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ABSTRACT
The state-of-the-art Monolithic 3D (M3D) IC design methodolo-
gies [1, 2] use commercial electronic design automation tools built
for 2D ICs to implement a pseudo-3D design and split it into two
dies that are routed independently to create an M3D design. There-
fore, an accurate estimation of 3D wire parasitics at the pseudo-3D
stage is important to achieve a well optimized M3D design. In this
paper, we present a regression model based on boosted decision
tree learning to better predict the 3D wire parasitics (RCs) at the
pseudo-3D stage. Our model is trained using individual net features
as well as the full-chip design metrics using multiple instantiations
of 8 different netlists and is tested on 3 unseen netlists. Compared
to the Compact-2D [1] flow on its own as the reference pseudo-3D,
the addition of our predictive model achieves up to 2.9× and 1.7×
smaller root mean square error in the resistance and capacitance
predictions respectively. On an unseen netlist design, we observe
that our model provides 98.6% and 94.6% RC prediction accuracy
in 3D and up to 6.4× smaller total negative slack of the design
compared to the result of Compact-2D flow resulting in a more
timing-robust M3D IC. This model is not limited to Compact-2D,
and can be extended to other pseudo-3D flows.

CCS CONCEPTS
•Hardware→ 3D integrated circuits;Modeling and parame-
ter extraction; Static timing analysis.
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1 INTRODUCTION
In monolithic 3D (M3D) ICs, dies are fabricated sequentially on
top of each other with the transistor stacking process [3]. This
allows the logic gates to be placed in 3D space, adding a new degree
of freedom for cell placement. With two dies (tiers) fabricated on
top of each other, the entire chip can fit into half the 2D footprint,
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leading to (1/
√
2)× smaller half perimeter wire length (HPWL) in

an M3D IC compared to corresponding 2D IC on average. This
HPWL saving has been known to be the main driver to reduce the
power and improve the timing in M3D ICs.

The state-of-the-art M3D IC physical designmethodology named
Compact-2D [1] starts from performing placement, clock design,
routing, and post-route optimization in the pseudo-3D design. Here
the design is still in a 2D layout but tries to mirror the parasitics
of a 3D IC design. The footprint of the pseudo-3D design is twice
that of the final 2-tier 3D design. This ensures all the cells of the
final 3D design fit in the 2D footprint with the same overall density
as the 3D design. The design is later compacted into the 3D foot-
print by scaling the linear dimensions by 1/

√
2. To account for this

compaction step, the wire resistance and capacitance parasitics are
also scaled by 1/

√
2 in the 2D layout. Next, tier partitioning splits

the design into two dies (tiers) and monolithic inter-tier via (MIV)
planning finds the optimal 3D connection locations between the
die, and finally, a die-by-die routing completes the 3D design.

The Back-End-Of-Line (BEOL) and Front-End-Of-Line (FEOL)
of a pseudo-3D stage are significantly different from the final 3D
stage. The cell pins which were on a single plane in the pseudo-3D
design are now split between the tiers, and the BEOL stack in the
final 3D design is a concatenation of the BEOL from two different
tiers. Therefore, there is a noticeable difference in routing between
the two stages. This is especially true for the nets that connect
cells on different dies (referred to as 3D nets). Even in the nets that
only connect to cells within a single die (2D nets), the additional
legalization stage in 3D after tier partitioning causes a parasitic
mismatch. If the parasitic estimation in the pseudo-3D stage is
smaller than the original value, the cells connected to these nets
show timing degradation when routed with 3D BEOL stack. It is also
possible that some nets will have a smaller capacitance in 3D design
due to the unpredictability of legalization after the tier partitioning.
These cells have immoderate drive-strength and consume excessive
power. This is why an accurate parasitic prediction at the pseudo-
3D stage mirroring the final 3D parasitics is essential to achieve a
good timing and power optimization in 3D.

In this work, we minimize such deviations in the RC values using
XGBoost [4], a decision tree learning model. The model predicts the
final 3D parasitics using 23 total features based on metrics related
to the net (wirelength), full-chip (average fanout), and scaled net
features (ratio of total and specific-net wirelength). With better
RC prediction, the optimization in pseudo-3D stage is closer to the
3D routing optimization leading to improved timing. We aren’t
focused on inductance estimation, as on-chip nets have negligible
inductance and are not considered by the EDA tools during on-
chip optimization. Our predictive model achieves an overall total
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Figure 1: A high-level overview of a pseudo-3D flow along
with the feature extraction, training stage used in this work.

negative slack reduction up to 6.4× smaller than the traditional
parasitic estimation model on an unseen netlist.

