fewer subarrays are used. Also, using
large subarrays reduces footprint and parasitic capacitance
in the top module. Hence, we observe that larger subarrays
increase the ratio of the subarray’s energy to the SRAM
block’s energy, as shown in Fig. 12(b). As the majority of
the energy consumption is from the subarrays, using larger
subarray dimensions increases the energy of an SRAM block
[see Fig. 12(c)].

3) SCALABILITY OF THE COMPILER
The developed compiler is used to generate SRAM blocks
of varying capacities (see Fig. 13). All the designs use
the 128WL × 128BL subarray to implement the SRAM
block. As only one subarray consumes read/write energy
irrespective of the total capacity, normalized read energy only
increases marginally for larger capacity, mainly due to the

FIGURE 13. Scalability of SRAM block capacity: (a) read energy
and (b) footprint.

FIGURE 14. Memory compiler generates the best design for
different objectives. All the data are normalized by STF-Stack
64WL × 64BL subarray-based design.

increased complexity of the top module [see Fig. 13(a)].
On the other hand, the footprint advantage of STF-Stack over
MTF designs increases with the larger capacity of the SRAM
block [see Fig. 13(b)].

4) BLOCK OPTIMIZATION
Fig. 14 shows the memory compiler output for 32-kB SRAM
block but varying design targets. We explored the three
types of subarrays (STF-Stack, MTF-BL, and MTF-ALL)
and four dimensions (64WL × 64BL, 64WL × 128BL,
128WL × 64BL, and 128WL × 128BL) while generating
final designs. We observe that designs with the largest possi-
ble STF-Stack result in the minimum footprint. On the other
hand, the MTF-ALL subarray with the smallest dimension
shows the minimum latency. Among the 12 cases that we
compared, the 32-kB SRAM block designed with 64WL ×

64BL MTF-BL subarray shows the minimum energy. How-
ever, when we generate the 128-kB SRAM block, MTF-ALL
with 128WL × 64BL subarray-based design shows mini-
mum energy.

D. MULTIPORT SRAM ARRAY ANALYSIS
Fig. 15 shows the layout of a 2-MB SRAM array designed
with 4 × 4 SRAM blocks and routers. Each 128-kB SRAM
block is designed with STF-64WL × 64BL subarrays.
Fig. 16 shows the footprint and power of the design consid-
ering various SRAM block and subarray capacities. All the
results are normalized to the SRAMarray generated by 16-kB
SRAM block and 64WL × 64BL subarray. As expected,
using a higher capacity SRAM block shows a smaller
footprint and lower worst case power (assuming all routers
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FIGURE 15. 2-MB memory network consisting of 4 × 4 128-kB
SRAM blocks.

FIGURE 16. Analyze (a) footprint and (b) power ratio about 2-MB
memory network, which consists of different SRAM blocks and
subarray capacities.

are active) because the number of SRAM blocks and memory
routers is decreased. Although the power of individual SRAM
blocks is higher with a larger capacity, the power reduction
due to fewer routers dominates. Note that, if only a few
routers are active (i.e., local memory access) and/or router
power is more optimized, the smaller capacity blocks will
be more power-efficient. Among different subarray choices,
as expected from Fig. 12, the design with 128WL × 128BL
subarray shows a lower footprint but higher power than the
design with 64WL × 64BL subarray.

E. LOGIC AND MEMORY STACKING
We use the memory compiler to implement the physical
design of a 3-D multicore design (see Fig. 17). We use
the OpenPiton as our multicore architecture [18] connected
to a shared on-chip cache organized as multiple networked
SRAM blocks. Fig. 17 shows the layout of a design with
4 × 4 OpenPiton cores connected to 2 MB of shared cache
organized as 4 × 4 128 kB SRAMblocks (same as in Fig. 15).

The multiple cores in M3D tier-2 are connected via a core
NoC, and each core vertically connects to a memory router in
tier-1. The core-to-core communication occurs via the NoC
in the core tier, while the NoC in the memory tier supports
the core-to-memory communication. The distributedmemory
access enables fast and low-latency access between a core
and its local memory due to direct vertical access (reduced
wire-length) using ILVs. The multiple access ports also avoid
the memory congestion associated with using a single port.
On the other hand, the memory network enables any core to
access any memory location enabling a large shared cache.
The absence of the memory network will limit the available
memory capacity of each core and lead to data duplication
and cache coherence challenges.

