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Abstract—The everlasting demand for higher computing power
for deep neural networks (DNNs) drives the development of
parallel computing architectures. 3D integration, in which chips
are integrated and connected vertically, can further increase
performance because it introduces another level of spatial
parallelism. Therefore, we analyze dataflows, performance, area,
power and temperature of such 3D-DNN-accelerators. Monolithic
and TSV-based stacked 3D-ICs are compared against 2D-ICs.
We identify workload properties and architectural parameters
for efficient 3D-ICs and achieve up to 9.14x speedup of 3D vs.
2D. We discuss area-performance trade-offs. We demonstrate
applicability as the 3D-IC draws similar power as 2D-ICs and is
not thermal limited.

I. INTRODUCTION

Deep neural network (DNN) inference demands high
computation and is inherently parallel. Recently, the popularity
of DNNs has given rise to specialized accelerators [1],
[2]. Almost all DNN accelerators are matrix multiplication
machines, since computation of DNNs follows this linear
algebra motif, e.g., convolutions in CNNs (Convolution Neural
Networks) or LSTM/GRU layers (Long Short Term Memory /
Gated Recurrent Units) in Recurrent Neural Networks (RNNs).

The planar nature of modern accelerators allows two-
dimensional parallelism. Executing operations with higher
dimensions–e.g., convolutions with a batch size of one is a
six-dimensional operation–requires unrolling the operands in
2D matrices, mapped along the two spatial dimensions and
in time. This two-dimensional mapping limits the parallelism;
Even with an infinitely large array, some operations must be
executed sequentially.

We extend the accelerator to the third spatial dimension
to increase its parallelism since the runtime can be reduced
by remapping. Fig. 1 depicts the resulting 3D-accelerator,
comprising layers of 2D systolic arrays stacked in 3D. The
connections between the Multiply Accumulate Units (MACs)
across the third dimensions (’tiers’) enable the entire 3D
structure to work as a single unit. If there are no connections
between the tiers, or these connections are not used during
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Fig. 1: Schematic depicting the construction and data
movement in a 3D systolic array.
computation, then the accelerator works as a scaled-out 2D
system, implemented using 3D technology.

Here, we study the impact of 3D-DNN accelerator in terms
of computational and thermal performance, power, scalability,
and area. We choose a logic-stacked systolic-array architecture
for the sake of simplicity. We deliberately choose compute
mappings that require communication across tiers so that the
architecture is not equivalent to a scaled-out 2D system.

3D-Integrated Circuits (ICs) are fabricated either as a
stacked 3D-IC, vertically interconnecting with Through-
silicon-vias (TSVs), or a monolithic 3D-IC, vertically
interconnecting with monolithic intertier vias (MIVs).
Employing 3D-technology is challenging because of reduced
yield vs. 2D, large area requirements of TSVs, and severe
thermal limitations [3]. There are worthy benefits, e.g., less
power consumption vs. 2D [4]; Even fundamental limits of
computation are tackled [5]. Therefore, 3D integration is being
introduced by industry at time of writing this paper: For
example, Intel “Lakefield”, in which Foveros 3D technology is
used to stack multicore processors and DRAM [6]. However,
there is still a lack of research on the advantages of 3D
integration on DNN-accelerators.

To investigate 3D integration for DNN accelerators, we
created a 3D-systolic array analytical model. Our results
shows that a 3D-accelerator gets a 9.14× speedup compared
with a 2D one with same number of compute units. We
also design a 3D systolic array in RTL and perform post-
synthesis area, power, and thermal analyses. We show that
performance benefits for 3D are nullified by area costs in
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some configurations. The power analysis depicts that the array
consumes similar amount of power as in 2D; while the thermal
performance of 3D is worse than 2D, it is still feasible.

In this paper we claim the following contributions:
• We extend an analytical performance model from 2D to

3D that allows to optimize parameters such as tier count,
computational resources and array dimensions for a given
workload.

• We conduct a power, performance, and area (PPA)
analysis from an RTL implementation for real workloads
comparing 2D against 3D with TSVs and 3D with MIV.

• We use the RTL model to conduct a thermal study. 2D
is compared vs. 3D (TSV and MIV).