2 EXPERIMENTAL SETUP
2.1 Model Training
Figure 1 shows the overall flow used for data collection in each
design along with the pseudo-3D flow. To train the model, we
use a total of 8 different verilog netlists from Opencores [5] and
ISPD contests [6]. These are first implemented as a pseudo-3D
design using Compact-2D flow. Features extracted at the end of
this stage serve as the input to the training model. The cells are
partitioned into two tiers based on physical (placement, cell size)
and logical (net connectivity) informationwith bin-based placement
driven FM min-cut algorithm [7]. Legalization and routing are then
done in the 3D design to extract the ground truth 3D parasitics
used to train the ML model. Each netlist is designed at four target
frequencies, and with three different tier partitioning options at
each frequency to generalize the model and reduce model bias to
specific implementations.

2.2 Model Application
The trained model is integrated with the pseudo-3D flow so that
the optimization in this stage uses predicted RCs. As the input net
features for training are extracted after detail routing, we integrate
the model after the same stage. Once the design is routed, the
input features are extracted and passed to the ML-model to get the
predicted 3D RCs of the nets. These RCs are assigned to the routed
nets with a net-by-net annotation, and the design optimization
is done as usual. During optimization, connectivity of the netlist
changes due to the addition and removal of buffers, changes in the
cell types, etc. Due to this, the annotated nets are discarded and
replaced with a non-annotated net.

To annotate these new nets, the net features are once again
collected (stage 5 in Figure 2) and re-annotated using model pre-
dictions. Now, an incremental in-place optimization using ‘do not
touch’ attribute for the nets (stage 6 in Figure 2) is performed so
that the cells are sized in-place using model predicted RCs, and no
(or a very few) new nets are added. The first optimization stage
doesn’t use ‘do not touch’ attribute as it severely constrains the
EDA tool. This is the final pseudo-3D design with ML-based RCs
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ML model

Legend:
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RC prediction
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Figure 2: Our RC prediction model applied to Compact-2D
(C2D) flow.

assigned to the nets during final optimization. The design is then
split into two tiers as per the normal pseudo-3D flow and perform
3D routing. The overall flow is given in Figure 2.

3 RC PARASITICS DISCREPANCY ANALYSIS
We implement the 2D and 3D designs based on a commercial 28 nm
technology node. For the 2D design, we use six metal layers for
routing. For the 3D design, technology files are created to reflect
the full 3D metal stack that has 12 routing layers (6 layers per die).
An inter-layer dielectric separates the two BEOL stacks to repre-
sent the top-die FEOL’s insulating oxide in 3D. Two sets of nearly
identical cell files are generated for 3D FEOL from the correspond-
ing 2D technology files. The 1/

√
2 RC scaling assumption during

the pseudo-3D stage in Compact-2D flow is based on the fact that
HPWLs are scaled down by 1/

√
2 when the design is converted

from pseudo-3D to 3D stage. While this is true on a global scale,
RC parasitics are not scaled down uniformly for all the nets. In
this section, we analyze this RC parasitics discrepancy between
pseudo-3D and 3D designs in detail.

3.1 Via Resistance
In modern technology nodes, the parasitics of a via start playing a
considerable role in the total resistance of a net. For instance, in the
28 nm technology node, the default via from each metal layer has
a resistance equivalent to 1.4 µm of signal wire, and a capacitance
equal to a wire of 0.1 µm in length. As the number of vias on a
net increase, the parasitics are no longer dependent solely on the
length of the wires. This is much more apparent in the resistance of
the net than the capacitance due to the large resistance of the vias.

From Table 1, the 128-bit AES design has an average of 0.76
vias per 1 µm of net in the pseudo-3D design and the number of
vias increase by ∼10% to 0.83 vias per 1 µm of net in the final 3D
design. This is due to the usage of more metal layers in the smaller
footprint of 3D design. The routing in 3D needs uses more metal
layers requiringmore vias to complete connectivity than the pseudo-
3D stage. In pseudo-3D flow, as the global BEOL RCs are scaled by
0.707×, it doesn’t account for the via RCs correctly.