FIGURE 17. 3-D multicore processor and multiport memory
network stacked architecture.

FIGURE 18. Analyze (a) local memory access latency and
(b) worst case hop count about 2-MB memory network, which
consists of different SRAM block capacities.

We study the impact of SRAM block capacity on the
memory access latency (see Fig. 18). The local read or write
access from a core to its local SRAM block is performed
directly without using a memory router. Hence, the latency
of the ‘‘local’’ memory access depends on the access latency
of the SRAM block, i.e., the number of levels in the H-tree
hierarchy. Increasing capacity of SRAM block increases the
local access latency [see Fig. 18(a)]. Due to the H-tree orga-
nization, the latency of the local access is constant for any
address. The access to a distant memory block, referred to
as the ‘‘global memory access,’’ is performed by using the
memory network. Hence, the global access latency is variable
depending on the target address. The worst case latency of
the global access depends on the maximum number of hops
in the mesh network. Using larger SRAM block capacity
reduces worst case number of hops [see Fig. 18(b)]. Note
that the global access latency of a specific request depends
on the memory access patterns of all cores, which determines
the congestion in the network.

IV. DISCUSSION
This article has studied an M3D memory compiler that can
exploit the multiple layers of transistors on a single substrate
and the high-density (3-D via) interconnection between tiers.
The design concepts and compiler methodologies developed
in this article can be adopted for alternativeM3D IC technolo-
gies. In particular, as the array generation and the multiport
memory network generation follow logic design automation
methods, they can be easily ported to other M3D processes.
The circuit design concepts within the subarray generation
are also technology agnostic. However, due to the inherently
analog nature of the circuits, the exact topologies, sizing, and
layout are technology-specific.
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The 3-D SRAM compiler needs additional considerations
compared to a traditional 2-D SRAM compiler. The goal of
the M3D compiler is to maximize the benefits of the M3D
PDK by allowing: 1) logic to be placed above (below) STF
subarrays in bottom (top) tiers and 2) external routing to cross
MTF subarrays when needed. The compiler also needs to
consider the availability of only two metal layers between
the top and bottom tiers of CNFETs. Hence, the M3D SRAM
compiler must restrict the use of metal layers (to only one
layer above and one layer below the transistors) while imple-
menting bit-cells and peripherals. The above restriction cre-
ates several challenges. For example, the M3D compiler can
use only a single metal layer to design a power delivery
network (PDN) of SRAM subarrays. Therefore, compared
to traditional 2-D SRAMs that use multiple layers of met-
als for PDN, the M3D SRAMs can experience higher IR
drop. This IR drop reduces the robustness of the memory
operation.

The orientation and organization of BLs/WLs metal wires
and VDD/VSS grids while compiling MTF subarrays must
consider the constraints on metal layer usage. For exam-
ple, multiple routing vacancies are required to allow ILVs
for cross-tier access and intratier routing. These routing
vacancies are aligned to avoid possible connectivity haz-
ards during the automated generation when subarray dimen-
sions scale. The cross-tier access is the connections for sig-
nal/power nets from M3D peripherals to nets in the bottom
bit-cells. The intratier routing is the transistor-bypass path
to allow access between the horizontal-routing layer and the
vertical-routing layers that are below and above transistors.
Moreover, the routing connections passing through a transis-
tor layer need to be carefully distributed to place ILV stacks
in MTF subarrays. We place routing connections for WL and
BL in the top and bottom tier metal layers, respectively. The
ILVs required for BL connection use the vacancies in the top
tier, and the WL connection uses the vacancies in the bottom
tier to improve area efficiency.

The parasitics of individual tiers are important factors
while optimizing M3D designs. For example, although
CNFETs in different tiers have similar on current, there is
still a 4%–6% difference in the performance of STF SRAMs
in different tiers, which can be important for high-frequency
designs. The differences in parasitics also play a key role
in optimizing the design/placement of peripheral circuits for
MTF subarrays.

