
ARTICLE IN PRESS
INTEGRATION, the VLSI journal 38 (2005) 541–548
0167-9260/$ -

doi:10.1016/j.

$A short v

VLSI, 2004.
�Correspon

E-mail add
www.elsevier.com/locate/vlsi
Automatic cell placement for quantum-dot cellular automata$

Ramprasad Ravichandrana, Sung Kyu Limb,�, Mike Niemiera

aCollege of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
bSchool of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW,

Atlanta 30305, GA 30332, USA

Received 14 July 2004; accepted 21 July 2004
Abstract

Quantum-dot cellular automata (QCA) is a novel nano-scale computing mechanism that can represent
binary information based on spatial distribution of electron charge configuration in chemical molecules. In
this paper we develop the first cell-level placement of QCA circuits under buildability constraints. We
formulate the QCA cell placement as a unidirectional geometric embedding of k-layered bipartite graphs.
We then present an analytical and a stochastic solution for minimizing the wire crossings and wire length in
these placement solutions.
r 2004 Elsevier B.V. All rights reserved.

MSC: 94C15; 68W35; 03G12

Keywords: Quantum-dot Cellular Automata; Placement
1. Introduction

One approach to computing at the nano-scale is the quantum-dot cellular automata (QCA)
[1,2] concept that represents information in a binary fashion, but replaces a current switch with a
cell having a bi-stable charge configuration. A wealth of experiments have been conducted with
see front matter r 2004 Elsevier B.V. All rights reserved.

vlsi.2004.07.002

ersion (Ravichandran et al., 2004) is published in the Proceedings of ACM Great Lake Symposium on

ding author. Tel.: 4048940373; fax: 4043851746.

ress: limsk@ece.gatech.edu (S.K. Lim).

www.elsevier.com/locate/vlsi

ARTICLE IN PRESS

e-

quantum
tunneling

(a) (b) (c)

Fig. 1. Illustration of QCA device, majority gate, and wires.

R. Ravichandran et al. / INTEGRATION, the VLSI journal 38 (2005) 541–548542
metal-dot QCA, with individual devices, logic gates, wires, latches and clocked devices, all having
been realized. In this article, we develop the first cell-level placement of QCA circuits. We
formulate the QCA cell placement as a unidirectional geometric embedding of k-layered bipartite
graphs. We then present an analytical and a stochastic solution for minimizing the wire crossings
and wire length in these placement solutions. Our goal is to identify several objectives and
constraints that enhance the buildability of QCA circuits and use them in our placement
optimization process. The results are intended to define what is computationally interesting and
could actually be built within a set of predefined placement constraints.
A QCA cell is illustrated in Fig. 1(a). Two mobile electrons are loaded into this cell and can

move to different quantum dots by means of electron tunneling. Coulombic repulsion will cause
the electrons to occupy only the corners of the QCA cell, resulting in two specific polarizations.
The fundamental QCA logical gate is the three-input majority gate. It consists of five cells and
implements the logical equation AB þ BC þ AC as shown in Fig. 1(b). The QCA wire is a
horizontal row of QCA cells and a binary signal propagates from left-to-right because of
electrostatic interactions between adjacent cells as shown in Fig. 1(c). A QCA wire can also be
comprised of cells rotated 45�: Here, as a binary signal propagates down the length of the wire, it
alternates between a binary 1 and a binary 0 polarization. QCA wires are able to cross in the plane
without the destruction of the value being transmitted on either wire as shown in Fig. 1(c).
Our work focus on the following undesirable design schematic characteristics associated with a

near-to-midterm buildability point: large amounts of deterministic device placement, long wires,
clock skew, and wire crossings. We will use CAD to: (1) identify logic gates and blocks that can be
duplicated to reduce wire crossings; (2) rearrange logic gates and nodes to reduce wire crossings;
(3) create shorter routing paths to logical gates (to reduce the risk of clock skew and susceptibility
to defects and errors); and (4) reduce the area of a circuit (making it easier to physically build).
Some of these problems have been individually considered in existing work for silicon-based VLSI
design, but in combination, form a set of constraints unique to QCA requiring a unique toolset to
solve them.
2. Problem formulation