The via impact is observable in the 3D RC vs. wirelength plots
in Figure 3. In these plots, each point on the graph is a net in the
3D design and they are colored based on the number of vias on the
net. The RC per unit length values for the 28 nm technology are
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Table 1: 28nm 128-bit AES implementation statistics of the
Pseudo-3D and the final 3D routed designs

128-bit AES Pseudo-3D Final-3D

Metal Stack 6 Layers 12 Layers
Cell Pin Count 381,907 381,907
Wire length (µm) 1,141,178 1,234,332
Via Count 872,931 1,028,040
Via Count per unit wire 0.76 0.83
Ground Capacitance (pF) 119.34 140.83
Coupling Capacitance (pF) 35.20 31.71
Wire Resistance (MΩ) 15.26 21.23

within 5% of each other for all the 6 metal layers used for signal
routing. So the total RC of a net is closely approximated using
the total wirelength instead of having to break it into different
wire segments on various metal layers. The wire capacitance is
almost linearly dependent on the total wirelength with only a small
deviation from the mean caused by effects such as number of vias,
coupling capacitance between the nets, and small differences in
the RC per unit length of different metal layers. On the other hand,
the resistance of nets, while linearly increasing with wirelength,
is much wider (high variance) due to the larger contribution from
the vias. Considering the nets with similar via count, the resistance
values are close to linear with wirelength. So, properly considering
the via resistance contribution is important to get a good resistance
estimate of the net in 3D.

3.2 Tier Partitioning
Another important difference in the pseudo-3D and final 3D comes
from the cell movement due to the legalization after tier partitioning.
Since it is not possible to determine the cell partitioning during
the pseudo-3D stage, we make use of features like wirelength, half-
perimeter bounding box (HPBB), and the number of connections
made by a net, to predict if the net is likely to be partitioned. This
gives the ML model an insight into the additional routing required
in 3D due to cell movement and 3D metal stack. Depending on the
tier-partitioning constraints used, the type of nets that are likely to
be split into two-tiers as a ‘3D net’ will vary, this is discussed using
various features in the following sub-section 3.3.

3.3 Scaling Error
First, we introduce a new metric called Scaling Error for resistance
(𝑆𝐸𝑅 ) and capacitance (𝑆𝐸𝐶 ) as follows:

𝑆𝐸𝑅 (𝐶) =
R(C) of nets in pseudo-3D
R(C) of the nets in final-3D

By plotting 𝑆𝐸𝑅 (𝐶) 1 for various features of the net, we can un-
derstand their effects on RC scaling. The valid range of 𝑆𝐸𝑅 (𝐶) is
(0,∞).
𝑆𝐸𝑅 (𝐶) ≈ 1 implies that the scaling done in the pseudo-3D stage
is adequate, and the parasitics in the pseudo-3D design are a good
estimate for the final 3D parasitics.
𝑆𝐸𝑅 (𝐶) ≪ 1 implies that the estimation in pseudo-3D is much lower
1It is important to note that Scaling Error=1 implies exact scaling, any deviation away
from 1 is undesirable. 𝑆𝐸𝑅 (𝐶 ) close to either 0 or∞ are considered bad
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Figure 3: (a) Capacitance, (b) Resistance of nets in the AES-
128 design w.r.t. routed wirelength of the net. The points are
color coded based on the number of vias on each net.

than the final 3D parasitics, this results in worse timing after the
design is 3D routed.
𝑆𝐸𝑅 (𝐶) ≫ 1 implies that the parasitic value is over-estimated re-
sulting in aggressive cell sizing to meet timing in pseudo-3D. This
creates higher power consumption in the 3D routed design.
Figure 4 shows these plots for some of the net features. We group
the nets based on various features and find the 𝑆𝐸𝑅 (𝐶) for the group.
The numerator and denominator are now summed over the nets
in the group, to get R(C) of the group of nets in pseudo-3D and
final-3D respectively.

Figure 4(a) shows the 𝑆𝐸𝑅 (𝐶) vs. wirelength. A point ’x’ on the
X-axis corresponds to the group containing all the nets with wire-
length (𝑤𝑙) such that 𝑥 < 𝑤𝑙 ≤ 𝑥 + 1. To clearly understand this
graph, let us divide it into three regions: Region 1( 0 ≤ 𝑥 < 10),
Region 2 (10 ≤ 𝑥 < 32), Region 3 (32 ≤ 𝑥 ).

