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ABSTRACT

Placement is one of the most crucial problems in modern Elec-
tronic Design Automation (EDA) flows, where the solution quality
is mainly dominated by on-chip interconnects. To achieve target
closures, designers often perform multiple placement iterations to
optimize key metrics such as wirelength and timing, which is highly
time-consuming and computationally inefficient. To overcome this
issue, in this paper, we present a graph learning-based framework
named PL-GNN that provides placement guidance for commercial
placers by generating cell clusters based on logical affinity and man-
ually defined attributes of design instances. With the clustering
information as a soft placement constraint, commercial tools will
strive to place design instances in a common group together during
global and detailed placements. Experimental results on commercial
multi-core CPU designs demonstrate that our framework improves
the default placement flow of Synopsys IC Compiler II (ICC2) by
3.9% in wirelength, 2.8% in power, and 85.7% in performance.
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1 INTRODUCTION

Placements of Application-Specific Integrated Circuits (ASICs) re-
quire designers to place millions or even billions of gate-level in-
stances on constrained physical layouts, which are performed by
sophisticated commercial tools in modern physical design (PD)
flows. However, with the ever increasing design complexity driven
by Moore’s Law, commercial EDA tools are struggled with achiev-
ing high-quality placements without spending significant amount
of time performing placement iterations to achieve target closures.
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Figure 1: PL-GNN powered design flow. The cell clusters de-
termined by our framework PL-GNN are taken as placement
guidance. During placement, Synopsys ICC2 will spend ef-
fort in grouping the cells within a common effort together.

It is well known that placement directly impacts the final quality
of a full-chip design, and the logical affinity among design instances
dominates the quality of the placement. To achieve a high-quality
placement in terms of key quality of result (QoR) metrics, designers
have to understand the underlying data flows in order to set instruc-
tions for commercial tools to place the design instances accordingly.
In modern PD flows, this process is called “placement guidance”,
which heavily relies on the knowledge of experienced designers.

In recent years, placement guidance has become a must-use step
to achieve high-quality placements in the semiconductor industry. It
optimizes default placement flows in commercial tools by informing
placers about the design instances that should better be placed
nearby in actual physical layouts in order to optimize key design
metrics. With the given grouping information, commercial placers
will spend effort in grouping the cells in a common cluster together
during the placement process. However, as mentioned, performing
placement guidance requires in-depth design-specific knowledge,
which is only achievable by experienced designers who knows the
underlying data flows in Register-Transistor Level (RTL) well.

To overcome the above issue, in this paper, we present a universal
placement optimization framework named PL-GNN that provides
automated and accurate placement guidance for any design with-
out requiring users to have profound design knowledge. Figure 1
shows the PL-GNN powered design flow, where our framework
will determine the cell clusters in an unsupervised manner which
serve as placement guidance in order to guide commercial placers to
optimize the key metrics such as wirelength, power, and timing by
placing cells with a common cluster together. PL-GNN is consisted
of two stages. First, given a netlist, we perform unsupervised node
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Figure 2: Overview of PL-GNN framework. Given a netlist graph and the initial node features, we first perform node represen-
tation learning to transform the initial features into better representations that accurately characterize the underlying design
knowledge. Then, with the learned node embeddings, we perform weighted K-means clustering to determine the placement
groups as placement guidance for a commercial placer. Based on the provided grouping information, the placer will spend
effort in placing the instances in a common group together during global and detailed placements.

representation learning using graph neural networks (GNNs) based
on the initial features manually defined for each design instance.
The goal of node representation learning is to learn accurate node
representations that are related to the underlying logical affinity
and attributes of a given netlist. In the second stage, based on the
learned representations, we leverage the weighted K-means clus-
tering algorithm [3] to group instances into different clusters. To
find the optimal number of groups for clustering, we introduce the
Silhouette score [19] and perform sweeping experiments to find
the sweet spot. As aforementioned, the final clustering results are
utilized as placement guidance for commercial placers. In this work,
we target the renowned commercial physical design tool Synopsys
IC Compiler II (ICC2) [20] as our baseline, and demonstrate that the
proposed framework significantly improves the default placement
flow of ICC2 on commercial multi-core CPU designs.