II. RELATED WORK

Kung et al. [7] propose a 3D systolic array by folding a 2D
one. Dataflows are essentially equivalent to 2D within each
tier. This results in performance advantages from: A scale-out
approach, reduced link lengths comparing TSVs to wires and
concatenating the execution of NN layers. Unlike this work,
[7] does not utilize 3D to leverage spacial parallelism in the
temporal domain. MIVs are not analyzed.

Wang et al. [8] propose a systolic cube. The 3D topology
is identical this work. The key differences are: the cube
is implemented on a 2D IC and therefore is limited in
scalability from wire length; the proposed dataflow targets
3D convolution. Our approach is more general such that any
matrix multiplication is paralellized exploiting the extra spatial
dimension enabled by the 3D substrate. The dataflow of [8]
can be used in our 3D-IC, as well. Rahman et al. [9] propose
a logical 3D array implemented on a 2D-IC. MACs within a
layer (loosely analog to tiers) are not connected as each MAC
maps one neuron.

TETRIS [10] implements a NN accelerator in the logic
layer of 3D stacked memory. The array is a 2D topology. The
approach saves memory traffic and reduces power.

Lakhani et al. [11] parallelize matrix multiplication in 3D.
Although conceptually similar, [11] does not target the specific
requirements of NN. Furthermore, the parallelization scheme
along the third dimension relays on splitting up operations
for floating point arithmetic among tiers, but each tier gets
the whole set of inputs. Their proposed performance model is
limited to matrices as big as the systolic array. The 3D array is
not implemented; reliable area, power and thermal figures are
not presented. Furthermore, a comparison of TSV and MIV-
based implementations is not given.

III. 3D SYSTOLIC ARRAY FOR NNS

A. Architecture

The architecture of our 3D systolic array is shown in Fig. 1.
The MACs are connected to direct neighbors; horizontally
via wires and vertically via TSVs/MIVs. The whole array
calculates a matrix multiplication. Matrices can enter from
top and left, shown in purple and orange. The matrix
multiplication is parallelized in the third dimension by splitting
it into partial sums. Thus, each layer is entered by two

corresponding parts of the input matrices. The MAC units
in the layer generate a partial sum. At the end, each pile of
stacked MACs accumulates the data; then, the bottom layer
returns the output matrix. (Other schemes would not require
vertical communication, and our system was equivalent to a
scaled-out accelerator.) This is shown in blue in Fig. 1 for one
exemplary MAC pile. Only minor modifications to the MAC
unit in comparison to a 2D array are necessary: One MUX,
the accumulate control signal (partial summing across layers)
and the vertical links are added.

Please note that we connect each pair of adjacent MACs
with a TSV/MIV array between layers. In general, this is a
over-provision of vertical interconnects that induces an area
overhead (especially for TSVs) and reduces the chip’s yield.
However, we chose this deliberately, as it is a worst-case
approximation for 3D DNN-accelerators. Many methods that
reduce the area overhead and increase the yield by limiting
the number of vertical links exist in the literature (e.g., [12]).
We do not discuss these here, as it is outside of the scope of
this paper and existing approaches can be applied.

B. Memory

The 3D accelerator talks to the external memory using a
memory controller connected in one of the array’s layers. The
requested data coming from outside of the chip is distributed
to the layers in a fashion similar to one in [7], in which the
small systolic arrays are distributed in 3D among dies [7, Fig.
7]. The 3D array profits of a one to two orders of magnitude
smaller wire delay for these vertical interconnects [7, Fig. 8].

Data are stored intermediately before being fed into the
array in scratchpad memory (cf. [13, Fig. 1]). There are two
options: Either, there is SRAM on one tier that interconnects
to all tiers; or each tier has dedicated SRAM. Both are possible
due to the small wire delay for 3D [7]. As the size and
architecture of the scratchpad memory has a vast influence
on the performance, this has already been optimized for 2D,
e.g., [13]. Those findings can also be applied here. Hence,
the architecture and the parameters of scratchpad memory are
outside of the scope of this paper.

To summarize, we do not claim any contribution in the
memory system for a 3D systolic array and refer to the
existing architectures proposed in the recent literature. For
main memory, [7] proved a performance advantage of 3D-
ICs. For scratchpad memory, the findings of 2D-ICs can be
applied, as each tier has dedicated memory.