We see that for small wirelengths in Region 1 𝑆𝐸𝑅 (𝐶) ≪ 1, the
scaling error (ratio between the estimated pseudo-3D parasitics and
the actual 3D parasitics) is very small, and pseudo-3D parasitics are
much smaller than the real 3D parasitics. This is because when cells
are legalized, short nets are heavily affected by minor displacements
of the cell. Therefore, these are much likely to have an increased
wirelength and higher parasitics in the 3D design. The sensitivity to
the cell movement decreases as the wirelength increases, which can
be seen by the fact that the 𝑆𝐸𝑅 (𝐶) starts increasing with wirelength
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in this Region signifying that the estimated parasitics in pseudo-3D
are a better match for final 3D parasitics.

After this, we see a slight dip in 𝑆𝐸𝑅 (𝐶) for wirelengths in Region
2. This relates to the fact that as nets become longer they become
more likely to be partitioned into two tiers and connect to pins on
different tiers. There is a two-fold reasoning for this wirelength
impact on partitioning likelihood: 1. Longer wirelengths mean that
they are likely connected to more cells and are favorable to be
partitioned (more analysis on this part is done with the help of Fig-
ure 4(b) next). 2. The bin-based area-balancing of tier partitioning
is more likely to convert long nets in pseudo-3D to ‘3D nets’ by
partitioning them. This trend is observed in the average MIV count
vs. wirelength graph given by the green line in Figure 4(a). We
only include 3-pin nets (connecting 3 pins) in average MIV count
calculation to remove the effect of net connectivity on tier parti-
tioning and MIV count. For shorter nets in the wirelength Region
2, the additional metal layer routing becomes a measurable portion
of the total routing of the net. As the net length keeps increasing,
the probability of partitioning first increases and more nets in the
wirelength group are partitioned, leading to a dip in 𝑆𝐸𝑅 (𝐶) .

As the wire length keeps increasing beyond ≈ 32 µm in Region
3, we again see an increase in 𝑆𝐸𝑅 (𝐶) . This is because the extra

metal layer cost due to partitioning keeps decreasing in comparison
to the wirelength, and the estimated RC values once again keep
improving.

Figure 4(b) shows the avg. 𝑆𝐸𝑅 (𝐶) vs. the net connectivity (=
# of Cells on the net). Each point on the 𝑥𝑖 X-axis corresponds to the
group of nets with 𝑥𝑖 number of cells connected to it. As the number
of cells increases, the net becomes most likely to be partitioned and
𝑆𝐸𝑅 (𝐶) decreases showing that the pseudo-3D estimation becomes
worse. In hypergraph partitioning, the cut-size of a net is either
‘0’ or ‘1’. So, the cut-size cannot increase beyond ‘1’ irrespective
of the number of times a net crosses a partition. Because of this,
it is more efficient to partition the nets with a large number of
cells than with fewer cells. A large cell-count net can be arranged
in various configurations without increasing the cut-size beyond
1. So, when such nets are not partitioned, all the cells connected
to it are placed in a single partition which restricts the solution
space greatly and the expected cut-size increases. So, it is highly
likely for nets with large connectivity to be partitioned compared to
nets connecting fewer (say, 2–3) cells. This is still just a likelihood
estimate of partitioning and not a hard rule.

Figure 4(c) shows the scaling error due to the increased routing
cost of going back and forth the 3Dmetal stack.While the cell-count
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on the net is only a probabilistic measure of the tier partitioning,
the MIV count used here in Figure 4(c) is a derived net feature
from 3D routing and can give us the exact impact of MIVs. This
feature is only shown for analysis and is not used in model training
as it is not available at the pseudo-3D stage. Here, 𝑥 = 0 MIVs
corresponds to the 2D nets, and the points with 𝑥 ≥ 1 are the 3D
nets. There is a clear difference in the scaling factor between these
two groups, and the 𝑆𝐸𝑅 (𝐶) deviates further away from 1(ideal
estimation) as the number of MIVs increases. For low MIV count
𝑥 ≤ 5, the nets correspond to relatively shorter nets on average.
So, when these nets are partitioned, the number of vias increases
dramatically as the nets travel the complete routing stack from
the bottom to top metal layers. So, 𝑆𝐸𝑅 < 1 in this region. The
capacitance value is weakly dependent on the number of MIVs
and this error is not as drastic. As the number of MIVs increases
and the average wirelength becomes greater, the additional via
cost decreases and 𝑆𝐸𝑅 rises towards the correct scaling factor of
1. This rise is not present in 𝑆𝐸𝐶 as the number of vias has very
little impact, and the scaling simply decreases due to the increasing
metal layer cost of going back and forth the 3D stack.

