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Abstract—A recent trend in open source hardware and chiplet-
based IP reuse faces a key obstacle: protocol standardization.
Hardware interfaces lack flexibility and require designers to
follow a strict behavior when implementing IP. The rigid nature
of hardware interfaces prevents IP reuse, a critical challenge in
integrating a plethora of emerging open source IP. To mitigate
these challenges, we propose a tool to automatically synthesize
translators between arbitrary IP blocks. Using a protocol de-
scription language (PDL), we model protocols such that they
can be interpreted as finite state machines (FSM). Next, we
design algorithms to map and schedule transactions between
these protocols, generating a single integrated state machine
which serves as a translator between the two protocols. Lastly,
we convert our integrated state machine into readable RTL
(Verilog) and perform functional verification. Our flow has been
implemented, tested, and proven on 12 protocol pairs with unique
behavior.

I. INTRODUCTION

Very large scale integration (VLSI) of various functional
components has enabled tremendous progress in modern com-
puting systems. However, in the last decade the cost of
designing a system-on-chip (SoC) has increased dramatically
[1], motivating more efficient design principles. Fortunately,
growing interest in open source hardware [2] coupled with
emerging technologies like 2.5D silicon interposer [3] and
multi-chip modules [4] promise to significantly reduce the
cost of designing an SoC. These new technologies seek to
enable drastically different design methodologies for SoCs,
where IP blocks are chipletized and fabricated IP can be reused
across several designs by mounting it in a system-in-package
(SiP). Recent demonstration of chiplet-based designs have
been fabricated with 64 and 96 processors [5], [6]. Although
these designs feature only processors, it is expected that future
work will include other functionality used in mobile SoCs like
wireless communication and analog IP.

Meanwhile, FPGAs have recently become available in cloud
computing applications for their ability to provide near ASIC
performance without the cost of a custom ASIC. FPGAs are
also commercially available at low cost with high quality em-
bedded CPUs and mature software tools. With frameworks like
SiP and FPGA in place, new design methodologies envision
IP catalogs with hundreds of vendor chiplets to choose from
that can easily be integrated into a large scale SoC. This
new framework promises affordable high quality chip design
without redesigning IP that can be completed in weeks rather
than years. This IP can be provided either commercially or
from emerging open source hardware IPs [7], [8], [9].

Although these new technologies and design flows can
greatly reduce the cost and design time of modern SoCs, they
face their own unique challenges that are avoided by traditional
design flows [10]. The key obstacle we face in integrated these
IPs is communication. Recent work [10], has attempted to
tackle this problem at the physical level by automating the
generation of I/O cells. This is of particular importance to
low cost and quick design of the envisioned framework since
the design time saved by design reuse is lost to custom design
of I/O cells. Just like the physical level, we observe these
same issues at the logical or protocol level. Throughout the
years many open source and proprietary protocols have been
developed, each designed to be a generic protocol to standard-
ize communication. However, with emerging challenges and
design needs new protocols are adopted and old IP has to be
updated. If the promise of simple SoC design and integration
is to succeed, we require a solution to protocol standardization.

In this work, we propose the use of a new protocol descrip-
tion language (PDL) and synthesis algorithms to automatically
generate translators between IPs that communicate using dif-
ferent protocols. Originally protocol synthesis was proposed
[11], [12] as an early high level synthesis (HLS) technique
to promote design reuse. In fact, the original motivation was
the belief that standardization of protocols would be imprac-
tical [13]. Building upon these works, we expand on both
the modeling techniques and synthesis algorithms to enable
protocol translator synthesis for modern bus and packet-based
protocols. We present a visualization of our proposed tool flow
in Figure 1. We begin with source PDL files modeling the
protocols, which are then parsed and converted into abstract

Fig. 1. A visual representation of the PDL-to-RTL flow. Initially, state
machines are generated from PDL files, then merged into a single state
machine, and finally RTL (Verilog) is generated.
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syntax trees (AST) and later converted to FSMs. We then
integrate the FSMs from both protocols by identifying paths in
each protocol that send data and finding corresponding paths in
the opposite protocol to receive the data. Next, we schedule the
transactions and generate FSMs that model a valid translation
between the two protocols. Lastly, RTL (Verilog) is generated
using the integrated FSM as the control unit, and instantiating
buffers and multiplexers to control data flow.

