
A 3D Implementation of Convolutional Neural
Network for Fast Inference

Narasinga Rao Miniskar∗, Pruek Vanna-iampikul†, Aaron Young∗, Sung Kyu Lim†, Frank Liu∗, Jieun Yoo‡,
Corrinne Mills‡, Nhan Tran§, Farah Fahim§, Jeffrey S Vetter∗

∗Computer Science and Mathematic Division, Oak Ridge National Laboratory, Oak Ridge, USA
†Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA

‡Department of Physics, University of Illinois Chicago, Chicago, USA
§Scientific Computing Division, Fermi National Accelerator Laboratory, Chicago, USA

Email: ∗(miniskkarnr,youngar,liufy,vetter)@ornl.gov,
†(v.pruek@gatech.edu, limsk@ece.gatech.edu), ‡(jyoo49, cmills10)@uic.edu, §(ntran, farah)@fnal.gov

Abstract—Low latency inference has many applications in
edge machine learning. In this paper, we present a run-time
configurable convolutional neural network (CNN) inference ASIC
design for low-latency edge machine learning. By implementing a
5-stage pipelined CNN inference model in a 3D ASIC technology,
we demonstrate that the model distributed on two dies utilizing
face-to-face (F2F) 3D integration achieves superior performance.
Our experimental results show that the design based on 3D
integration achieves 43% better energy-delay product when
compared to the traditional 2D technology.

I. INTRODUCTION

Deploying deep learning and machine learning solutions on
edge devices have many potential applications, but also poses
significant technical challenges [2]. Many hardware techniques
have been proposed to accelerate deep learning model infer-
ence, either to provide better inference throughput or at lower
power consumption [6], [7], [9], [11]–[13], [16]–[18]. Another
critical performance metric for edge inference is the latency
[5], of which an active research area is to implement deep
learning models on FPGA platforms [13], [21]. In this study,
we introduce a design flow to generate and optimize CNN
accelerators using face-to-face (F2F) bonded 3D Integrated
Circuits (3DIC) [15], [19]. Although the network topology
of the CNN is fixed, the weights can be reprogrammed at
runtime. We demonstrate our 3DIC design flow on a 5-stage
low-latency CNN accelerator, which has potential applications
in high energy physics on-detector data classification.

As an application demonstration of the design flow, we
implement a CNN model for the Compact Muon Solenoid
(CMS) experiment [3]. Hardware accelerator chiplets which
can convert raw data into physics information on the detector
can be a valuable mechanism for achieving real-time track
reconstruction. We have developed a compact CNN model
which analyzes charge distribution patterns in the CMS pixel
detector to calculate track parameters such as x,y,z coordinates,
cot α and cot β. This chiplet architecture assumes that data
hits not associated with tracks or tracks with momentum
≤ 0.3 GeV have already been rejected and filtered by the
upstream electronics. The model currently utilizes cluster data
from a single sensor readout integrated circuit (ROIC); the

accuracy of the predicted values can be further improved by
combining data from two correlated sensor layers. The input
data for the model is generated from an analog front-end that
synchronously digitizes [4] charge information every 25 ns for
sensor pixels of 50 × 12.5 µm2 into a 2bit value. The cluster
shapes are analysed in local regions corresponding to 13 × 21
pixels.

(6,10, 32)

(3, 5, 32)

(128)

(64)

(5)

conv2d_0 (320)

maxpool (0)

conv2d_1 (18496)

dense_0 (8256)

dense_1 (325)

Model generator
(python)

Quantized
CNN model

HLS Synthesis

RTL
(Verilog)

Logic Synthesis

Partitioning for 3D

Physical Design

Output
(GDSII)

Logic Synthesis

Physical Design

Output
(GDSII)

2D design 3D design

Fig. 1. LEFT: Topology of the CNN. The numbers in each module represent
the numbers of weights. The numbers between each component represent the
sizes of input/output tensors. RIGHT: Design flow for 2D and 3D.

