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Abstract—Low latency inference has many applications in
edge machine learning. In this paper, we present a run-time
configurable convolutional neural network (CNN) inference ASIC
design for low-latency edge machine learning. By implementing a
5-stage pipelined CNN inference model in a 3D ASIC technology,
we demonstrate that the model distributed on two dies utilizing
face-to-face (F2F) 3D integration achieves superior performance.
Our experimental results show that the design based on 3D
integration achieves 43% better energy-delay product when
compared to the traditional 2D technology.

I. INTRODUCTION

Deploying deep learning and machine learning solutions on
edge devices have many potential applications, but also poses
significant technical challenges [2]. Many hardware techniques
have been proposed to accelerate deep learning model infer-
ence, either to provide better inference throughput or at lower
power consumption [6], [7], [9], [11]-[13], [16]-[18]. Another
critical performance metric for edge inference is the latency
[5], of which an active research area is to implement deep
learning models on FPGA platforms [13], [21]. In this study,
we introduce a design flow to generate and optimize CNN
accelerators using face-to-face (F2F) bonded 3D Integrated
Circuits (3DIC) [15], [19]. Although the network topology
of the CNN is fixed, the weights can be reprogrammed at
runtime. We demonstrate our 3DIC design flow on a 5-stage
low-latency CNN accelerator, which has potential applications
in high energy physics on-detector data classification.

As an application demonstration of the design flow, we
implement a CNN model for the Compact Muon Solenoid
(CMS) experiment [3]. Hardware accelerator chiplets which
can convert raw data into physics information on the detector
can be a valuable mechanism for achieving real-time track
reconstruction. We have developed a compact CNN model
which analyzes charge distribution patterns in the CMS pixel
detector to calculate track parameters such as x,y,z coordinates,
cot « and cot 3. This chiplet architecture assumes that data
hits not associated with tracks or tracks with momentum
< 0.3 GeV have already been rejected and filtered by the
upstream electronics. The model currently utilizes cluster data
from a single sensor readout integrated circuit (ROIC); the

accuracy of the predicted values can be further improved by
combining data from two correlated sensor layers. The input
data for the model is generated from an analog front-end that
synchronously digitizes [4] charge information every 25 ns for
sensor pixels of 50 x 12.5 um? into a 2bit value. The cluster
shapes are analysed in local regions corresponding to 13 x 21
pixel:
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Fig. 1. LEFT: Topology of the CNN. The numbers in each module represent
the numbers of weights. The numbers between each component represent the
sizes of input/output tensors. RIGHT: Design flow for 2D and 3D.

II. ASIC DESIGN AND DESIGN FLOW

The top-level logic of our CNN implementation is a five-
stage pipeline, where each stage corresponds to a CNN stage
shown in Figure 1. The sensor readouts are digitized in the
2bit format. Our CNN model design is also digital. We use a
customized design methodology shown on the right-hand side
of Figure 1, which we will explain in the rest of this section.

A. CNN HLS Generator

The CNN generator flattens each layer of the CNN, gen-
erates HLS code for each layer, creates a data flow pipeline
across layer modules, creates interfaces for input and output
feature maps, and also creates interfaces for weights from
each layer specific RAM. The pseudo code to generate the
HLS code is shown in Figure 2. The generated HLS code
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can be synthesized with our HLS tool to generate the ASIC
synthesizable RTL. The CNN HLS generator can intelligently
select the bus width of each HLS stream and number of
streams required for each input and output feature maps, and
weights stream. It also considers the maximum stream bus
width and SRAM memory data bus width into consideration.
The HLS code generator iterates over each layer and generates
HLS module code for each layer and corresponding scan chain
logic if required. The runtime configuration of the weights is
achieved by four independent scan chains, one for each of
pipeline stage (Note that the maxpooling layer does not have
any adjustable weights). The CNN generator also generates
scan chain logic for each stage with weights (Convolution and
Dense layers) to load the weights from SRAM memory blocks.
At runtime, the scan chain logic will be invoked during the
initialization to load the weights from SRAM and to set them
in the internal logic registers of the network HLS module. At
the end it generates a network level HLS module with a HLS
data flow pipeline of all layer level HLS modules and scan
chain modules with connections established among them. The
process of HLS code generation from the given input quantized
model is completely automated and no manual intervention is
required.