We use an H-tree-based connection of multiple subarrays
of small dimensions to create a single-port memory block of
higher capacity. The H-tree-based connectivity simplifies the
router design and wiring density within a memory block but
can only support one memory access per read/write cycle.
On the other hand, we connect multiple memory blocks using
a mesh-style NoC to create a high-capacity memory array.
As each memory block is vertically connected to a logic core,
the NoC-based design allows multiport access to the overall
large capacity memory allowing a high degree of access
concurrence (and, hence, bandwidth) for local core-to-cache

communications, such as a distributed cache architecture.
However, this approach also preserves the logically shared
structure of the cache as all memory blocks can be accessed
from any core, thereby avoiding the complex cache coherency
protocol required in traditional distributed caches. In other
words, the proposed approach uses the M3D integration to
create a physically distributed but logically shared cache that
harnesses the bandwidth advantage of M3D for local access
while maintaining globally shared models of the memory to
reduce the burdens on memory managements of distributed
caches. Furthermore, connecting memory blocks with an
NoC in the memory tier reduces the communication burden
on the core routers and separates the core-to-core and core-
to-memory communications.

M3D technology can improve the latency and the energy
of the memory access on the multicore system with the
additional level of cache and routing resources. In the 2-D
system design, the memory is placed next to the edge of the
processor. Therefore, to read/write function, data are trans-
mitted across all the NoC routers from/to the edge of the
processor to/from the target core. This transmission increases
the memory access latency, energy, and NoC congestion.
However, in M3D designs, we can place the multiport mem-
ory above/below the processor. In this design, we can directly
connect the memory block to the core and do not require
the data transmission through NoC routers in the multicore
processor.

V. CONCLUSION
This article demonstrates an SRAM memory compiler for
CNFET-based M3D technologies with multiple tiers of tran-
sistors. The compiler exploits the ability to have identical
device performance in all tiers to generate scalable subarray
using single and multiple tiers of peripherals. Our compiler
efficiently integrates the subarrays in a single or multiple
tiers to generate an SRAM block and integrates the blocks
using an NoC to generate an SRAM array. Ultimately, our
compiler automatically generates the layout (LEF/GDS) and
timing (LIB) files of SRAM blocks that can be used in the
full-chip design. The simulation results show that multitier
SRAMs with peripheral and bit-cells in different tiers show
lower energy and latency, while 3-D stacking single-tier
SRAMs show a better footprint. We also show the feasibility
of using the memory compiler to generate an M3D stack of
logic and memory. The future work will be improving the
compiler and exploring new system architectures enabled by
efficient M3D memory compilers.

ACKNOWLEDGMENT
The authors thank Dr.M. Shulaker and Dr. G. Hills (MIT) and
M. Nelson (SkyWater) for providing access to the CNFET
process design kit (PDK). The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency (DARPA).

VOLUME 7, NO. 2, DECEMBER 2021 113



IEEE Journal on Exploratory Solid-State Computational Devices and Circuits

REFERENCES
[1] S. Wong, A. El-Gamal, P. Griffin, Y. Nishi, F. Pease, and J. Plummer,

‘‘Monolithic 3D integrated circuits,’’ in Proc. Int. Symp. VLSI Technol.,
Syst. Appl. (VLSI-TSA), Apr. 2007, pp. 1–4.

[2] T. Srimani et al., ‘‘Heterogeneous integration of BEOL logic and memory
in a commercial foundry: Multi-tier complementary carbon nanotube logic
and resistive RAM at a 130 nm node,’’ in Proc. IEEE Symp. VLSI Technol.,
Jun. 2020, pp. 1–2.

[3] D. Akinwande, S. Yasuda, B. Paul, S. Fujita, G. Close, and H. S. P. Wong,
‘‘Monolithic integration of CMOS VLSI and carbon nanotubes for hybrid
nanotechnology applications,’’ IEEE Trans. Nanotechnol., vol. 7, no. 5,
pp. 636–639, Sep. 2008.