The goal of this work is to provide designers a placement op-
timization framework that achieves high-quality placements for
general designs by distilling underlying design knowledge. Note
that since our framework learns the node representation for ev-
ery design instance by optimizing an unsupervised loss function,
it is generalizable to any design. In addition, PL-GNN does not
assume any pre-defined netlist structure. Instead, it adapts to dif-
ferent netlists through novel graph embedding techniques. Finally,
although we take Synopsys ICC2 as the reference tool in this work,
our framework can easily be integrated with other physical design
tools to significantly improve the placement quality.

2 RELATED WORKS AND MOTIVATIONS

2.1 Learning-Based Placement Optimization

Recently, the authors of [15] propose DREAMPlace, which utilizes
GPUs with deep learning toolkits to significantly accelerate the
runtime of analytical placers. However, the proposed method does
not improve the placement solution quality because the underlying
placement algorithms remains the same. To optimize placement

quality, the authors of [7] map the traditional placement problem
into a reinforcement learning (RL) problem and present the usage
of applying GNNs to encode netlist features. In [17], a complete
RL framework is proposed to perform floorplanning for memory
macros of Google TPU designs, where a force-directed method is
introduced to place standard cells. It is shown that the achieved final
designs through RL agents outperform the ones built by designers
in much shorter turn-around-time. Nonetheless, the proposed RL
framework [17] only focuses on optimizing the locations of memory
macros, where the logical affinity among standard cells are the
most dominated factor to achieve high-quality placements. Another
work [25] proposes a detailed placement optimization technique
based on the prediction of pin assignment, where the goal is to
fine-tune the placement with a pre-trained model for minimization
of design rule violations (DRVs) after routing. However, since the
pre-trained model is obtained through a online and supervised
manner, the proposed method is subject to the underlying design
flow. Furthermore, the improvement on the placement quality with
the incremental update of the pre-trained model is minor.

2.2 Placement Prediction

As for placement prediction, previous work [6] proposes a new
hypergraph to clique-based graph transformation model and lever-
ages the Louvain modularity-based clustering method [1] to predict
placement relevant cell clusters, where the goal is to predict the
design instances that will be placed nearby in the actual physi-
cal layouts. They demonstrate that the adopted clustering method
better predicts the final placement results than the renowned k-
way partitioning algorithm [12] (hMETIS) under evaluations of
Davies-Bouldin index (DBI) [2]. However, the applications of such
prediction are limited, because it is subject to a fixed placement
flow, which means when the flow is changed, the prediction will be
inaccurate. Another work [16] develops a method to encode place-
ment features using transfer learning with layout images. However,
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Figure 3: Illustration of GNN aggregation process on a VLSI
netlist. Given a netlist as shown in (a), we first transform the
directed hypergraph (original representation of the netlist)
into an undirected clique-based graph as shown in (b). Then,
based on the clique-based graph, for each node, we per-
form feature aggregation on its neighborhood from K =
{1,2,..,K}, and finally (c) obtain the final representations.

the presented encoding method is at graph-level, where a single
design is encoded into one single vector. Therefore, it cannot be
utilized to cluster instances within a design.

2.3 Motivations

In this paper, we aim to overcome all the drawbacks presented
above. We develop a graph learning-based placement optimization
framework that significantly improves the standard industrial place-
ment flow. Unlike [17] that uses RL to optimize macro placement,
our framework focuses on optimizing the standard cell placement
(global and detailed placements) by considering the netlist affinity
and node-level hierarchy features. In addition, we present a detailed
comparison with previous work [6] and demonstrate that the pro-
posed graph learning-based technique better guide the commercial
placer (ICC2) to optimize placement quality than the modularity-
based clustering method [1].