def CNNGenerator (network, smem_datawidth,
<« stream_max_width) :

hls_code = []
for layer in network.layers:
if layer.type == CONV:

conv = ConvHLS (layer)

hls_code +=

— conv.generate_hls_module (stream_max_width)

hls_code += conv.generate_scan_chain (smem_datawidth)
elif layer.type == DENSE:

dense = DenseHLS (layer)

hls_code +=

— dense.generate_hls_module (stream_max_width)

hls_code +=
<~ dense.generate_scan_chain (smem_datawidth)
elif layer.type == POOL:

pool = PoolHLS (layer)

hls_code +=

— dense.generate_hls_module (stream_max_width)

hls_code +=

< dense.generate_scan_chain (smem_datawidth)
hls_code += generate_network_module (network)
return hls_code

Fig. 2. Pseudo code to generate HLS code for machine learning modules

The generated HLS modules for the CNN inference engine
is shown in Figure 3. The scan chain module reads weights
from SRAM through 128-bits data bus and fill in the registers
of convolution (Conv0, Convl) and fully-connected (Dense0,
Densel) layer HLS module stream registers. We have set
the maximum stream width constraint of 4096 bits for input,
output and weight streams. Conv0 requires 273 input feature
elements (E:273) represented with 546 bits (B:546) in a single
stream (each feature with 2 bits), 576 bits weights in a single
stream, and 3840 bits of output features in a single stream.
Convl requires 10 weight streams each of 4032 bits which can
hold 2016 weights and is represented with 'B:4032 (E:2016,
10).
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Fig. 4. Cross-sectional view of metal stack for both 2D and 3D design.
B. Logic Synthesis and Optimization

With the resulting verilog netlist, we utilize the Synopsys
Design compiler [10] to synthesize the register transfer level
(RTL) from Vitus HLS into the gate-level netlist for the
targeted technology node. We leverage a commercial 28nm
technology to implement the ASIC design. We have set
the target frequency of the synthesize module to 1GHz for
all 5 layers (stages) as in Figure 3 including the the top-
level module which control the data flow between different
modules. There are 45 total 128-bit SRAM with 1K rows in
the design. The top-level module contains the weight parsing
module using a scan chain for each neural network layer
(The maxpooling layer does not have any trainable weights).
Therefore, there are 4 SRAM memory blocks for loading the
weight. The remaining 41 SRAM blocks contains the data
stream to cache the output. From Figure 3, the bus width for
each stream requires 5 bank of 128-bit SRAM. So we can
store 8K frames for our inputs of smart pixel network HLS
modules. Table I illustrates the ASIC cell statistics after the
logic synthesis stage. The cell area correlates with the number
of weight element in Figure 3. The largest module is the conv1
which requires almost 18K weight elements.

C. ASIC Physical Synthesis and Optimization

After we obtain the gate-level netlist from logic synthesis
stage, we perform the physical synthesis for both 2D and 3D
design. We utilize the 28nm commercial process design kit
(PDK), which provides the standard cells and back-end-of-
Line (BEOL) library. We generate the memory macros from
the memory compiler with the same technology node. For
3D design, we integrate two 2D dies with face-to-face pads
using the hybrid bonding approach, since it provides high
bandwidth 3D connection with sub-micron pitch [20]. And,
recently, industry has developed the F2F 3D stacking chip
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Fig. 5. Top-level Placement comparison between 2D and 3D designs. Note
that the modules are color as follows: conv0 in red, pool in yellow, convl in
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TABLE I
ASIC LOGIC SYNTHESIS STATISTICS

Cell Count ( #) Cell Area
Module Seq. Comb. Total (um2)

1. Conv0 2,255 | 105,112 | 107,367 125,259
2. Pool 3 3,975 3,978 6,459
3. Convl 73,7771 | 387,678 | 461,449 653,583
4. Dense( 32,787 | 109,532 | 142,319 224,748
5. Densel 1,311 4,309 5620 8,880
6. Top level | 10,435 26,176 36,611 55,004

(Intel Lakefield [8]). Thus, the 3D design has 12 metal layers
where each tier contain 6 metal layers with one additional
layer for F2F pad. The metal stacking for 3D design has been
generated in this setting for parasitic extraction.