C. Mapping/Dataflow

The mapping of operands plays an important role in
determining the performance of a workloads on an accelerator.
Chen et al. [1] describe the various mapping strategies in
DNN accelerators and introduce a naming convention used
here. [13] shows that out of the various strategies, three
ones lend themselves for efficient mapping of computation
on systolic arrays. These are output stationary (OS), weight
stationary (WS) and input stationary (IS). In the following
paragraphs we briefly describe these in the context of mapping
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Fig. 4: Figure depicting the distributed output-stationary
dataflow for multiple MACs within a tier and 2 tiers.
a General Matrix Matrix Multiplication (GEMM) of two
operand matrices A(M×K) and B(K×N), and discuss the
implications when mapped onto a 3D systolic architecture.

WS and IS dataflows. In the WS dataflow the elements
of the matrix B are first stored to the local memory of the
MAC units, such that each column of the array gets the
element corresponding the a specific col of the matrix B
(given sufficient MACs). Once the elements are stored, one
element of a row of the transposed matrix of A is fed in
from the left side of the array in each cycle. Each MAC then
multiplies the incoming element with its stored operand, and
forwards incoming value to the MAC unit on its right. The
generated product is then added with the incoming sum from
the top edge, and the partial sum is sent to the element on
the bottom row. Thus, the elements corresponding to each
column of the output are generated, within one column of the
array, by reducing across the rows. To summarize this strategy,
the dimension N is mapped spatially along the columns,
the dimension K is also mapped spatially along the rows.
However, the dimension M is temporally mapped.

The IS dataflow is similar to WS, but the mapping of
matrices A and B are interchanged. The elements of each row
in matrix A are first stored into the local memory of MACs

along array columns. The columns of matrix B are then fed
in from the left, one column per cycle, and the multiplication
and reduction takes place similar to the case in WS. Thus, the
dimension M is mapped spatially along the array columns.
The dimension K is also mapped spatially along the array
rows, while the dimension N is mapped temporally.

OS dataflow. The elements of matrix B are streamed from
the top edge of the array, such the each column of this matrix
send to a particular array column; while the elements of matrix
A are streamed from the left edge of the array such that each
array row receives elements from the corresponding row of
the operand. The partial sums are generated in each MAC and
are reduced locally, producing the output matrix. Fig. 2 depicts
the schematics of this mapping. To summarize, the dimensions
M and N are mapped along the array’s spatial dimensions.
The dimension K is mapped along the temporal dimension.

Exploiting the third dimension. The analysis above shows
that the temporal dimension contributes to increase in runtime
and therefore impedes performance (given an optimal 2D
mapping). Adding a third spatial dimension can alleviate this
bottleneck. In the context of WS and IS dataflow, this translates
to mapping the M and N dimension in the ‘new’ spatial
dimension. E.g., if we have a 3D stacked architecture, of 2
planar arrays; in WS dataflow, half of the rows in matrix A
would be used in the ‘top’ tier array, while the other half in
the ‘bottom’ tier array. In case of IS dataflow, the mapping
would be similar, but the roles of matrix A and B would
be interchanged. Please note that there is no communication
between the arrays on the different tiers. This is identical to
a distributed array, and such acceleration lends itself into the
well studied model parallelism approach [13].

The OS dataflow, however, is an interesting one for 3D. Tthe
dimension K will be mapped to the third spatial dimension,
therefore leading to reductions to be performed across the tiers.
Fig. 3 depicts the computation flow equivalent to a single MAC
on a 2D array, working with OS strategy on the proposed 3D
setting. We refer to this new strategy as “distributed output
stationary (dOS)". In Fig. 4 we show a schematic of a 2-
tiered 3D array employing dOS dataflow. The mapping and
reduction across various tiers lead to interesting architectural
trade-offs to improve performance. The combination of inplace
and cross-tier reduction means that naïvely increasing the
number of tiers will lead to increased reduction time and will
hamper performance (see Sec. IV-A). In the rest of this paper,
we focus on the dOS dataflow and study the performance and
implementation aspects in a 3D systolic array setting. We do
not dive into details for the WS and IS dataflows as the existing
literature on model parallelism provides detailed analysis for
these cases [1].

D. Analytical performance model

In [13], an analytical performance model has been proposed:
For a 2D systolic array with R rows and C columns (i.e.
N = RC MACs) and workload matrices of dimensions M ,
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N and K, [13, Eq. (4)] gives the calculation time:

τ2D = (2R+ C + T − 2)dM/RedN/Ce (1)

Given large matrix sizes such that the given 2D array could not
map the entire computation at once, serialization is required.
The dimension M will be mapped across the rows, if in case
the number of rows is insufficient. The entire mapping requires
dM/Re steps. Similarly dimension N is mapped across the
columns, leading to dN/Ce steps to complete the mapping. The
total number of serial steps required is given by dM/RedN/Ce.