In Figure 4(d), we introduce a new feature called “Dense Bins”.
Consider net n1 as shown in Figure 4(e) that is connected to three
cells c1, c2, c3. At each endpoint of the net, we consider a square of
side 3 ×𝐶𝑒𝑙𝑙𝐻𝑒𝑖𝑔ℎ𝑡 , where cell height is given by the technology.
The bin is defined as a “dense bin” if the density within the bin is
more than a certain threshold (75% in our case). The number of
dense bins of each net is used as an input feature. Bins with high
density are likely to have overlapped cells after tier-partitioning
which would be displaced during legalization. As the number of
dense bins increases, more ends of nets would be displaced when
3D routing is performed. We see that the decrease in the 𝑆𝐸𝐶 with
the number of dense bins that is stronger than the net-connectivity
feature, showing its importance. We also see that the 𝑆𝐸𝐶 is very
close to 1, for the net group with #Dense Bins = 0, as these cells in
the grouping are more likely to stay unchanged during legalization
and have the best capacitance estimation among all the groups
discussed so for. Another input feature used in our model based on
these bins is the average density of the bins. During training, we
see that this average bin density is an important feature for both
resistance and capacitance modelling.

4 LEARNING MODEL
To train the machine learning model that can predict the RC para-
sitics, we use XGBoost [4] open-source python library. XGBoost is
based on gradient boosting using decision trees and is considered
state-of-the-art for regression and classification tasks. The decision
trees in XGBoost are chosen to maximally reduce the loss function,
which in our case is given by the following equations:

𝐿𝐶 =
∑
𝑛𝑒𝑡𝑠

(𝐶𝑝𝑟𝑒𝑑 −𝐶𝑡𝑟𝑢𝑒 )2 𝐿𝑅 =
∑
𝑛𝑒𝑡𝑠

(𝑅𝑝𝑟𝑒𝑑 − 𝑅𝑡𝑟𝑢𝑒 )2

4.1 Input Features
As discussed in Section 3.3, we use several input features that learn
if a net will be split in 3D, or if the cells connected to the net are
being displaced. Apart from these, we use features of the full chip

WC < 4.50e-3

3.510e-13.502e-1

WL < 1.99e1

3.526e-1 3.624e-1

WC < 2.09e-2

yes

yesyes

no

nono

WC: Wire Capacitance (pF)

WL: Wirelength (um)

Figure 5: A simple decision tree fromXGBoost when trained
on a small netlist for capacitance modelling. The leaf nodes
are the contribution of this tree to the final capacitance

design for the model to identify between different designs if needed.
Another set of features we use are derived (scaled) features that are
a combination of multiple input features. All the input features used
(derived and independent), and their meaning and/or significance
in training the model are presented in Table 2.

4.2 Data Processing
The data to be used in training the model is collected as described
in Section 2.1. The netlists are split into two sets for training, and
testing. Here we use 8 netlists for training, and 3 for testing. The
testing data is never used by the model to train or to modify hyper-
parameters and remains unseen throughout the training process.
Further, not all nets in the training data set are used. Since the de-
signs that we use vary widely in the total number of cells and nets,
it becomes unfair to the small netlists to use the entire data from
each design. This introduces bias towards large netlists and can
result in loss of accuracy when used on a generalized design. For
each design, we randomly select N nets, where 𝑁 ∼ min netlist size.
The data is then further shuffled to remove any possible bias in the
order used nets during data collection.

5 RESULTS
5.1 Training and Inference
The training data set has ∼ 3 × 106 data-points (nets) in total from
different netlist implementations, and each data-point has a total of
23 input features. Using 80:20 split for training and cross-validation
sets gives us ∼ 0.75 × 106 nets for cross-validation set. Training
is a one-time task and takes only up to ≈ 10min in total. Using
cross-validation set, we choose the training model with 30 decision
trees as the cross-validation error saturates at this point and starts
to increase as more decision trees are included due to overfitting.