In this paper, we explore the Power-performance-area (PPA)
benefits of neural network modules between 2D and 3D design
with two separated experiments. We adapt the Pseudo-3D
approach [14] in order to obtain the commercial quality for
3D design which will be the best estimation to compare with
commercial 2D design. We adapt the memory-on-logic tier
setting in the 3D design since the top-level module contains the
memory connection for loading the weights and data stream.
We utilize [1] to implement the memory-on-logic 3D design.

1) Tier partitioning for 3D design: With a given netlist, we
have to perform the tier partitioning for 3D design since the
netlist does not provide any information about the tier location.
For 2D design, this step is not performed.

For 3D design, we place all memory on the top tier in the
3D design while all logic blocks (i.e., conv0, maxpool, convl,
dense0 and densel) are placed in the bottom tier.

2) Floorplaning: We create the partition for each neural
network layer except for the top-level, which control the data
flow between different modules. In 2D design the memory are
placed at two sidesof the die, so the area in the middle are
available for logic cells, as shown in Figure 5.

D. Placement, Clock Tree synthesis, and Routing

After we perform the physical design flow for both 2D and
3D design [1] with floorplanning for both 2D and 3D. The
final layout is illustrated in the Figure 7.
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Fig. 7. Top-level GDSII comparison between 2D and 3D designs. The
3D layout include two metal layers of the bottom tier to illustrate 3D nets
(highlighted in red) compared with 2D nets (highlighted in yellow).

III. EXPERIMENTAL RESULTS
A. Experimental setup

In this section, we perform the experiment to analyze the
impact of PPA benefits of full-chip design which includes all
neural network layers in Table 1. In the full-chip design, we
integrate the SRAM blocks for loading weights and caching
data stream as mentioned in Section II-C. We flatten all blocks
to evaluate the maximum achievable PPA metrics between 2D
and 3D design with memory on logic setting. We use 8 metal
layers in 2D design to accommodate more net connections
due to top-level control logics which control the data stream
among different neural network layers. For 3D design, we
utilize double metal stack of 2D design with 12 metal layers
(6+6), as shown in Figure 4. F2F via size, pitch, resistance and
capacitance are set to be 0.5um, 1.0um m, 0.5 and 0.2fF
respectively. The memory placement in 2D design is at the
edge which allow the clock network to spread from the center
of the die. For 3D design, we place all memory macros on the
top die. The scan chains are not implemented in the standard
flow because they are running at a much slower frequency
than the main part of the inference engine. Hence they have
negligible impact on the chip area and power.

B. Full-Chip PPA Comparison

From Table II, we observe that the full-chip 3D design
obtains higher clock frequency than the 2D design. The
footprint of the 3D design is around half of the 2D design
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TABLE 11
FULL-CHIP POWER, PERFORMANCE, AND AREA (PPA) COMPARISON.
THE PERCENTAGE VALUES IN THE LAST COLUMN INDICATE THE
IMPROVEMENTS OF 3D DESIGN.