We use our tool flow to demonstrate the efficacy of auto-
matic translator synthesis by testing on handpicked packet-
based and emerging protocols requiring complex language
semantics. We generate RTL and perform synthesis place
and route for 12 protocol combinations, dramatically reducing
RTL design and verification time. Furthermore we demonstrate
methods to reduce both area and latency using automatic
translator synthesis. We observe up to 39% area reduction from
custom partial translator implementation.

II. BACKGROUND

Protocols and interfaces used between logic blocks can
be modeled as finite state machines (FSM) [12]. The FSM
modeling the protocol is a directed acyclic graph containing
both vertices and edges. Vertices represent the current state of
the system that is executing the protocol. Edges contain two
essential components to model the protocol: conditions and
transactions. Conditions are requirements for a state transition
to be made, such as valid or ready signals. Transactions are
the actual data to be transferred in the protocol.

In Figure 2, we illustrate this idea for a subset of the
commonly used bus protocol: AXI [14]. In this example,
we observe a value of 4 for arlen and asserted valid and
ready signals. In the AXI protocol, this implies the master
is attempting to read a sequence of four words from a
memory. Upon satisfying these three conditions, the protocol
proceeds to the next state in the FSM. Where upon continued
assertion of valid and ready, the master protocol receives four
transactions. Naturally we can model this behavior as an FSM,
where these signals are conditions dictating state transitions,
and the data transferred is mapped to the edges of the FSM.

Fig. 2. Transformation of AXI into an FSM. Only three of the many branches
of AXI are shown. The highlighted branch in the FSM is the path that was
taken in the waveform.

Prior work [12] use a language (like HDL) so that designers
can describe their protocols in a concise manner. This style
of language is called protocol description language (PDL),
and is used specifically to derive FSMs from protocols. Such
a language yields similar benefits as HDL, promoting both
optimization of the underlying data structure and designer
productivity in describing it. Given two PDLs, and thus
two FSMs, [12] showed that a translator between the two
protocols could be generated by identifying and combining
legal combinations of states between these protocols (e.g.
one protocol sends data, one receives data). The result is a
merged FSM, which could in turn be converted to HDL such
as Verilog.

III. MODELING COMPLEX PROTOCOLS

As we discussed in the previous section, Logic-level pro-
tocols implemented by IP blocks can be modeled as FSMs.
However, as protocols increase in complexity, additional fea-
tures are required to adaquetly model their behavior. In this
Section, we identify and describe components of popular bus
protocols like [14], [15], [16] and packet-based protocols like
[17] that require extensions to previously discussed protocol
modeling efforts.

A. Packet/Flit Format

Packet based protocols are commonly used in multi-core
processors and network-on-chips [18]. Packets differ from
traditional bus protocols in that the physical wires do not
carry the same meaning each cycle. Instead control signals
and opcodes dictate what groups of wires carry a certain
piece of information. To properly model this, the data must
be virtualized from the physical wires that carry it. This is
in stark contrast to bus protocols where the data and physical
wires are the same entity.

Packets are usually divided over many flits where control
signals necessary to decode data in one flit, were sent several
flits before. This type of data structure, yields a tree-like FSM
where each packet type has its own path in the FSM. In
Figure 3, we illustrate a pair of example packets and their
corresponding FSM. Although the tree-like structure of packet
protocols requires slightly additional run time and state space,
it does not result in exceptionally high area (Table II).