3 PL-GNN FRAMEWORK

3.1 Overview

GNNs are powerful to encode underlying graph knowledge into
representative knowledge. They perform effective graph represen-
tation learning by aggregating the features from one node with
its neighbors (not limited to direct 1-hop neighbors) in a message
passing scheme. The initial features of a node are thus being trans-
formed iteratively into better representations that are related to
the objective of feature aggregation. These learned representations
(transformed features) can be further utilized in downstream tasks
such as node classification, clustering, or link prediction. In this
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paper, we devise an unsupervised loss function that serves as an ob-
jective for the feature aggregation process. With the aggregated fea-
tures, we leverage the weighted K-means clustering algorithm [3]
to determine the standard cells clusters that should better be placed
nearby.

Figure 2 presents a high-level overview of our PL-GNN frame-
work. Since VLSI netlists are originally represented as hypergraphs,
given a netlist, we first transform the directed hypergraph into
an undirected clique-based graph, where a net that originally con-
tains k cells will form a k-clique. Then, based on the transformed
clique-based graph and the initial node features we define for each
instance, we leverage GraphSAGE [9], a variant of GNNs, to perform
unsupervised node representation learning. GNN can be consid-
ered as a “graph filter” that iterates through every design instance
to transform its initial features into better representations by ag-
gregating its neighboring information. Figure 3 demonstrates the
illustration of graph learning process on a VLSI netlist. First, as
aforementioned, we transform the hypergraph (Figure 3 (a)) into
a clique-based graph (Figure 3 (b)). Then, we leverage GNNs to
perform node representation learning as shown in Figure 3 (b). In
this work, our GNN has two layers, where each of them is dedicated
to aggregate the neighboring features at a specific hop of neigh-
borhood. Finally, after the graph learning is complete, we leverage
the weighted K-means clustering algorithm [3] to determine the
placement groups based on the learned representations, where the
cell area is taken as the weight.

The placement groups determined by the clustering algorithms
are taken as the “placement guidance” for the commercial placer,
where in this work we take Synopsys ICCZ2 as the baseline flow.
This clustering information is expected to help the commercial
tool optimize placement quality by placing instances in a common
cluster together in the actual physical layout. The key idea is that
instances in a common cluster will have stronger affinity to those
in different clusters, since they are being grouped by performing
graph representation learning, which transforms the initial features
by distilling the underlying design knowledge it terms of logical
affinity. Therefore, by knowing which instances should better be
placed together based on their affinity, the commercial tool will
be able to insert less buffers to meet timing constraints, because
cells with stronger affinity usually means that they have more
connections. Note that in this work, the placement of memory
macros is achieved manually based on design manuals provided
by the design-house. This work focuses on improving global and
detailed placements of standard cells. In the following sections, we
illustrate the underlying algorithms in detailed.

3.2 Graph Model for Netlist Transformation

As mentioned above, VLSI netlists are originally represented as
a directed hypergraph, which is not applicable for many graph
optimization techniques. Therefore, throughout the years, exten-
sive research has been conducted extensively to find appropriate
graph models to transform a netlist from a directed hypergraph
into a “normal” graph representation where one edge only contains
two vertices. The clique-based model is one of the most popular
graph transformation model [22] where the edge weight we in the



Session 2: Machine Learning for Physical Design (1/2)

virtual root

level one

+

level two

Trie with hierarchies
as keys (edge attributes)

logic levels to
memory macros (|V| x |M|)

ISPD '21, March 22-24, 2021, Virtual Event, USA

e [nitial Node
= >

Ee®vo e wN o

t-SNE visualization
(colored by level-one hierarchy)

Figure 4: Construction and visualization of initial node features (colored in red), which are obtained from design hierarchy and
logical affinity of memory macros. Alphabets on the edges of the trie structure denote hierarchies at different levels, where
each node has a unique encoding obtained by concatenating the edge attributes on the path starting from the root to itself.
Note that the initial features are further transformed to better representations through graph learning,.

transformed undirected graph has a weight as

1

B |7e| -

We (1
where |n.| denotes the number of gates the edge (net) is connected
to in the original hypergraph. The key rationale of this transfor-
mation is to keep the total weight of a net consistent between the
two graphs. Many renowned algorithms [8, 13] adopt this clique-
based model to solve the graph partitioning problem. Still, other
improved transformation techniques [10, 21] are developed to tackle
the ever-evolving crucial EDA problems. However, although the
above approaches aim to find the best transformation model for
general EDA problems, in [11], it is proven that there is no trans-
formation that preserves the original information intact. In this
paper, we adopt the transformation model based on Equation 1 to
transform the original netlist into an undirected clique-based graph
prior to the graph learning process.