II. ASIC DESIGN AND DESIGN FLOW

The top-level logic of our CNN implementation is a five-
stage pipeline, where each stage corresponds to a CNN stage
shown in Figure 1. The sensor readouts are digitized in the
2bit format. Our CNN model design is also digital. We use a
customized design methodology shown on the right-hand side
of Figure 1, which we will explain in the rest of this section.

A. CNN HLS Generator

The CNN generator flattens each layer of the CNN, gen-
erates HLS code for each layer, creates a data flow pipeline
across layer modules, creates interfaces for input and output
feature maps, and also creates interfaces for weights from
each layer specific RAM. The pseudo code to generate the
HLS code is shown in Figure 2. The generated HLS code

20
23

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Ci

rc
ui

ts
 a

nd
 S

ys
te

m
s (

IS
CA

S)
 |

 9
78

-1
-6

65
4-

51
09

-3
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

CA
S4

67
73

.2
02

3.
10

18
16

22

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 10,2024 at 13:06:00 UTC from IEEE Xplore. Restrictions apply.

can be synthesized with our HLS tool to generate the ASIC
synthesizable RTL. The CNN HLS generator can intelligently
select the bus width of each HLS stream and number of
streams required for each input and output feature maps, and
weights stream. It also considers the maximum stream bus
width and SRAM memory data bus width into consideration.
The HLS code generator iterates over each layer and generates
HLS module code for each layer and corresponding scan chain
logic if required. The runtime configuration of the weights is
achieved by four independent scan chains, one for each of
pipeline stage (Note that the maxpooling layer does not have
any adjustable weights). The CNN generator also generates
scan chain logic for each stage with weights (Convolution and
Dense layers) to load the weights from SRAM memory blocks.
At runtime, the scan chain logic will be invoked during the
initialization to load the weights from SRAM and to set them
in the internal logic registers of the network HLS module. At
the end it generates a network level HLS module with a HLS
data flow pipeline of all layer level HLS modules and scan
chain modules with connections established among them. The
process of HLS code generation from the given input quantized
model is completely automated and no manual intervention is
required.

1 def CNNGenerator(network, smem_datawidth,
stream_max_width):↪→

2 hls_code = []
3 for layer in network.layers:
4 if layer.type == CONV:
5 conv = ConvHLS(layer)
6 hls_code +=

conv.generate_hls_module(stream_max_width)↪→
7 hls_code += conv.generate_scan_chain(smem_datawidth)
8 elif layer.type == DENSE:
9 dense = DenseHLS(layer)

10 hls_code +=
dense.generate_hls_module(stream_max_width)↪→

11 hls_code +=
dense.generate_scan_chain(smem_datawidth)↪→

12 elif layer.type == POOL:
13 pool = PoolHLS(layer)
14 hls_code +=

dense.generate_hls_module(stream_max_width)↪→
15 hls_code +=

dense.generate_scan_chain(smem_datawidth)↪→
16 hls_code += generate_network_module(network)
17 return hls_code

Fig. 2. Pseudo code to generate HLS code for machine learning modules

The generated HLS modules for the CNN inference engine
is shown in Figure 3. The scan chain module reads weights
from SRAM through 128-bits data bus and fill in the registers
of convolution (Conv0, Conv1) and fully-connected (Dense0,
Dense1) layer HLS module stream registers. We have set
the maximum stream width constraint of 4096 bits for input,
output and weight streams. Conv0 requires 273 input feature
elements (E:273) represented with 546 bits (B:546) in a single
stream (each feature with 2 bits), 576 bits weights in a single
stream, and 3840 bits of output features in a single stream.
Conv1 requires 10 weight streams each of 4032 bits which can
hold 2016 weights and is represented with ’B:4032 (E:2016,
10)’.