In each step of the serialization it takes (R + C − 2)
cycles to fill the entire array, since the elements of IFMAP
and Filter matrices are fed simultaneously. In OS dataflow
the computation for each OFMAP pixel is done in-place
within a MAC unit, thus it requires K cycles to generate
one OFMAP pixel. Since multiple MAC units are running
in parallel, the latency of computation can be hidden for
all but one MAC unit, which gets the data at the end. This
MAC takes another K cycles after the array is filled. Once
all the computation is finished, it takes another R cycles to
remove all the generated outputs from the array. The term,
(2R+C + T − 2) therefore indicates the runtime for a single
serial step or fold. The authors also propose an optimization
method to find the optimal array sizes for a given workload
that minimizes this runtime.

The given formula naturally extends to a third dimension.
Using the OS dataflow for 3D, the work among tiers is split up
in K-dimension, i.e. along K in the workload. The workload is
not split up along M and N . Thus, each of the ` tiers works on
the partial sums with an input workload matrix dimension of
M , N and T/`. At the end, the partial sums are accumulated;
this requires `−1 additions. This yields the following formula
for the runtime of a 3D systolic array with R′ rows per tier
and C ′ columns per tier:

τ3D = (2R′ + C ′ + (K/` + `− 1)− 2) dM/R′e dN/C′e (2)

Please note that the constraint for the MAC count changed as
the 3D array has N = `R′C ′ MACs. Thus, the method from
[13] can be applied to optimize the array dimensions for all
tiers for the workload by changing the objective function to
Eq. 2 and using N/` MACs and a workload size of M , N
and K/`. To generate the distributed OS dataflow, each tier
has the same array dimensions.

IV. RESULTS AND DESIGN IMPLICATIONS

We synthesized our RTL implementation for 15 nm nangate
node (FreePDK15) [14] using Synopsys® Design Compiler;
power analysis was done with post-synthesis with Synopsys®

PrimeTime PX. The thermal analysis was done with HotSpot
6.0 [15]. For performance analysis, we sweep workload
parameters and take the range of M , N and K from typical
DNNs. Exemplary workload parameters are shown in Table I.

A. Performance

We compare the performance of 3D and 2D using Eq. 1
and Eq. 2. We assume an identical number of MACs that are

TABLE I: Matrix dimensions for exemplary layers from
current DNN workloads mapped to M , N and K.

Name Layer M K N

Resnet50 [16] RN0 64 12100 147
RN1 512 784 128

Google’s neural mashine
translation [17]

GNMT0 128 4096 2048
GNMT1 320 4096 3072

DeepBench [18] DB0 1024 50000 16
DB1 35 2560 4096

Transformer [19] TF0 31999 84 1024
TF1 84 4096 1024
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evenly split up among tiers. (Eq. 1 holds with N = RC and
Eq. 2 holds with bN/`c = R′C ′.) We round down to avoid
resource over-provision.

1) Workload parameters: The influence of K, the inner
dimension of the matrix-matrix product, is shown in Fig. 5.
It depicts the speedup of a 3D-accelerator normalized to its
2D-counterpart with same MAC count (y-axis) depending on
the tier count (x-axis). There are different curves for varying
number of MACs (same color) and varying parameter K (same
shape). For each curve, M and N are fixed. The workloads
are taken from a language recognition network (Resnet50).

The performance of the 3D array improves for larger K
and a fixed MAC count. 3D is not advantageous for a small
K and a small MAC count (e.g., K = 255 and 212 MACs), as
of worse performance than in 2D (green plots). If K is large,
the 3D array yields a significant speedup. In best case, we see
a speedup of up to 1.93× for 2 tiers and up to 9.16× for 12
tiers vs. 2D.

The influence of M /N , the outer dimensions of the matrix
product are shown in Fig. 6. It depicts speedup of a 3D-
accelerator normalized to its 2D-counterpart with same MAC
count (y-axis) depending on a given budget of MACs, i.e.,
processing power (x-axis). We set the number of tiers to
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4. There are different curves for varying K (same color)
and varying N (same shape). The influence of M and N is
symmetrical, so we only vary N , while M is constant.