3.3 Initial Node Features

Prior to the graph learning process, given an undirected graph
G = (V,E), as shown in Figure 4, we determine an initial feature
vector for each instance v € V based on its hierarchy information
and the logical affinity with memory macros M in the design. To
encode the hierarchy information, we implement a trie [4] (suffix
graph) data structure, where the keys are the hierarchies in different
levels. Since in a gate-level netlist, the name of a design instance
takes a combination of multiple hierarchies as its prefix, there is
a unique mapping from an instance in the design to a node in the
trie. For example, a cell may have a name as “a/d/g”, where “a”
is the first-level hierarchy, “d” is the sub-hierarchy of “a”, and “g”
is the instance name defined in “d”. The combination of “a”, “d”,
and “g” (“a/d/g”) is unique, but each of them may be not (e.g. there
might be two or more edges in the trie with the attribute “g”). Note
that since the length of the node attributes varies in the trie, we
perform zero-padding to ensure every instance to have a common
length of features. The reason we take hierarchy information as
features is because instances with a common hierarchy tend to have
more connections compared with those in different hierarchies, and
these interconnects dominate the placement quality. Apart from

10

the hierarchy information, for each design instance v, we also take
its logical levels to memory macros M as features, which results
in a vector in R™M!. The reasons we introduce the memory related
features is because the logic to memory paths are often the critical
timing paths. Finally, we concatenate the hierarchy features with
the memory features to form the initial node representations.

3.4 Node Representation Learning

With the initial node features presented, we now illustrate the
process of performing node representation learning using Graph-
SAGE [9]. The goal of graph learning is to obtain the node represen-
tations hX (K denotes the aggregation level) that better characterize
the underlying design knowledge than the initial features h9 for
each node vi € V, where G = (V, E) represents the transformed
clique-based graph. Figure 3 demonstrates the illustration of the
graph learning process on a target node colored in purple, where
the key idea is to leverage GNNs to aggregate the information from
its neighboring nodes based on the underlying logical affinity with
consideration of the node attributes (features). This aggregation
process is performed iteratively, where for each level (hop) K = k,
there is a GNN layer (a one-layer neural network) dedicated to
aggregate the features at the specific hop of neighborhood of the
target node. These K layers form the overall GNN module. Note
that since the number of neighbors grow exponentially as the hop-
count increases, to stabilize the training process and to prevent
overfitting, we limit the number of neighbors s;. to be aggregated
at each level k.
For a node v € V, the representations at level k is obtained as:

h/f\];l(u) = reduce_mean ({WZgghﬁ_l, Yu € Nk(v)}) ,

h’; =0 (ngl . concat[hl,j_l, hlf\;}v)]),
where o is the sigmoid function, h’; denotes the representation
vector of node v at level k, N (v) denotes the neighbors sampled
at k-hop which is subject to the sampling size s, Wka 99 and Wlf roJ
denote the aggregation and projection matrices respectively, which
together form the neural layer at level k. Note that the concept of
"level" is corresponding to the concept of "hop", where h9 is the
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Figure 5: Illustration of feature aggregation process in node representation learning. We leverage a two-layer GNN to deter-

mine the final representation of node “a”

in the input graph by considering information within its 2-hop neighborhood. AGG

denotes the aggregation matrix and PROJ denotes the projection matrix in Equation 2. Gradient descent is utilized to update

the parameters of these two matrices by minimizing Equation 3.

initial features of node v, and h’,j:K is the final representation after
aggregation the information within the K-hop neighborhood of v.
Figure 5 demonstrates the illustration of the feature aggregation
process of the target node “a” (colored in red) in the input graph,
which is shown that GNN is not a traditional fully-connected net-
work, since all the node features of the previous level have to be
processed through Equation 2 before performing the aggregation of
the current level. In the implementation, our GNN module has two
layers, which means for each design instance we would perform
feature aggregation within its two-hop neighborhood to obtain
better representations. These transformed features are further uti-
lized to cluster design instances into placement groups through the
weighted K-means clustering algorithm [3].