Conv0

128

Weights
(SRAM)

Conv1 Dense0 Dense1Pool

E:288
B: 4032 (E:2016, 10)

E:18432
B: 4096 (E:2048, 4)
E:8192

B: 640
E:320

E: 480
B: 960

E: 128
B: 256

E: 64
B: 128

E: 1920
B: 3840

E: 5
B: 10

E: 273
B: 546

SC-0

B: 576

16

SC-1 SC-2 SC-3

128

Weights
(SRAM)

16 128

Weights
(SRAM)

16 128

Weights
(SRAM)

16

CNN Network HLS Modules

Fig. 3. CNN inference HLS Modules and connections with SRAMs (E:
Number of features/weights, B: Number of bits)

Si substrate

cross-sectional view

2D Metal Stack

Original BEOL

gate layer

M-top

M-1

Si substrate

F2F pad layer

BEOL for
top tier

BEOL for
bottom tier

gate layer

M-top

M-top

M-1

M-1

3D Metal Stack

cross-sectional view

bot bot bot bot

top cover cells top

Fig. 4. Cross-sectional view of metal stack for both 2D and 3D design.

B. Logic Synthesis and Optimization

With the resulting verilog netlist, we utilize the Synopsys
Design compiler [10] to synthesize the register transfer level
(RTL) from Vitus HLS into the gate-level netlist for the
targeted technology node. We leverage a commercial 28nm
technology to implement the ASIC design. We have set
the target frequency of the synthesize module to 1GHz for
all 5 layers (stages) as in Figure 3 including the the top-
level module which control the data flow between different
modules. There are 45 total 128-bit SRAM with 1K rows in
the design. The top-level module contains the weight parsing
module using a scan chain for each neural network layer
(The maxpooling layer does not have any trainable weights).
Therefore, there are 4 SRAM memory blocks for loading the
weight. The remaining 41 SRAM blocks contains the data
stream to cache the output. From Figure 3, the bus width for
each stream requires 5 bank of 128-bit SRAM. So we can
store 8K frames for our inputs of smart pixel network HLS
modules. Table I illustrates the ASIC cell statistics after the
logic synthesis stage. The cell area correlates with the number
of weight element in Figure 3. The largest module is the conv1
which requires almost 18K weight elements.

C. ASIC Physical Synthesis and Optimization

After we obtain the gate-level netlist from logic synthesis
stage, we perform the physical synthesis for both 2D and 3D
design. We utilize the 28nm commercial process design kit
(PDK), which provides the standard cells and back-end-of-
Line (BEOL) library. We generate the memory macros from
the memory compiler with the same technology node. For
3D design, we integrate two 2D dies with face-to-face pads
using the hybrid bonding approach, since it provides high
bandwidth 3D connection with sub-micron pitch [20]. And,
recently, industry has developed the F2F 3D stacking chip

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 10,2024 at 13:06:00 UTC from IEEE Xplore. Restrictions apply.

2D 3D

TopBot

Conv1

Conv0(r)

Pool(y)

Dense0(g)
Dense0(g)

Dense1(w)

Dense1(w)

Conv0(r)
Pool(y)

Conv1(b)

1980 um

1320 um

Fig. 5. Top-level Placement comparison between 2D and 3D designs. Note
that the modules are color as follows: conv0 in red, pool in yellow, conv1 in
blue, dense0 in green, dense1 in white

TABLE I
ASIC LOGIC SYNTHESIS STATISTICS

Module
Cell Count (#) Cell Area

Seq. Comb. Total (um2)
1. Conv0 2,255 105,112 107,367 125,259
2. Pool 3 3,975 3,978 6,459
3. Conv1 73,771 387,678 461,449 653,583
4. Dense0 32,787 109,532 142,319 224,748
5. Dense1 1,311 4,309 5620 8,880
6. Top level 10,435 26,176 36,611 55,004

(Intel Lakefield [8]). Thus, the 3D design has 12 metal layers
where each tier contain 6 metal layers with one additional
layer for F2F pad. The metal stacking for 3D design has been
generated in this setting for parasitic extraction.

In this paper, we explore the Power-performance-area (PPA)
benefits of neural network modules between 2D and 3D design
with two separated experiments. We adapt the Pseudo-3D
approach [14] in order to obtain the commercial quality for
3D design which will be the best estimation to compare with
commercial 2D design. We adapt the memory-on-logic tier
setting in the 3D design since the top-level module contains the
memory connection for loading the weights and data stream.
We utilize [1] to implement the memory-on-logic 3D design.