The parameter N and M determine a threshold Nmin for
a minimal MAC count required to gain a performance benefit
from 3D; the threshold is marked with a dashed line. The
threshold is given by Nmin > MN (This was evaluated for
reasonable tier counts ≤16, although not shown). We achieve
a maximum speedup of 3.13× for the given parameter sets.

To summarize, the workload analysis shows that 3D arrays
provide a large performance benefit vs. 2D for workloads with
large K and relatively small M and N . This is often the case,
e.g., in language recognition models. The minimal MAC count
to gain a speedup is given by MN .

2) Architectural parameters: The MACs count must be
high to unleash 3D-integration, as shown In Fig. 5. For
instance, for the workload with K = 255 yields a 51%
performance loss for 212 MACs but up to 9.16× speedup for
218 MACs compared against 2D.

Fig. 6 shows the required MAC budget for which 3D
provides speedup as a dotted vertical line. For MAC budgets
larger than the threshold, there is a continuous performance
improvement until saturation, for which provision of additional
computational power does not make sense.

Fig. 5 shows the influence of the tier count. More tiers
continue the trend for a given workload, i.e., if the workload
yields better 3D performance, more tiers further will improve
the performance and vice versa. Local minima for different
tier counts are artifacts of quantization.

Any speedup of 3D is reduced for very large tier counts as
the reduction of partial sums overtakes the time of partial sum
generation, cf. Eq. 2. As the tier count is limited by production,
we do not further discuss this.

Fig. 7 show the combined influence of the tier count and
MAC count. It is a scatter plot of the optimal tier count for a
set of 300 random workloads based on Resnet50 parameters.
The data are plotted for three MAC budgets resulting in a tail-
heavy and shifted right distribution of the optimal tier count
for larger MAC budgets. A vertical line shows the median of
each distribution; the shift is highlighted by the black arrow.
We conclude a trend that 3D arrays with larger MAC counts
profit from larger tier counts.

To summarize, our architectural analysis shows that 3D is
a viable choice for large system. Small devices with less than
4096 MACs will require other innovations to gain performance
from 3D. 3D currently only targets high-performance systems
such as servers due to high production costs so that our finding
does not impede the practical application of 3D for DNN-
accelerators. A high tier count would be favorable, although
this is not realizable with current 3D manufacturing.

B. Power

We compare the power of a 3D-IC with TSVs or MIVs
against a 2D-IC. TSVs have a very high capacitance of about
10fF [20], while MIV only have about 0.2fF capacitance [21].
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Fig. 7: Scatter plot of optimal tier for different MAC count.
Median marked as vertical line.
TABLE II: Power of a 3D array with 16384 MACs and 3
layers vs. a 2D array with similar number of 49284 MACs.

Total Power ∆ Peak Power ∆

2D 6.61 W — 14.99 W —
3D TSV 6.39 W -5.4% 14.41 W -5.9%
3D MIV 6.26 W -2.2% 14.14 W -2.1%

We found that a static power analysis is insufficient. The
reason lies in the special dataflow of a 3D-array, in which the
horizontal links are heavily utilized while the vertical links are
only used for partial sum accumulation. Hence, the switching
activities of horizontal and vertical links vary.

We conduct post-synthesis power analysis for a 3-layer IC
in 15 nm node with an example workload of M,N=128 and
K=300 using Synopsys® PrimeTime PX.

The power consumption of an array with 16384 MACs
per layer is shown in Tab. II (excluding power from data
transmission from memory), along with the difference in
power consumption vs. a 2D-IC with a similar total number
of MACs (49284 MACs). We find that TSV-based 3D-IC
requires 5.39% less power than a 2D-IC and a MIV-based 3D-
IC requires 2.21% less power. As expected, MIVs are more
frugal than TSVs.

3D-ICs do draw less power than 2D-ICs because of the
special properties of the dataflow. This demonstrates the
relevance of dynamic power analysis for 3D systolic arrays.

C. Thermal Performance

As thermal performance is one of the most urgent issues of
3D integration [3], we conduct a thermal analysis with HotSpot
6.0 [15]. We chose a three-layer 3D-IC with 4096, 16384 and
65536 MACs per layer and a workload of M,N = 128 and
K = 300. The respective 2D-IC has as 12321, 49284 and
197136 MACs, which is approximately the MAC count of the
3D case.