3.5 Unsupervised Loss Function

Previous sub-section introduces the forward process of graph learn-
ing. To update the parameters {W;.} during back propagation, we
introduce an unsupervised loss function £ as the objective function,
where £ takes the form of

M

Lh) =~ Y log(o(hThu) =) En-Neg(s) log(o(~h] hn,)),
ueN (v) i=1

®)

where Neg(v) represents the negative sampled nodes in the per-
spective node v, and M represents the negative sampling size. The
negative sampled nodes are the nodes that are distant (not within
2-hop neighborhood) from the target node v in the clique-based
graph, and at each iteration, these nodes are re-sampled. The reason
we introduce this negative sampling technique is because we not
only want to enhance the similarity between the target node and
its neighbors, but also want to maximize the dissimilarity of the
target node with the nodes that are distant from it. This negative
sampling technique is known to help improve the efficiency of
graph learning by providing faster loss convergence. Essentially,
Equation 3 encourages nodes that share common neighborhoods to
have similar representations, and penalizes similarity to the ones
that are distant. By minimizing Equation 3 using gradient descent,

1

we can update the parameters in the GNN module. Note that since
our objective function is defined in an unsupervised manner, our
framework has the ability to adapt to various netlists since it does
not require any pre-train process.

3.6 Training Methodology

Algorithm 1 summarizes the graph learning process of our PL-GNN
framework. Lines 3-10 illustrate the forwarding process of graph
learning (feature aggregation), where for each node v € V, we trans-
form its initial features h to hX by aggregating its neighboring
features at each level (hop) through Equation 2. Note that prior to
the aggregation at each level, we normalize the node representa-
tions at previous level in Line 2 and Line 9. This normalization helps
improve the convergence of the overall training process by reduc-
ing the oscillation of gradient descent. Finally, based on the learned
representation vectors, in Lines 12-19 we calculate the unsuper-
vised loss based on the aggregated features by Equation 3, where a
negative sampling technique (Lines 14-15) is leveraged to improve
the overall training process. Finally, to update the parameters in
the the framework, we leverage Adam [14], a renowned gradient
descent optimizer to minimize the loss function. The overall train-
ing process takes about an hour on each CPU design utilized in this
work based on a machine with a 2.40GHZ CPU and a NVIDIA RTX
2070 graphic cards with 16GB memory.

3.7 Complexity Analysis of Graph Learning

Time Complexity. The time complexity of the proposed frame-
work is linear with respect to the netlist size. Since the sampling size
si at each aggregation level is fixed, our GNN module which acts
as a “graph filter” only spends constant amount of time in visiting
every design instance and collecting features from its neighbors.
Space Complexity. Instead of storing the graph connectivity in
a |V|x|V| matrix which requires O(n?) space complexity, we store
the connectivity information in the compressed sparse row (CSR)
format [23] thanks to the high sparsity of the netlist adjacency ma-
trix. Therefore, the space complexity is far less than O(n?), which
can be considered as pseudo-linear.
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Algorithm 1 Graph learning in PL-GNN.
We use default values of « = 0.001,K = 2,M = 30,s; = 10,52 =
5,1 = 0.9, Bz = 0.999.

Input: G(V,E): clique-based graph. {h°}: initial node features. a:
learning rate, K: maximum aggregation level, M: negative sam-
pling size, {sg, Vk € {1, ..., K}}: k-hop neighborhood sampling
size, o: sigmoid function, {Wg, Vk € {1,..., K}}: parameters of
NN at hop (level) k, {1, f2}: Adam parameters.

Output: {y}: learned node representations.

1: while {W,} do not converge do

0

2: hg — H:W,VU eV
3 for k < 1to K do > feature aggregation
4 forv e Vdo
5 Ni(v) « Sample s; neighbors at k-hop
6: hlk\lk(u) = reduce_mean ({Wzgghﬁ_l, Yu € Nk(v)})
7: Kk = sigmoid (Wiro] - concat[hK~1, hg‘v (v)])
s et vyev

0 85 1.