1) Tier partitioning for 3D design: With a given netlist, we
have to perform the tier partitioning for 3D design since the
netlist does not provide any information about the tier location.
For 2D design, this step is not performed.

For 3D design, we place all memory on the top tier in the
3D design while all logic blocks (i.e., conv0, maxpool, conv1,
dense0 and dense1) are placed in the bottom tier.

2) Floorplaning: We create the partition for each neural
network layer except for the top-level, which control the data
flow between different modules. In 2D design the memory are
placed at two sidesof the die, so the area in the middle are
available for logic cells, as shown in Figure 5.

D. Placement, Clock Tree synthesis, and Routing

After we perform the physical design flow for both 2D and
3D design [1] with floorplanning for both 2D and 3D. The
final layout is illustrated in the Figure 7.

2D 3D

TopBot

1980 um

1320 um

Fig. 6. Top-level Clock tree comparison between 2D and 3D designs. The
yelllow lines denotes the clock nets in the design

2D 3D (Bottom) 3D (Top)

M6 (Bottom)M5 (Bottom)

1980 um

2D Nets 3D Nets 1320 um

M8

M6

M1-5

M7-12

M7

M1-6

Fig. 7. Top-level GDSII comparison between 2D and 3D designs. The
3D layout include two metal layers of the bottom tier to illustrate 3D nets
(highlighted in red) compared with 2D nets (highlighted in yellow).

III. EXPERIMENTAL RESULTS

A. Experimental setup

In this section, we perform the experiment to analyze the
impact of PPA benefits of full-chip design which includes all
neural network layers in Table I. In the full-chip design, we
integrate the SRAM blocks for loading weights and caching
data stream as mentioned in Section II-C. We flatten all blocks
to evaluate the maximum achievable PPA metrics between 2D
and 3D design with memory on logic setting. We use 8 metal
layers in 2D design to accommodate more net connections
due to top-level control logics which control the data stream
among different neural network layers. For 3D design, we
utilize double metal stack of 2D design with 12 metal layers
(6+6), as shown in Figure 4. F2F via size, pitch, resistance and
capacitance are set to be 0.5um, 1.0µm m, 0.5Ω and 0.2fF
respectively. The memory placement in 2D design is at the
edge which allow the clock network to spread from the center
of the die. For 3D design, we place all memory macros on the
top die. The scan chains are not implemented in the standard
flow because they are running at a much slower frequency
than the main part of the inference engine. Hence they have
negligible impact on the chip area and power.

B. Full-Chip PPA Comparison

From Table II, we observe that the full-chip 3D design
obtains higher clock frequency than the 2D design. The
footprint of the 3D design is around half of the 2D design

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 10,2024 at 13:06:00 UTC from IEEE Xplore. Restrictions apply.

TABLE II
FULL-CHIP POWER, PERFORMANCE, AND AREA (PPA) COMPARISON.

THE PERCENTAGE VALUES IN THE LAST COLUMN INDICATE THE
IMPROVEMENTS OF 3D DESIGN.

Design
Full-Chip Design

2D 3D Imp. 3D
Effective Freq (MHz) 742 881 18.7%
Footprint (mm2) 3.9 1.7 56.4%
No of Cells 892K 806K 10.0%
Wire length (m) 64.7 40.6 37.2%
Total Power (mW) 1954 1549 20.7%
→ Internal Power (mW) 995.9 826 17.1%
→ Switching Power (mW) 957.5 688 28.1%
→ Leakage Power (mW) 40.7 34 16.4%
PDP 2633 1758 33.2%
EDP 3549 1996 43.8%