The results are shown in Fig. 8 as a boxplot. For 3D, we
split the data into the layer near the heatsink (bottom) and the
rest (middle). The temperature variability comes from different
switching activities and cooler MACs at the borders of the IC
as of their fewer neighbors.

3D and 2D ICs get hotter for larger MAC counts.
Furthermore, 3D ICs get hotter than 2D ICs. The TSV-based
and the MIV-based 3D-ICs are not exceeding their thermal
budget. This is a promising finding for 3D-ICs practically used
for DNN-accelerators.
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The MIV-based IC is hotter than the TSV-based IC. This
is counter-intuitive due to the difference in parasitics of TSVs
and MIVs. The reason lies in the vast number of vertical links.
The large TSVs increase area, enhance heat dissipation and
reduces the temperature. In a real system, one would apply
TSV-saving schemes to improve area and yield, which will
increase the temperature above the level of MIV-based ICs.

D. Area

We implement the 2D and 3D arrays in a 15 nm node with
8b inputs and 16b outputs for 1 GHz clock frequency. We take
TSV area plus keep-out-zone (KOZ) from [20] and MIV area
from [22].

The TSV-based 3D-IC is larger than the 2D array from
additional area for logic, TSVs and KOZs. Monolithic
integration only adds a few percent overhead vs. 2D, as no
KOZs are required.

We plot the runtime per chip area to evaluate the area-
impled trade-offs. This is plotted in Fig. 9 normalized against
2D for different tier counts for one exemplary given workload
from Resnet50. Based on our previous discussion for runtime,
we chose a workload that yields a performance benefit for 3D
(M=64, N=147, K=12100). The results are shown in Fig. 9
for a TSV-based (orange) and for a MIV-based (purple) 3D-IC.

For 4096 and 32768 MACs, the performance per area of
the 3D-IC is worse by up to 75% than the 2D-IC. For 266144
MACs, the area per performance is improved for more than
4 layers by 1.27× to 2.83× (cf. ). This finding underlines
again that 3D integration is useful for large MAC counts.

We took a worst-case approach to the TSV count, as we
provide a dedicated TSV array connecting each pair of MACs.
If we apply TSV-reduction architectures (cf. Sec. III-A), TSV-
based 3D-ICs will come off better.

MIV-based 3D-IC enable a better performance per area than
TSVs: While the performance per area for 4096 MACs is
similar to 2D-ICs, MIV-3D-ICs improve performance per area
by up to 7.9× for larger MAC counts. The general trend is
that higher MAC counts and number of tiers improve the
performance advantage of 3D vs. 2D.

Two tiers with face-to-face bonding can be manufactured at
time of writing this paper. For this, 3D integration allows for
1.19× to 1.97× better performance per area.

V. CONCLUSION

In this paper, the implications of 3D-ICs for DNN-
accelerators on their architecture, dataflow and design are
analyzed. 3D-integration allows to add an additional level
of spatial parallelism that is otherwise executed in the time
domain for a 2D system. We choose a systolic-array based
architecture and propose a 3D-implementation. We describe
a suitable dataflow distributed output stationary that fully
utilizes the capability of 3D and is not equivalent to existing
data mappings for 2D. Using an analytical performance model
and an RTL implementation for the 3D-array, we conduct an
in-depth analysis about design implications in computational
and thermal performance, area and power. Our analysis depicts
that 3D-implementation enables performance improvements
for DNN workloads. We identify a threshold for required
computational performance to fully gain a speedup for 3D.
The speedup is almost an order of magnitude (up to 9.14x)
vs. 2D. From an architectural perspective, we find that a higher
MAC count and more tiers improve the performance of 3D,
while over-provisioning of computational resources leads to a
speedup saturation vs. 2D. We show that thermal performance
allows for 3D integration of DNN accelerators both with TSVs
and MIVs. The area of a 3D accelerator is larger than 2D;
but even for TSVs the performance per area is superior to
2D as MACs and tiers are scaled. Monolithic 3D integration
naturally offers advantages over TSV-based stacking for area
and power. To summarize, we conduct a comprehensive study
on 3D-accelerators that is universal in that it abstracts from
design details that are not purely related to vertical integration
of DNN-accelerators such as memory and TSV-count.
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