9 | yy—hVoev

10: forv e Vdo > minimize unsupervised loss
11: for u € N(v) do

12: Ny (v) < Sample M samples from {V — N(v)} \ v
13: neg_loss « an_eNk(U) log(a(—y;yni))

14 9o < Vi [log(a(y, yu)) + neg_loss]

15: {Wi} « Adam(a, {Wi}, 9o, f1. P2)

Algorithm 2 Weighted K-means Clustering.
Learned representations {hy} from Algorithm 1 are taken as {y}.
Cell areas are taken as node weights {w}.

Input: G(V,E): clique-based graph, {w}: node weights, {y}: node
representations, k: number of clusters.
Output: {Cy,...,C}: k clusters.
1: Select k initial centroids {ci, ..., cx } randomly
2: repeat
3 {C1,.., Gy} = argming T Soec, w(©)llyo - cill®
s: until {Cy, ..., Cx} no longer change

3.8 Clustering for Placement Guidance

After obtaining the learned representations, we leverage the weighted
K-means clustering algorithm [3] to cluster design instances into
placement groups to perform placement guidance in Synopsys ICC2.
Algorithm 2 summarizes our clustering algorithm, where the cell
areas of design instances are taken as the node weights. Given
the learned node representations {y} = {hk:3} from Algorithm 1
and the weights {w} as cell areas, the algorithm will strive to clus-
ter all the nodes V into k weight-balanced groups by minimizing
the Euclidean distance of every node to its assigned centroid. The
objective function of clustering is derived as

k
Licmean =, ), w(©) - llyo — cill®,

i=1 veC;

©
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 Teec; Yow(0)
where ¢ = =5 W)

C;. Equation 4 is updated in an iterative manner. The key idea is
that in each iteration, we assign each node belongs to the cluster
that it has the minimum distance with, where the procedure works
as follows:

denotes the weighted centroid of cluster

e Starting from an initial centroids {cy, ..., ¢y }, for each iteration,
we determine the clusters {Cy, ..., Cr.} by assigning each node to
the centroid that has the minimum weighted distance (Line 3).

o After the assignments, we update the centroids based on the
newly obtained clusters (Line 4).

e Repeat previous two steps until the locations of the centroids no
longer change.

To determine the optimal number of clusters (the optimal K),
we perform sweeping experiments from k = 8 to k = 32 based
on the Silhouette score [19]. Here, we explain the calculation of
the Silhouette score given a clustering result, which is consisted of
two parts. In the first part, for a node v, we calculate the average
distance a(v) between it and other nodes in a common cluster,
which is derived as:

> lyo - will®,

1€Cy,0#i

a(v) =

1
Col— 1 ®

where C, represents that cluster that node v belongs to. The average
distance a(v) (Equation 5) essentially represents how well the node
v is assigned to its current cluster. Note that the reason the sum
of distance is weighted by I Cul\—l is because the distance from o to
itself is not included in the summation. Besides a(v), we calculate
another metric b(v) which represents the smallest distance of v to

every other node in a different cluster C;,, which is derived as:

> llyo = will®.

1€Cy

. 1
b(U) = MINgx; @ (6)

In Equation 6, the cluster Cy that results in the minimum b(v)
represents the second-best cluster for the target node v. Therefore,
the greater b(v) is, the better the target node v is assigned to its
current cluster. Finally, the Silhouette score for a node v is defined
as

b(0) — a(o)

s) = max{a(v),b(v)}

()
Note that Equation 7 is defined in node-level. We take the average
of s(v) over every node (design instance) in the clique-based graph
to evaluate how well the current clustering results is (the higher the
average of s(v), the better the result). To find the best number of
clusters (optimal K of K-Means), we perform sweeping experiments
over K and take the one that produces the highest Silhouette score
as the final clustering solution for placement guidance.