B. Independent State Machines

Modern bus protocols [14], [15], [16] allow reads and writes
to occur at the same time, completely independent of each
other. For example, the AXI protocol has 5 different interfaces
to handle read and write transactions. While some pairs of
these interfaces can be modeled in the same FSM, to capture
the full behavior of the protocol, multiple state machines are
required. Although in theory it would be possible to create
a single state machine for all possible combinations of these
independent state transitions, it is not feasible in practice given
that the state space would increase exponentially. Therefore we
propose that protocols should be a combination of many state
machines that work independently of one another.
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Fig. 3. Transformation of a packet protocol into an FSM. Both packets
structure is defined by the header, after which they diverge.

C. Data Dependence

Although we require independent state machines to model
modern protocols, it is possible that these state machines
depend on one another. In AHB, for both a write transaction
and a read transaction, the address must occur before the
data is sent. During a burst mode transaction, the subsequent
addresses and data can occur on the same cycle or different
cycles. The only requirement is that each address must precede
the data it corresponds to. In Figure 4, we show an ideal
scenario where the data follows the address and the sequence
finishes after 5 cycles. In this case data dependence is not
enforced since the address always precedes data. However,
since AHB allows for stalls, we must support sequences like
Figure 5. The sequence in Figure 5 effectively breaks the
single FSM model for AXI because address and data are
stalled and do not follow each other. To properly model this
behavior we require multiple FSMs and information regarding
this relationship between waddr and wdata. More specifically,
we must be able to declare dependence between these two
variables, and enforce the condition that address precedes the
data it corresponds to.

CLK

waddr[31:0] a1 a2 a3 a4

wdata[31:0] d1 d2 d3 d4

Fig. 4. The ”easy” case for data dependence, no stalls occur and data always
trails address by 1 cycle.

IV. PROTOCOL DESCRIPTION LANGUAGE

We have developed a new language that draws on similar
syntax to the Verilog hardware description language. Although
useful for modeling hardware, both Verilog and System Ver-
ilog provide insufficient details to properly model a protocol.

CLK

waddr[31::0] a1 a2

wdata[31::0] d1 d2

Fig. 5. A ”hard” case for data dependence. Stalls occur for both data and
address and data does not always follow address by 1 cycle.

The goal of PDL is to fully describe a protocol in the most
concise and simple way possible. The PDL should effectively
model the interface of the protocol and the necessary behavior
of that protocol for translation. It is this behavior that HDLs
do not model. Rather than arbitrary ports, the tool needs to
know what rules the protocol follows.

Prior works have proposed two necessary definitions to
synthesize a protocol [12], [4]. The first is a description of
the signals that implement the protocol. In defining these
signals, the designer must describe the name, width, direction,
and type. The second is a description of the behavior of the
protocol that can be modeled with FSMs. The edges within
the FSM contain the conditions necessary for a state transition,
and information about the data that is transferred during the
transition. While this model suffices for smaller protocols,
modern protocols require additional language semantics to
express complex behavior. In this section we describe the
necessary semantics, and later demonstrate how they can be
used for bus protocols and packet protocols.

The additional semantics we include in our language are as
follows:

1) Transaction Id: ”Id” gives a transaction an identifier
so that other transactions can reference it to declare
dependence. This allows us to determine when stalls are
required in a sequence (Figure 4).

2) Transaction Dependence: ”Dep” allows a user to specify
that the given transaction is dependent on another trans-
action. With this identifier we can enforce order in the
protocol.

3) Address Offset: ”Offset” describes the size of the data an
address refers to.

4) Data Range: ”Range” specifies the amount of data (in
bits) that is sent during a transaction.

Each of these parameters is simple, yet adds necessary infor-
mation to properly model modern protocols. In this work we
focus our effort on bus protocols and packet-based protocols.
The bus protocols we have discussed in this work all require
multiple state machines and the ability to describe data de-
pendence. Meanwhile, packet protocols require a structured
hierarchy describing how previous flits determine future data
to come. In the following subsections, we further describe
these requirements and illustrate how these behaviors can be
modeled using simple code.