TABLE III
CLOCK TREE METRICS COMPARISON BETWEEN 2D AND 3D DESIGN

Clock Metrics 2D 3D
Target Frequency (GHz) 1.000
Clock Latency (ps) 1084 988
Clock Skew (ps) 416 443
Clock WL. (mm) 441 513
Clock Buffer (#) 9464 9157
Clock Power (mW) 151 158

from the die stacking. The number of cells in 3D design are
fewer due to the smaller footprint and shorter I/O connection
from peripherals so they do not require many buffers. The
wire-length in the 3D design is also significant reduced from
metal sharing and 3D nets. Therefore, the total power is
reduced from smaller switching power and internal power.
The internal power reduces from the fewer cell count due to
shorter interconnection so the physical synthesis tools do not
require as many high-speed cells with higher power to meet
the timing, when compared to 2D design. The major difference
is the switching power which is the result of the shorter
wire-length in the 3D design. As as result, the 3D design
has a significantly improved power-delay-product (PDP) and
energy-delay product (EDP), at 33% and 43% respectively.

C. Clock Metrics Comparison

For clock metrics, we consider the clock wire-length, clock
latency, clock skew, and clock power in the clock metrics. The
clock tree comparison of the final full-chip design is illustrated
in Figure 6. We observe that the clock tree is dense in the
conv0 and pool layer while the other layers mostly contain
the data path for the computational logics. From Table III,
we observe that the clock latency in 3D is better than 2D.
However, the clock wire-length and power in 2D is better than
3D. This is because the aspect ratio of one in 3D is not the
optimum for the design with high number I/O pins, which may
cause some longer nets. Nevertheless, the number of clock
buffers required in 3D design is fewer than 2D due to the
shorter datapath interconnect benefits in 3D. Overall, the clock
network in 3D is better in clock latency but the other metrics
are comparable to 2D design.

2D 3D

Bot

1980 um

1320 um

Fig. 8. Top-level critical path comparison between 2D and 3D designs
TABLE IV

FULL-CHIP TIMING COMPARISON BETWEEN 2D AND 3D DESIGN

Parameter 2D 3D ∆(%)
Path type Reg to Reg -

Status Violated -
Launch Latency ns 0.74 0.57 22.9%
Capture Latency ns 0.72 0.53 26.3%
Skew ns -0.02 -0.047 57.4%
Cell delay ns 1.092 0.681 37.6%
Wire delay ns 0.837 0.403 43.8%
Total Delay ns 1.929 1.084 84.5%
Slack ns -0.347 -0.134 61.3%

D. Full-Chip Timing Comparison

We provide a detailed analysis of the full-chip timing
comparison between 2D and 3D designs. The critical paths
for both designs are illustrated in Figure 8. The yellow lines
denote the nets in the critical path. We observe that the critical
path in 2D design is longer and has detours while the critical
path in the 3D design is shorter with fewer detours. Moreover,
we compare the detail within the critical path to determine the
main reason of worse critical path in 2D design. Since the 3D
design has a smaller footprint than the 2D design, the launch
and capture latency are less with shorter clock wirelength span
from the center of the die. The cell delay in 2D and 3D design
are considered comparable since the input netlist is the same.
The main difference in the data path delay is the wire delay in
2D design is higher than 3D due to the wire detour as in critical
path layout. The reason of detour nets is from the placement
limitation and larger footprint. As a result, with better clock
latency and less total delay, the 3D design achieves better final
timing compared to the 2D design.

IV. CONCLUSION

In this paper, we present the design and the design method-
ology of a low-latency run-time configurable ASIC implemen-
tation of a five-stage CNN inference model. We conducted a
comprehensive comparison between the traditional 2D tech-
nology and a face-to-face hybrid bonding 3D integration with
six metal layers on each die. Detailed experimental results
show that 3D integration has pronounced advantage in terms
of total wire-length, power consumption, and energy-delay
product (up to 43%). The performance advantages of the 3D
integration makes it an ideal candidate for future extremely
low-latency edge applications.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 10,2024 at 13:06:00 UTC from IEEE Xplore. Restrictions apply.