4 MODULARITY-BASED CLUSTERING

In this work, besides leveraging the presented framework PL-GNN
to determine cell clusters for placement guidance, we also imple-
ment the Louvain modularity-based clustering method [1] adopted
by previous work [6] to perform placement guidance to perform
comparison with our framework. The modularity metric is first
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Table 1: Our commercial benchmarks and their attributes in
TSMC 28nm.

Design Name | # Cells | # Flip-Flops | # Nets | # Macros
CPU-Design-A | 202791 22366 206224 21
CPU-Design-B | 537085 47552 542391 29

proposed in [18], which is expressed as

1 [ kik;

Q= IZJ: »Eij - Zl—mj 8(ci, cj),
where m denotes the total edge weights in the clique-based graph,
E;j denotes the edge weight between node i and node j, k; and k;
denote the sum of edge weights for nodes i and j, C; and C; denote
the clusters nodes i and j belong to, and finally §(-) denotes the in-
dicator cluster which returns 1 when the two clusters are connected,
and 0 otherwise. Based on the modularity metric defined above, the
Louvain clustering method [1] can efficiently group millions of in-
stances into clusters with O(n-log?n) time complexity. The number
of clusters are determined automatically by maximizing Equation 8.
Therefore, no sweeping experiment is needed as in the clustering
approach (Section 3.8) above. However, Louvain performs the opti-
mization in a greedy manner, where small clusters are first found by
performing optimization on local subgraphs, and then being merged
greedily to determine the final solutions. Furthermore, this clus-
tering method does not take cell attributes into account, which is
purely achieved by minimizing connectives among clusters. Hence,
it cannot comprehend the underlying design knowledge. In the
experiments, we perform head-to-head comparison between the
proposed framework PL-GNN and the modularity-based cluster-
ing algorithm Louvain on optimizing placement quality through
placement guidance in Synopsys ICC2.

®)

5 EXPERIMENTAL RESULTS

In this work, we validate the proposed framework PL-GNN on two
commercial multi-core CPU designs in the TSMC 28nm technology
node. Their attributes after performing synthesis from Synopsys
Design Compiler are shown in Table 1. Due to the confidentiality, in
this paper, we name the two designs as “CPU-Design-A” and “CPU-
Design-B”, respectively. As aforementioned, the memory macros of
the two designs are placed by experienced designers based on design
manuals from the design-house. In the experiments, we take the
default placement flow in Synopsys IC Compiler Il (ICC2) as our base-
line, and demonstrate the placement optimization results achieved
by our framework. Note that in ICC2, the placement groups are
created by using the command “create_placement_attraction {in-
stance_list}”, which are taken as soft placement constraints by the
commercial placer. With this clustering information, ICC2 will
spend effort in grouping the cells in a common group together dur-
ing global and detailed placements. Finally, the PL-GNN framework
and the modularity-based method [1] is implemented in Python3
with the PyTorch Geometric [5] library.

5.1 Optimization Results on CPU Designs

The detailed optimization results are shown in Table 2. Compared
with the default placement flow in ICC2, the proposed framework
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PL-GNN achieves up to 3.9% wirelength, 2.8% power, and 85.7%
performance improvements. Furthermore, it is demonstrated that
the proposed method outperforms the modularity-based method
Louvain [1] adopted by the previous work [6]. The main reason
is that Louvain simply determines the clustering groups based on
graph connectivity in a greedy manner as mentioned in Section 4,
where our framework not only considers underlying logical affinity
when determining the cell clusters for placement guidance, but also
takes the node attributes (presented in Figure 4) that are crucial to
the final placement quality into account.