Figure 6 shows the feature importance of the top-18 features
used for the RC models. In gradient boosting algorithms, feature
importance quantifies the average improvement in the loss function
due to the feature. Unsurprisingly, resistance and capacitance in
pseudo-3D are the most important features for the respective mod-
els. Note that, this still does not mean the scaling factor is uniform
as in Compact-2D. In the resistance model, the number of pins
(net connectivity) and vias of the net in pseudo-3D also become
crucial as they dictate the number of vias after partitioning. In the
R(C) models, the other parasitic variable C(R) has high importance
which shows that the model uses both resistance and capacitance of
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Table 2: Input Features used to train the XGBoost model, and their importance and/or explanation

Feature Name Significance

Individual Net Features

Wirelength Long, medium, short wires have varying average 𝑆𝐸𝑅 (𝐶 )
HPBB Wirelength estimation from placement; not affected by congestion
Net connectivity Number of cells connected by the net; estimates partitioning probability
Via Count Number of vias on the net; useful for resistance calculation
Wire Cap capacitance in pseudo-3D design, has strong effect on final capacitance
Wire Res resistance in pseudo-3D design, has strong effect on final resistance
Average Local density Average density of all the bins of a given net as shown in Figure 4(e); useful for deciding legalization errors
Dense Bins Number of dense bins of each net; useful for deciding legalization errors

Full Chip Features (Design Identifiers)

Total WL Total routed signal wirelength, design identifier
Number of nets Total number of nets in the design
Number of cells Total number of cells in the design
Average Fanout Number of cell pins/ number of nets; design connectivity information
Chip Area Footprint of the design
Cell Area Total standard cell area in the design
Utilization Standard cell density
Bin Count Number of partitioning bins to be used

Derived Features

net WL/ total WL Identifying global nets among various designs; detouring, cross coupling capacitance information
HPBB /

√
Chip area Identifying global nets among various designs, less affected by pseudo-3D congestion

Wire Cap / Total Cap Fractional capacitance of net w.r.t. total, importance of net within a design
Wire Res / Total Res Fractional resistance of net w.r.t. total, importance of net within a design
net WL / Bin size For a given wirelength, a increase in bin-size would decrease the probability of net being partitioned
HPBB / Bin size Similar to net WL/ Bin size, but only considers placement information
HPBB + 0.1*VC A combined HPBB, via count feature

the nets during modeling of each variable. An interesting outcome
is that the average bin density is the 5𝑡ℎ most important feature
in both the models, and sometimes better than the usefulness of
wirelength or HPBB of the net. The full-chip features always have
medium-to-low importance as they do not have any net informa-
tion, and the derived features which use both the full chip and
the net features on the other hand have medium importance. The
full-chip and derived features are mainly useful in distinguishing
nets from different designs.

Table 3 shows the final timing, power, and the RC accuracy
for C2D and our flow using predicted 3D RCs. Using the modeled
RCs, the root mean square error of the resistance estimation (𝑀𝑅 )
decreases by up-to 61% (∼ 2.5× decrease) in testing set and 65%
(∼ 2.8× decrease) in the training set from the results shown in
Table 3. Capacitance RMSE (𝑀𝐶 ) goes down by up-to ∼ 40% in both
training and testing datasets. The improvements come from the
better estimation of 3D displacement, partitioning, double metal
stack overhead by the RC models. Overall, the decrease of 𝑀𝑅 is
much larger than the decrease in𝑀𝐶 because of the poor resistance
prediction in the uniform scaling model in pseudo-3D design, and
difficulty of predicting coupling capacitance in our model.

From the histograms of the RC values shown in Figure 7, the
pseudo-3D design has more predictions of low capacitance values,
leading to an optimistic parasitic estimation. This is also seen is
table 1, where the pseudo-3D ground capacitance estimation is
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Figure 6: The 18 most important features for RC modelling.

∼ 14% smaller than the 3D parasitics. When comparing the overall
design of the unseen netlist ‘tate’ in Table 4, the total capacitance
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Figure 7: RC Histograms in the unseen ‘tate’ netlist design

error from pseudo-3D to 3D stage is reduced to just 5.1% from -
21.1%, and the total resistance error is 1.4% as compared to -32.3%
in pseudo-3D. The capacitance error is higher than the resistance
modeling error as coupling capacitance cannot be easily predicted
from per net features, and requires physical layout information and
neighboring routing structures of each wire segment which are not
provided in our feature list.