A. Bus Protocols

The bus protocols we have discussed in this work all
require multiple state machines and the ability to describe
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protocol axi
ports

data out 32 araddr
control out 8 arlen
control out 1 arvalid
control in 1 arready
...
data in 32 rdata
control in 1 rvalid
control out 1 rready
...

endports
behavior

generate tid = arlen:0 begin
+ @(rvalid(1), rready(1)) {

rec( rdata(range=32, dep=araddr(tid)) )
}

end
endbehavior
...
behavior

generate tid = arlen : 0 begin
+ @(arvalid(1), arready(1)) {

send( araddr(offset=4, id=tid) )
}

end
endbehavior
...

endprotocol

Fig. 6. A Subset of the AXI protocol PDL for read transactions.

data dependence. As an example, we show a subset of the
AXI protocol for read transactions in Figure 6. Both the
read address and read response portions of the protocol are
described in separate state machines. We use generate loops
for all possible burst transactions while declaring dependence
between address and data.

B. Packet Based Protocols

Using the same data structures and language, it is possible to
define a packet based protocol. Although additional semantics
are required, the resulting data structures are processed the
same way. A packet based protocol uses multiple flits, a packet
structure, and a variable length bus to transmit data. A packet
header will define an opcode or command and the length of
the packet. These control signals will determine the rest of the
packet structure and what transactions will occur. Just like the
control signals in regular bus protocols, we create branches
based on these control signals because it will determine the
rest of data to come.

Given that most packet protocols are proprietary, we opt to
define a generic packet protocol featuring common transac-
tions like reads and writes. In Figure 7, we show a subset of
this protocol (also illustrated in Figure 3) for read transactions
that we will later use to generate a translator for AXI. Each
packet is described as the concatenation of several sub-packets,
including a header and body. We use sub-packets to reduce
redundant code in the protocol. We use a branch based on
CMD field to infer which type of packet is being sent.
There are over a hundred different packet commands for this
protocol, but we only show ReadResp16. This packet is six
flits long. This includes the header, the address information,
and then four packets containing ECC and write data.

V. FSM INTEGRATION

Once we have parsed both PDL source files and have
generated the FSM data structures, we have the underlying
model and can ignore whether a protocol was a bus or packet-
based protocol. Instead, we simply view a protocol as a set of
FSMs, where each FSM is a graph of states and edges like the
example provided in Section III. With the two sets of FSMs,
the goal of FSM integration becomes creating a single set of
FSMs that serve as a translator between both protocols. More
specifically, we must ensure that all transactions sent by one
protocol are received by the other.

In [12], an algorithm was first proposed to automatically
synthesize a translator between two protocols. Their algorithm
attempts to recursively traverse the two protocols modeled as
FSMs. At each state, a check for data consistency is performed.
If the data sequence sent by a protocol is correctly matched by
the receiving protocol, then the combined sequence of paths
is appended to the combined FSM. If one protocol attempts to
send or receive while the other does not, then data sequencing
is incorrect and the path is deemed invalid.

This exhaustive search algorithm was shown to perform
poorly on more complex protocols [19]. Later work [19], [20],
used a divide and conquer approach to more efficiently search
the solution space. However, we still find this heuristic to be
unnecessarily complex. Instead of traversing the whole FSM,
we take a more abstract approach. Our proposed algorithm
considers the data transactions that each path in the FSM
contain, and then only attempts to match other paths that
contain the same transactions. Next, we attempt to schedule
the paths by issuing stalls when there is a timing mismatch
or the protocols have different bus widths. We further detail
these steps in the following subsections.