5.2 Discussions

Timing Perspective. Timing is a highly critical objective during
the placement stage in modern PD flows, which is as important
as the minimization of wirelength. Timing quality of a placement
directly impacts the final quality of a full-chip design. In the PD
flow of Synopsys ICC2, prior to the placement stage, all the buffers
inserted in the synthesis stage are removed in the gate-level netlist
in order to give placement engine more freedom to achieve tim-
ing closures (same situation also happens in Cadence Innovus). The
main rationale is that with the actual physical information of design
instances, the commercial tool will have more accurate informa-
tion regarding the strength or the number of buffers needed to
meet timing closures compared with the synthesis stage. In Ta-
ble 2, we observe that with the placement guidance provided by our
framework, the placement engine in ICC2 inserts significantly less
buffers compared with the default placement flow. The reasons are
two-fold. First, the features (defined in Figure 4) take the impact of
memory macros into account for determine the placement groups,
and the logic-to-memory paths are usually the critical timing paths.
Therefore, with this information, the commercial placer is able
to place the cells that could potentially lead to bad timing results
together. Second, the hierarchy features also impact the timing
results, because instances within a common hierarchy tend to have
more connections that those in different hierarchies. Therefore, if
instances in a common hierarchy are physically placed in distant,
more buffers will need to be inserted to meet timing.

Wirelength Perspective. In the table, we also observe the wireleg-
nth gets improved as well. One of the reasons is that because fewer
buffers are inserted as the reasons mentioned in the previous dis-
cussion, the net count of the optimized placement achieved by
our framework will be smaller as well, which results in smaller
wirelength as a by-product from the reduction of buffers. Another
reason is that because the placement guidance provided by our
framework PL-GNN is achieved by considering the underlying log-
ical affinity of a given netlist, cells that have more connections will
tend to be placed together, which reduces detours of routing.

6 WHY PL-GNN WORKS?

The superior achievements of our framework can mainly be ac-
counted in two perspectives:

Well-Defined Initial Features. First, the initial node features pre-
sented in Figure 4 accurately capture the underlying characteristics
of each design instance that are related to achieving high-quality
placements. Although these features are not good enough to per-
form placement guidance as aforementioned, they provide precious
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Table 2: Placement optimization impact on commercial CPU designs, where “ICC2 default” represents the tool’s default place-
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ment flow, and “Louvain” [1] denotes the modularity-based clustering method.

Desien Name Method #of | Wirelength | WNS | TNS | Total Power | # inserted
& clusters (m) (ns) (ns) (mW) buffers

ICC2 default - 4.37 -0.07 -0.22 142 5942
CPU-Design-A | Louvain [1] 82 4.34 -0.10 | -0.62 141 5826
ours 22 4.20 -0.01 -0.03 138 5371
ICC2 default - 11.66 -0.24 | -240.39 582 2728
CPU-Design-B | Louvain [1] 58 11.65 -0.38 | -296.54 578 2689
ours 32 11.55 -0.18 | -62.21 574 2274

information for the graph learning process. Based on these features,
GNNs will know which are the nodes (instances) that are inher-
ently similar to each other (e.g. hierarchy features), and will further
transform them into better representations. Furthermore, by taking
the logic levels to memory macros as features, GNNs will learn to
balance the critical paths when performing feature aggregation,
which results in fewer inserted buffers during placement.
Superiority of Graph Learning. Second, GNNs are highly ef-
fective in encoding graph structures with consideration of node
attributes, and particularly in highly sparse graphs [24]. They cap-
ture invaluable latent knowledge on netlists that are hard to be
observed even by experienced designers, but crucial to achieve high-
quality placements. Since the final physical location of a design
instance highly depends on the local neighborhood structure and
its design attributes, GNNs become particularly suitable to encode
such information by performing representation learning. Unlike
modularity-based clustering algorithm [1] that groups design in-
stances into clusters simply based on connectivity, our framework
PL-GNN leverages GNNs to carefully distill the underlying design
knowledge in order to accurately determine the cell clusters that
achieve high-quality placements. In summary, the logical affinity
among design instances directly dominates the quality of place-
ment, and one should better encode, rather than fighting “the law
of attraction” when performing placement.

7 CONCLUSION AND FUTURE WORK

In this paper, we have proposed PL-GNN, a graph learning-based
framework that performs placement guidance for commercial tools.
We demonstrate the proposed framework significantly improves
the default placement flow in Synopsys ICC2 on commercial CPU
designs. We believe this work demonstrates promising directions
of leveraging ML algorithms to solve crucial EDA problems. In the
future, we plan to study the impact of leveraging different node
features, and apply our framework in other advanced technologies.
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