5.2 Full-chip PPA
The complete 3D flow with RC predictions, annotations, and in-
place optimization still takes the similar amount of time as the
Compact-2D flow for M3D ICs with only a < 1% increase in total
run-time on average. With better overall RC predictions, the Total
Negative Slack of the design goes down significantly by as much as
89.0%(≈ 9× smaller) in the training set and 84.6%(≈ 6.5× smaller)
in the testing set.

TNS improves in all the designs except LDPC as this is an ex-
tremely wire-dominant design with many long wires. The 𝑀𝑅 ,𝑀𝐶

for LDPC are significantly higher than every other design for both
pseudo-3D and ML-based predictions. The small improvement in
𝑀𝑅 ,𝑀𝐶 with predictive scaling is not enough to improve the WNS,
TNS of the design. Out of the 11 total netlists, 4 of them (ecg, ldpc,
matrix-multiplier, tate) have a worse WNS with ML-modelled RCs.
The WNS of design is heavily dependent on a very few critical
nets, but we do not have definitive features to learn the timing
criticality of the nets. Moreover, the slack of a path depends on all
the cells and nets on the path, making it more complex to predict
with ML models. Features that reflect global netlist connectivity,
cell strengths, etc. are required to target the WNS reduction. When

Table 3: Timing (in ns), Power (in mW), and RC accuracy.
Root Mean Square Error of Capacitance(𝑀𝐶 ) is in aF, and
resistance(𝑀𝑅) in dΩ. For context, the mean capacitance
value in the training set is ∼ 1.5 aF, mean resistance is ∼
1.8 dΩ. Δ > 0 if the metric improves with our ML based 3D
RC model.

Netlist PPA Metrics Accuracy Metrics
Scaling Type→ C2D ML Δ% C2D ML Δ%

Trained Netlists

aes-128 Pwr 141.35 142.47 -0.8 𝑀𝐶 0.76 0.54 28.9
110k Cells WNS -0.100 -0.081 19.0 𝑀𝑅 1.15 0.52 54.8
2.25GHz TNS -55.37 -22.87 58.7
cordic Pwr 20.32 21.69 -6.7 𝑀𝐶 0.54 0.36 33.3

30k Cells WNS -0.132 -0.124 6.1 𝑀𝑅 0.89 0.43 51.7
0.75GHz TNS -62.9 -32.0 49.1

des Pwr 129.6 133.6 -3.1 𝑀𝐶 0.78 0.52 33.3
50k Cells WNS -0.102 -0.075 26.5 𝑀𝑅 1.03 0.50 51.5
2.25GHz TNS -52.1 -20.4 60.8

ecg Pwr 117.0 105.3 10.0 𝑀𝐶 0.81 0.48 40.7
95k Cells WNS -0.134 -0.464 -246 𝑀𝑅 1.29 0.45 65.1
1.50GHz TNS -222.4 -94.7 57.4

edit Pwr 122.0 122.0 0.0 𝑀𝐶 1.05 0.82 21.9
73k Cells WNS -0.261 -0.158 39.5 𝑀𝑅 1.39 0.58 58.3
1.50GHz TNS -208.6 -161.8 22.4

fpu Pwr 22.2 22.6 -1.8 𝑀𝐶 1.18 0.74 37.3
40k Cells WNS -0.173 -0.115 33.5 𝑀𝑅 1.58 0.56 62.9
0.75GHz TNS -129.8 -14.3 89.0
ldpc Pwr 104.6 109.0 -4.2 𝑀𝐶 1.89 1.50 20.6

45k Cells WNS -0.209 -0.223 -6.7 𝑀𝑅 1.57 0.82 47.8
1.25GHz TNS -167.1 -178.6 -6.9
matrix Pwr 82.1 82.8 -0.9 𝑀𝐶 1.09 0.96 11.9