packet packet_header begin
control 6 LEN
control 8 CMD
control 8 TID
...
control 5 ECC

end
packet rd_rsp_pkt (i, d) begin
data 32 read_resp_data(range=32, id=i, dep=d)
control 3 CD
control 5 ECC

end
packet pkt_protocol begin
subpacket pkt_header pkt_header0
begin
...
| + @(pkt_header0.CMD(0)) : RdReq16

rd_req_pkt
| + @(pkt_header0.CMD(1)) : RdResp16

control 4 SID
control 1 H
data 32 rd_address(offset=16)
control 3 ECC
subpacket rd_rsp_pkt rd_rsp0(0, RdReq16(0))
subpacket rd_rsp_pkt rd_rsp1(1, RdReq16(0))
subpacket rd_rsp_pkt rd_rsp2(2, RdReq16(0))
subpacket rd_rsp_pkt rd_rsp3(3, RdReq16(0))

...
end

end

Fig. 7. A Subset of the packet protocol PDL for read transactions.
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A. Path Selection

In any directed acyclic graph there exists some number of
paths from source to sink, where each path is a unique set of
edges. The set of all paths is all the possible procedures that a
protocol can make. To create a functional translator, we must
ensure that all data sent from both protocols is received by the
other. To do this, we iterate through the set of all paths in the
target protocol that transmit data. Then, we identify paths in
the other protocol that receive the data the target protocol is
trying to send. Once we satisfy all paths that send data, our
translator is complete.

To demonstrate this, we show an example case our tool
has successfully executed. In the process of integrating the
packet protocol and AXI, we must find a translation for the
ReadResponse16B (shown in Figure 3) packet of our packet-
based protocol. In Table I, we visualize the data structure
we use to represent the paths. Our tool identifies receiving
paths that can be used to satisfy the ReadResponse16B packet.
We also maintain information on the number of cycles and
how many additional states the receiving path will incur. This
allows the algorithm to make decisions based on performance
and area. In this particular example, there are four paths in
AXI that could satisfy ReadResponse16B. However, for paths
1 to 3 we would need to iterate several times. Choosing path
4 results in the lowest latency because the 2 cycle overhead
is only incurred once. For paths 1-3 we would need to incur
this latency at least twice, and in the case of using path 1 four
times, we incur this latency four times.

However, there is a trade off to consider. Path 4 may require
the fewest cycles, but it also requires 2 additional states in our
FSM, while paths 1 and 2 do not add additional states since
they have already been added to satisfy smaller read packets.
Our tool defaults to always choose the lowest latency given
that additional states are inexpensive, however, if area is a
concern a flag enables area minimization. We provide psuedo-
code for this in Algorithm 1. The search time for this algorithm
is O(N ) since we iterate through all the paths in protocol 1, but
use a lookup table to identify paths in protocol 2 that satisfy
the translation. This algorithm also takes a cost function as
input argument to decide which path is the best solution for
translation. This cost function is a weighted function specified
by the user to optimize for either area or latency.

B. Scheduling

In the path selection part of the flow, we are not concerned
with timing, rather just making sure we obey the constraints
set on each path. After we find the set of paths from the
second protocol to match with our first protocol we must

Algorithm 1 Path Selection
1: procedure PATH SELECTION(P1, P2, Cost)
2: for path1 ∈ P1.paths do
3: for path2 ∈ P2.paths.contain(path1) do
4: champ = min(Cost(path2), Cost(champ))

Table I. Path Selection

Path # #Cycles Path Used #States Data Transfer
1 3 Y 0 (4B rdata, 4B addr)
2 4 Y 0 (8B rdata, 8B addr)
3 5 N 1 (12B rdata, 12B addr)
4 6 N 2 (16B rdata, 16B addr)

create a schedule that issues the control signals and satisfies
the timing constraints of each protocol. The basis of our
scheduling algorithm is simply checking if data has been sent
by master, and if data is ready to be received by the slave.
We provide psuedo-code for this algorithm in Algorithm 2.
Although simple for cases when both protocols send data with
the same width, it is challenging to handle data of different
sizes. For instance, if IP1 communicates using 32-bit AXI and
IP2 communicates with 64-bit AHB, we must buffer packets
going to IP2 and split packets sent to IP1.