Full-Chip Design
Design 2D 3D Imp. 3D
Effective Freq (MHz) 742 881 18.7%
Footprint (mm?2) 3.9 1.7 56.4%
No of Cells 892K | 806K 10.0%
Wire length (m) 64.7 40.6 37.2%
Total Power (mW) 1954 1549 20.7%
— Internal Power (mW) 995.9 826 17.1%
— Switching Power (mW) | 957.5 688 28.1%
— Leakage Power (mW) 40.7 34 16.4%
PDP 2633 1758 33.2%
EDP 3549 1996 43.8%
TABLE III
CLOCK TREE METRICS COMPARISON BETWEEN 2D AND 3D DESIGN
Clock Metrics 2D [ 3D
Target Frequency (GHz) 1.000
Clock Latency (ps) 1084 988
Clock Skew (ps) 416 443
Clock WL. (mm) 441 513
Clock Buffer #) 9464 | 9157
Clock Power (mW) 151 158

from the die stacking. The number of cells in 3D design are
fewer due to the smaller footprint and shorter I/O connection
from peripherals so they do not require many buffers. The
wire-length in the 3D design is also significant reduced from
metal sharing and 3D nets. Therefore, the total power is
reduced from smaller switching power and internal power.
The internal power reduces from the fewer cell count due to
shorter interconnection so the physical synthesis tools do not
require as many high-speed cells with higher power to meet
the timing, when compared to 2D design. The major difference
is the switching power which is the result of the shorter
wire-length in the 3D design. As as result, the 3D design
has a significantly improved power-delay-product (PDP) and
energy-delay product (EDP), at 33% and 43% respectively.

C. Clock Metrics Comparison

For clock metrics, we consider the clock wire-length, clock
latency, clock skew, and clock power in the clock metrics. The
clock tree comparison of the final full-chip design is illustrated
in Figure 6. We observe that the clock tree is dense in the
convO and pool layer while the other layers mostly contain
the data path for the computational logics. From Table III,
we observe that the clock latency in 3D is better than 2D.
However, the clock wire-length and power in 2D is better than
3D. This is because the aspect ratio of one in 3D is not the
optimum for the design with high number I/O pins, which may
cause some longer nets. Nevertheless, the number of clock
buffers required in 3D design is fewer than 2D due to the
shorter datapath interconnect benefits in 3D. Overall, the clock
network in 3D is better in clock latency but the other metrics
are comparable to 2D design.
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Fig. 8. Top-level critical path comparison between 2D and 3D designs
TABLE IV
FULL-CHIP TIMING COMPARISON BETWEEN 2D AND 3D DESIGN

Parameter 2D [ 3D A(%)

Path type Reg to Reg -
Status Violated -
Launch Latency ns 0.74 0.57 22.9%
Capture Latency ns 0.72 0.53 26.3%
Skew ns | -0.02 | -0.047 | 57.4%
Cell delay ns 1.092 0.681 37.6%
Wire delay ns | 0.837 0403 | 43.8%
Total Delay ns 1.929 1.084 | 84.5%
Slack ns | -0.347 | -0.134 | 61.3%

D. Full-Chip Timing Comparison

We provide a detailed analysis of the full-chip timing
comparison between 2D and 3D designs. The critical paths
for both designs are illustrated in Figure 8. The yellow lines
denote the nets in the critical path. We observe that the critical
path in 2D design is longer and has detours while the critical
path in the 3D design is shorter with fewer detours. Moreover,
we compare the detail within the critical path to determine the
main reason of worse critical path in 2D design. Since the 3D
design has a smaller footprint than the 2D design, the launch
and capture latency are less with shorter clock wirelength span
from the center of the die. The cell delay in 2D and 3D design
are considered comparable since the input netlist is the same.
The main difference in the data path delay is the wire delay in
2D design is higher than 3D due to the wire detour as in critical
path layout. The reason of detour nets is from the placement
limitation and larger footprint. As a result, with better clock
latency and less total delay, the 3D design achieves better final
timing compared to the 2D design.

IV. CONCLUSION

In this paper, we present the design and the design method-
ology of a low-latency run-time configurable ASIC implemen-
tation of a five-stage CNN inference model. We conducted a
comprehensive comparison between the traditional 2D tech-
nology and a face-to-face hybrid bonding 3D integration with
six metal layers on each die. Detailed experimental results
show that 3D integration has pronounced advantage in terms
of total wire-length, power consumption, and energy-delay
product (up to 43%). The performance advantages of the 3D
integration makes it an ideal candidate for future extremely
low-latency edge applications.
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