[4] M. M. Shulaker, K. Saraswat, H.-S.-P. Wong, and S. Mitra, ‘‘Mono-
lithic three-dimensional integration of carbon nanotube FETs with silicon
CMOS,’’ in Symp. VLSI Technol. Dig. Tech. Papers, Jun. 2014, pp. 1–2.

[5] P. Batude, T. Ernst, J. Arcamone, G. Arndt, P. Coudrain, and
P. E. Gaillardon, ‘‘3-D sequential integration: A key enabling technology
for heterogeneous co-integration of new function with CMOS,’’ IEEE
J. Emerg. Sel. Topics Circuits Syst., vol. 2, no. 4, pp. 714–722, Dec. 2012.

[6] C. Fenouillet-Beranger et al., ‘‘New insights on bottom layer thermal
stability and laser annealing promises for high performance 3D VLSI,’’
in IEDM Tech. Dig., Dec. 2014, pp. 27.5.1–27.5.4.

[7] L. Pasini et al., ‘‘nFET FDSOI activated by low temperature
solid phase epitaxial regrowth: Optimization guidelines,’’ in Proc.
SOI-3D-Subthreshold Microelectron. Technol. Unified Conf. (S3S),
Oct. 2014, pp. 1–2.

[8] M.D. Bishop et al., ‘‘Fabrication of carbon nanotube field-effect transistors
in commercial silicon manufacturing facilities,’’ Nature Electron., vol. 3,
no. 8, pp. 492–501, Aug. 2020.

[9] G. Hills et al., ‘‘Understanding energy efficiency benefits of carbon nan-
otube field-effect transistors for digital VLSI,’’ IEEE Trans. Nanotechnol.,
vol. 17, no. 6, pp. 1259–1269, Nov. 2018.

[10] M. M. Shulaker, T. F. Wu, M. M. Sabry, H. Wei, H.-S. P. Wong, and
S. Mitra, ‘‘Monolithic 3D integration: A path from concept to real-
ity,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2015,
pp. 1197–1202.

[11] T. F. Wu et al., ‘‘Hyperdimensional computing exploiting carbon nanotube
FETs, resistive RAM, and their monolithic 3D integration,’’ IEEE J. Solid-
State Circuits, vol. 53, no. 11, pp. 3183–3196, Nov. 2018.

[12] M. Shulaker et al., ‘‘Experimental demonstration of a fully digital capaci-
tive sensor interface built entirely using carbon-nanotube FETs,’’ in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013,
pp. 112–113.

[13] G. Hills et al., ‘‘Modern microprocessor built from complementary car-
bon nanotube transistors,’’ Nature, vol. 572, no. 7771, pp. 595–602,
2019.

[14] M. M. Shulaker et al., ‘‘Monolithic 3D integration of logic and memory:
Carbon nanotube FETs, resistive RAM, and silicon FETs,’’ in IEDM Tech.
Dig., Dec. 2014, pp. 27.4.1–27.4.4.

[15] S. Srinivasa, X. Li, M. Chang, J. Sampson, S. K. Gupta, and V. Narayanan,
‘‘Compact 3-D-SRAM memory with concurrent row and column data
access capability using sequential monolithic 3-D integration,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 4, pp. 671–683,
Apr. 2018.

[16] T. Srimani, G. Hills, M. D. Bishop, andM.M. Shulaker, ‘‘30-nm contacted
gate pitch back-gate carbon nanotube FETs for sub-3-nm nodes,’’ IEEE
Trans. Nanotechnol., vol. 18, pp. 132–138, 2018.

[17] H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga, ‘‘Prediction
router: Yet another low latency on-chip router architecture,’’ in Proc.
IEEE 15th Int. Symp. High Perform. Comput. Architecture, Feb. 2009,
pp. 367–378.

[18] J. Balkind et al., ‘‘OpenPiton: An open source manycore research frame-
work,’’ ACM SIGARCHComput. Archit. News, vol. 44, no. 2, pp. 217–232,
2016.

114 VOLUME 7, NO. 2, DECEMBER 2021