This issue is further exasperated by serial protocols and
packet based protocols. For the same scenario above a serial
IP1 would require 64 buffering cycles before sending a sin-
gle transaction to IP2. Furthermore such a translator would
potentially require asynchronous FIFOs for serial protocols
that operate faster than bus protocols. Packet protocols suffer
from a different issue. Since the data we send and wires
we send it on are not bound, but virtualized, the same data
transaction can come from different physical sources. Our
scheduling algorithm accounts for this by adding control
signals to the multiplexer preceding the FIFO mapped to the
data transaction. In our FSM, we add this control signal based
on our current state so that we select the correct data to buffer.

Algorithm 2 Schedule
1: procedure SCHEDULE(master, slave, fifo)
2: while !master.empty() and !slave.empty() do
3: if !fifo.full() then
4: fifo.push = master.send
5: if slave.receives() then
6: slave.receive = fifo.pop

VI. RTL GENERATION

Once an integrated FSM is generated, it needs to be con-
verted into a synthesizable RTL where it serves as a translator
between IP blocks in an SoC. Given the ease of modeling
state machines in HDL and the availability and maturity of
commercial grade synthesis tools, we choose to convert our
integrated FSM into Verilog code. Like [21], we find that the
repetitive nature of translators makes it feasible to generate
Verilog using higher level blocks such as FIFOs, multiplexers,
and adders. Furthermore, the excellent optimization provided
by these tools minimizes area, further simplifying the task of
generating high quality translators.

In each translator, the integrated state machine directly
serves as the control unit. This control unit makes state
transitions based on inputs from the connected IPs, and issues
control logic to multiplexers, FIFOs, and address calculators
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to control the flow of data. Multiplexers are instantiated
throughput the design to route the data from one IP to the
FIFOs and address calculators, and then to the other IP. This is
especially important for packet based protocols where several
sources share the same destination. This occurs in packets
when data resides in different parts of the packet or when
different bus widths are used.

To buffer data transactions between IPs, we use register
based FIFOs inside the translator. In the FSM each state con-
tains FIFO and mux control logic, which can be implemented
as a lookup table indexed by a state variable. However, because
we generate Verilog and use commercial synthesis tools we
allow the tool to find a more optimal implementation. To
handle addresses sent between protocols, we use a generic
address calculator block. This is necessary to translate between
protocols that receive data in different sizes. For example,
AHB receives bursts up to 16 4 byte transactions while AXI
sends bursts up to 1024 transactions. In this case, we must
break the 1024 transactions into 64 bursts. For each burst
we must provide an additional address which is the original
address plus an offset.

A. Control Generation

With our control unit and basic blocks in place, the next
step is generating the control logic. The control logic from
the IPs to this control unit (input control) is what we used in
path selection and scheduling to satisfy our constraints. These
signals are already embedded in our translator and we use them
to set the conditions for state transitions. The control logic we
seek to generate is from the translator to the IP (output control)
and from the translator to the multiplexers, FIFOs, and address
calculators. All of this control logic will be generated for each
state in our control unit. Physically, this can be implemented as
a lookup table indexed by our state variable. However, because
we generate Verilog and use a commercial synthesis tool, we
allow the tool to find a more optimal implementation.

We first consider how to generate the output control logic to
the IPs. To do this, we iterate through all the states and edges
and generate output control for each edge based on conditions
and transactions from that edge and the two states it connects.
Given that the PDL already specifies what conditions lead to
state transitions, we can embed these values for the case when
we do not wish to stall. However, if we do wish to stall based
on the current state of the protocol we must generate control
logic to do so. Since we have the full specification of the
protocol it is possible to compute a set of control signals such
that the protocol stalls. For most protocols this is a simply
inverting the valid or ready signal. In the case of protocols
that do not stall one a transaction is initiated, we must have a
sufficiently sized buffer to buffer a full transaction sequence.
This is further discussed in the following subsection.