60k Cells WNS -0.125 -0.196 -56.8 𝑀𝑅 1.10 0.56 49.1
1.00GHz TNS -31.5 -21.7 31.1

Testing (Unseen) Netlists

b19 Pwr 40.1 40.1 0.0 𝑀𝐶 0.73 0.44 39.7
35k Cells WNS -0.161 -0.102 36.6 𝑀𝑅 1.27 0.49 61.4
1.25GHz TNS -155.8 -37.3 76.1

tate Pwr 132.4 131.8 0.5 𝑀𝐶 1.26 0.85 32.5
150k Cells WNS -0.401 -0.450 -12.2 𝑀𝑅 1.42 0.62 56.3
1.00GHz TNS -497.3 -76.8 84.6

vga Pwr 28.40 28.47 -0.2 𝑀𝐶 0.20 0.20 0.1
35k Cells WNS -0.193 -0.191 1.0 𝑀𝑅 1.80 1.11 38.3
1.25GHz TNS -48.4 -12.7 73.8

arranged according to reduction in RMSE, the top 3 least perform-
ing netlists are: vga, matrix-multiplier, ldpc, and they also have a
worse or no improvement in WNS. A lower reduction in RMSE
means that the model is more likely to make errors in these designs
compared to others. When these errors occur on the timing critical
nets, the WNS worsens.

Total power increases by a small margin when pseudo-3D op-
timization is done with ML modeled RCs. This is mainly because
the RC prediction with 0.707× uniform scaling is optimistic leading
to smaller than expected RCs in pseudo-3D. The netlist ECG is an
exception to this rule, as it has a ∼ 10% reduction in power for
this case. While this is accompanied by a TNS that is ∼ 2× smaller,
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Figure 9: Full-Chip layouts of the tate netlist designwithML
modelled RCs in (a) Pseudo-3D stage, (b) final 3D stage

Table 4: Pseudo-3D statistics of the unseen netlist ‘tate’ de-
signed at 1.0GHz using Compact-2D flow with and without
the 3D RC modelling.

tate 1GHz w/o ML modelling w/ ML modelling

Chip Area (µm2) 116,690 116,690
Cell Area (µm2) 187,492 187,609
Buffer Area (µm2) 1,443.7 1,495.6

Capacitance Error (%) -21.1 5.1
Resistance Error (%) -32.3 1.4

WL (m) 1.610 1.612
Total Power (mW) 126.6 132.8

TNS (ns) -0.0 -0.0

Final 3D Power (mW) 132.4 131.8
Final 3D TNS (ns) -497.3 -76.8
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Figure 8: Timing Histograms of all the paths in the final 3D
stage of unseen netlist ‘tate’ with and without RCmodelling
in the pseudo-3D design

the WNS increases dramatically once again showing its sensitive
nature even when𝑀𝐶 , 𝑀𝑅 are significantly lower with the model
RC prediction.

An in-depth study of the timing paths of ‘tate’ design is useful in
understanding the slack evolution. From Table 3, we observe that
the WNS of ‘tate’ becomes worse with ML predicted RCs, but the

timing histograms in Figure 8 show a more complete picture. While
the worst path slack degrades, the overall number of paths with
negative slack (left end of the X-axis) is much smaller in the 3D
design with ML modeled RCs. Another interesting fact is that the
number of paths towards the right end decreases with MLmodeling.
The decrease in the number of over-optimized paths stems from
the fact that the ML modeling is not abuse scaling by simply over-
scaling all the RCs to get better TNS. This shows that the ML
model not only helps improve worst timing paths but also reduces
the over-optimization of the cells. The number of over-optimized
paths cannot go down to zero as some cells in this group will also
be present in other timing-critical paths making it impossible to
downsize such cells.

The evolution of the PPA on the unseen netlist ‘tate’ is further
detailed in Table 4 and its full chip layouts in Figure 9. The PPA
metrics in this table are from the pseudo-3D stage unless specified
as 3D. Even with the better parasitic estimation, the TNS cannot
be matched from pseudo-3D to 3D stages. The total power, on the
other hand, is much closely predicted in the pseudo-3D with the RC
modeling. Due to the optimistic RC prediction (-ve error % value)
in pseudo-3D without ML modeling, the power estimation is also
very low with pseudo-3D and there’s an increase in the 3D stage
with true 3D RC values being higher. With the ML modeled RCs,
we also provide a better estimation of the total power for faster
feedback during chip design.

6 CONCLUSION
In this work, we presented an ML-based RC modeling framework
for monolithic 3D designs. Using this, we have shown a significant
reduction in the TNS of the 3D designs without over-optimizing
the design or increasing the design run-time. As a result of our
model, we also have a better total power prediction at pseudo-3D
stage. The WNS is more sensitive and correctly identifying the
timing criticality of the nets and assigning corresponding weights
is required to minimize the WNS further. The training model can
also be incrementally improved after each new design to improve
its accuracy.
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