V. ACKNOWLEDGEMENT

This manuscript has been authored by UT-Battelle, LLC, un-
der contract DE-AC05-00OR22725 with the US Department of
Energy (DOE). The US gov- ernment retains and the publisher,
by accepting the article for publication, ac- knowledges that
the US government retains a nonexclusive, paid-up, irrevoca-
ble, worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for US gov-
ernment purposes. DOE will provide public ac- cess to these
results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

REFERENCES

[1] L. Bamberg et al., “Macro-3d: A physical design methodology for face-
to-face-stacked heterogeneous 3d ics,” in 2020 Design, Automation Test
in Europe Conference Exhibition (DATE), 2020, pp. 37–42.

[2] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[3] C. collaboration et. al., “The phase-2 upgrade of the cms tracker-
technical design report,” CERN, Geneva, Switzerland, Tech. Rep. CERN-
LHCC-2017-009, CMS-TDR-014, 2017.

[4] L. Gaioni, D. Braga, D. C. Christian, G. Deptuch, F. Fahim, B. Nodari,
L. Ratti, V. Re, and T. Zimmerman, “A 65 nm cmos analog processor
with zero dead time for future pixel detectors,” Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment, vol. 845, pp. 595–598, 2017.

[5] J. Hanhirova, T. Kämäräinen, S. Seppälä, M. Siekkinen, V. Hirvisalo, and
A. Ylä-Jääski, “Latency and throughput characterization of convolutional
neural networks for mobile computer vision,” in Proceedings of the 9th
ACM Multimedia Systems Conference, 2018, pp. 204–215.

[6] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[7] L. N. Huynh, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-
based deep learning framework for continuous vision applications,” in
Proceedings of the 15th Annual International Conference on Mobile
Systems, Applications, and Services, 2017, pp. 82–95.

[8] Khushu et al., “Lakefield: Hybrid cores in 3D package.” in Hot Chips
Symposium, 2019, pp. 1–20.

[9] S. Kim, G. Park, and Y. Yi, “Performance evaluation of int8 quantized
inference on mobile gpus,” IEEE Access, vol. 9, pp. 164 245–164 255,
2021.

[10] P. Kurup and T. Abbasi, Logic synthesis using Synopsys®. Springer
Science & Business Media, 2012.

[11] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE network, vol. 32,
no. 1, pp. 96–101, 2018.

[12] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren,
“PatDNN: Achieving real-time DNN execution on mobile devices
with pattern-based weight pruning,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 907–922.

[13] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. Strauss, and
E. S. Chung, “Accelerating deep convolutional neural networks using
specialized hardware,” Microsoft Research Whitepaper, vol. 2, no. 11,
pp. 1–4, 2015.

[14] H. Park et al., “Pseudo-3d approaches for commercial-grade rtl-to-
gds tool flow targeting monolithic 3d ics,” Proceedings of the 2020
International Symposium on Physical Design, 2020.

[15] S. S. K. Pentapati, D. E. Shim, and S. K. Lim, “Logic monolithic 3d
ics: Ppa benefits and eda tools necessary,” in Proceedings of the 2019
on Great Lakes Symposium on VLSI, 2019, pp. 445–450.

[16] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis,
A. Pedram, C. Kozyrakis, and K. Olukotun, “Plasticine: A reconfigurable
architecture for parallel patterns,” in 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). IEEE,
2017, pp. 389–402.

[17] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in IEEE INFOCOM
2018-IEEE Conference on Computer Communications. IEEE, 2018,
pp. 1421–1429.

[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, 2016, pp. 525–542.

[19] K. Salah, “Tsv-based 3d integration fabrication technologies: An
overview,” in 2014 9th International Design and Test Symposium (IDT).
IEEE, 2014, pp. 253–256.

[20] T. Suga, R. He, G. Vakanas, and A. L. Manna, “Direct cu to cu
bonding and alternative bonding techniques in 3d packaging,” in 3D
Microelectronic Packaging. Springer, 2021, pp. 201–231.

[21] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “Finn: A framework for fast, scalable binarized neural
network inference,” in Proceedings of the 2017 ACM/SIGDA interna-
tional symposium on field-programmable gate arrays, 2017, pp. 65–74.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on January 10,2024 at 13:06:00 UTC from IEEE Xplore. Restrictions apply.

		2023-07-19T15:41:20-0400
	Preflight Ticket Signature