To generate the control signals for the basic blocks in the
translator we follow a similar procedure. We iterate through
all the states and edges and generate the necessary signals
based on whether data is sent or received. We then append
these signals to the set of signals to be stored in the lookup

table of the control unit. For each FIFO, we must control two
signals: push and pop. For each edge, we simply check if data
is sent or received and then we set push and pop accordingly.
For each address calculator, we control the base address and
the offset of the current edge from the start of the transaction
sequence. In operation, this value is then added to the base
address in the address calculator block. For each multiplexer,
we must control the select signal. For each edge we check the
source of the input data and simply set the select value to the
port mapped to our input data source.

B. Automatic FIFO Allocation

To ensure sufficient buffer capacity and minimize translator
area, we automatically size our FIFOs using information from
our FSMs. Given that we have complete information about the
protocol and the transactions along the different paths of the
protocol, we can compute the minimum FIFO depth required
to buffer each transaction along a single path. One solution
is to choose the total number of bytes sent along the longest
path. However this option will not minimize FIFO area. A
better solution is to traverse the entire the FSM, and simply
choose the most bytes buffered at one time. This implies that
by default we can only buffer a single transaction sequence
and that one sequence must finish before another can begin.
Additional FIFO capacity can be added so that more than one
sequence of transactions can be buffered, however by default
we assume a sequence is finished before beginning another.

C. Verilog Generation

After generating necessary control signals and appropriately
sizing buffers, we have a sufficient design specification to write
out the Verilog for our translator. First we trivially write out
the ports in Verilog syntax using the port information specified
in the PDL. Next we instantiate the multiplexers, FIFOs, and
address calculators from template Verilog implementations.
Lastly, we write out our control unit in Verilog syntax. This
is implemented as a large case statement, where each state is
modeled by a case where output and basic block control logic
is specified.

Figure 8 shows a block diagram of an AXI to packet
protocol translator. In this case FIFOs are connected to all
data ports with multiplexers to handle routing into the packet
IP. We group all control signals together since they all feed
into the control unit. In this design we represent all four state
machines in our translator as the single control unit. This
control unit takes all control signals from both IPs and issues
control logic back to the IPs as well as the multiplexers, FIFOs,
and address offset blocks. The architecture for translators is
repetitive, thus automating the RTL generation using high level
blocks simplifies the problem space.

VII. RESULTS

We have run our tool on several different protocol combi-
nations including AXI [14], AHB [15], TileLink [16], and our
generic packet protocol. The examples we have chosen are
to demonstrate the unique aspects of protocols that our tool
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Fig. 8. RTL Block diagram for translator between AXI and our packet
protocol. All logic to and from CTRL unit is control logic.

Table II. Translator Synthesis Results

Translator State Time
(s)

Cells FF Footprint
(µm2)

AHB AXI 214 0.06 2017 619 2393
AHB PKT 261 0.04 1888 551 2222
AHB TL 242 0.04 1999 611 2313
AXI AHB 1079 0.78 2195 623 2496
AXI PKT 1184 1.10 2318 591 2491
AXI TL 1322 1.56 2634 682 2568
PKT AHB 375 0.08 1971 547 2212
PKT AXI 392 0.16 1966 550 2228
PKT TL 380 0.16 1849 515 2024
TL AHB 914 0.24 2193 600 2393
TL AXI 989 0.33 2355 606 2494
TL PKT 1061 0.33 2612 541 2228

can handle. Each example is synthesized and implemented in
28nm through our automated back-end flow. This flow uses
our compiler to generate translator RTL and then performs
synthesis and place and route using commercial tools. In Table
II we show the synthesis and place and route results for each
translator. These results from this backend flow provide us
with valuable feedback to ensure that the area of translators
remains small.

In Table II, we also include the runtime for our tool and
the number of states in the control unit. Naturally we observe
that the states and runtime are proportional to the total area
of the design. The translators including AXI or TileLink (TL)
protocols have the highest area and consequently, the most
states and highest runtime. Despite a fairly large state space, all
the translators we create take roughly a second to synthesize.
It should we noted that for the larger translators, we use
multiple threads to explore the set of paths, so CPU time
will be greater than wall-clock time. In comparison, modern
synthesis and HLS tools take days of runtime on small parts of
large CPUs and GPUs since it becomes infeasible to synthesize
them as a single component. Thus as more complex protocols
emerge, we expect that translator synthesis runtime will remain
insignificant compared to gate level synthesis.

As we have observed so far, automatic protocol synthesis
presents an opportunity to both reduce design time optimize

Fig. 9. Layouts of two translator designs in 28nm technology node. (A) AXI
to Packet (B) Packet to AXI

for area. In the following subsections, we discuss these two
improvements separately.

A. Design Time Reduction

Although we have to manually write the PDL code, it is
needless to say that it takes a small fraction of the time it
takes to write and verify optimized RTL for 12 translators.
Furthermore, we realize that once a verified PDL file is written,
it need not be written again. Hence, the four protocols we
demonstrate in this work become an asset of our tool so
that any additional protocol added can be synthesized with
existing PDL. This implies that potential design time saved
grows quadratically as we increase the number of translators
in our PDL library and the maturity of our tool. This attribute
becomes a critical asset in our tool’s application in future
design flows. Where vendors can provide PDL for each IP
and then integration tools can automatically generate custom
optimized translators for the SoC or SiP.

B. Area Reduction

In Section I, we discussed two methods that can be used
to optimize for area in the protocol translator problem. The
first of these is partial translator synthesis. This idea stems
from the fact that most designs rarely (if ever) use the full
functionality of the protocol, but they still incur the area cost of
a full translator between each IP for this unused functionality.
To demonstrate how PDL can reduce area by simplifying the
customization of protocols, we have removed some of the less
commonly used transactions in each protocol’s PDL and rerun
our flow. In Table III we show the partial translator results
from this experiment. The area of each translator reduces by
roughly 30% as shown in Figure 10, further increasing the
area savings automatic translator synthesis enables for large
scale SoC design.

VIII. CONCLUSION

In this paper we proposed several contributions to the
protocol translator problem that we implemented in over 15
thousand lines of C++ code. We proposed requirements to
model packet based and emerging protocols and the language
semantics to properly express them. We demonstrated an
efficient path selection and scheduling algorithm to create the
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Table III. Partial Translator Synthesis Results

Translator State Time
(s)

Cells FF Footprint
(µm2)

AHB AXI 119 0.06 1242 363 1842
AHB PKT 207 0.03 1154 329 1410
AHB TL 112 0.03 1200 332 1698
AXI AHB 638 0.31 1420 367 1715
AXI PKT 743 0.35 1222 272 1513
AXI TL 832 0.68 1517 386 1860
PKT AHB 207 0.07 1220 351 1422
PKT AXI 224 0.15 1372 399 1554
PKT TL 220 0.15 1369 374 1548
TL AHB 607 0.21 1357 351 1645
TL AXI 719 0.29 1444 370 1787
TL PKT 783 0.23 1319 312 1515

Fig. 10. Bar plot of area reduction from full to partial translator implemen-
tation

control unit for our translator, which uses configurable cost
function to minimize latency and area. Next, we demonstrated
a method of taking the data and address transactions and
mapping them to FIFOs and address calculators, and then
routing them together using networks of multiplexers. From
our implementation we generated the RTL and performed
synthesis and place and route for 12 protocol combinations.
Using automatic translator synthesis we observe up to 39%
area reduction from partial translator implementation, and we
greatly reduce the design time required for integrating many
IPs in an SoC.
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