QCA placement is divided into three steps: zone partitioning, zone placement, and cell
placement. An illustration is shown in Fig. 2. The purpose of zone partitioning is to decompose an
input circuit such that a single potential modulates the inner-dot barriers in all of the QCA cells
that are grouped within a clocking zone. The zone placement step takes as input a set of

ARTICLE IN PRESS

a

b

c

d

e

f

x

y z

0

1

2

0

3

3

a

b

c

d

e f

0

2

3

1 x

z

y

a

b

c

d

e f

0

2

3

1 x

z

y

(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of QCA placement steps. (a) input circuit represented with a DAG (directed acyclic graph), (b) zone

partitioning, (c) wire block insertion, (d) zone placement, (e) wire crossing minimization at zone-level, (f) cell placement.

R. Ravichandran et al. / INTEGRATION, the VLSI journal 38 (2005) 541–548 543
zones—with each zone assigned a clocking label obtained from zone partitioning. The output of
zone placement is the best possible layout for arranging the zones on a two dimensional chip area.
Finally, cell placement visits each zone to determine the location of each individual logic QCA
cell—a cell used to build majority gates. Our recent work on zone partitioning and zone placement
work is available in [3]. The focus of this article is on cell placement that is formally defined as
follows:
Definition 1. Cell placement: we seek a placement of individual logic gates in the logic block so
that area, wire crossing and wirelength are minimized. The following set of constraints exists
during QCA cell placement: (1) the timing constraint: the signal propagation delay from the
beginning of a zone to the end of a zone should be less than a clock period established from zone
partitioning; (2) the terminal constraint: the I/O terminals are located on the top and bottom
boundaries of each logic block; (3) the signal direction constraint: the signal flow among the logic
QCA cells needs to be unidirectional–from the input to the output boundary for each zone.

The signal direction is caused by QCA’s clocking scheme, where an electric field E created by
underlying CMOS wire is propagating in uni-directionally within each block. Thus, cell placement
needs to be done in such a way to propagate the logic outputs in the same direction as E. In order
to balance the length of intra-zone wires, we construct cell-level k-layered bipartite graph for each
zone and place this graph. We define the k-layered bipartite graph as follows:

ARTICLE IN PRESS

R. Ravichandran et al. / INTEGRATION, the VLSI journal 38 (2005) 541–548544
Definition 2. K-layered bipartite graph: a directed graph GðV ;EÞ is k-layered bipartite graph if (i)
V is divided into k disjoint partitions, (ii) each partition p is assigned a level, denoted levðpÞ; and
(iii) for every edge e ¼ ðx; yÞ; levðyÞ ¼ levðxÞ þ 1:
3. Cell placement algorithm

This section presents our cell placement algorithm, which consists of feed-through insertion,
row folding, and wire crossing and wirelength optimization steps.

3.1. Feed-through insertion

In order to satisfy the relative ordering and to satisfy the signal direction constraint, the original
graph GðV ;EÞ is mapped into a k-layered bipartite graph G0ðV 0;E0Þ which is obtained by insertion
of feed-through gates, where V 0 is the union of the original vertex set V and the set of feed-
through gates, and E0 is the corresponding edge set. The following algorithm performs feed-
through insertion.
feed-through_insertion(GðV ;EÞ)
if (V is empty) return;
n ¼ V :popðÞ;
if (n has no child with bigger level) return;
g = new feed-through;
levðgÞ ¼ levðnÞ þ 1;
for (each child c of n)

g ¼ parentðcÞ; c ¼ childðgÞ;
n ¼ parentðgÞ; g ¼ childðnÞ;

add g into G;
feed-through_insertion(G(V,E));
In this algorithm, we traverse through every vertex in the graph. For a given vertex, if any of the
outgoing edges terminate at a vertex with topological order more than one level apart, a new feed-
through vertex is added to the vertex set. The parent of the feed-through is set to the current
vertex, and all children of the current vertex which have a topological order difference of more
than one is set as the children of the feed-through. We do not need to specifically worry about the
exact level difference between the feed-through and the child nodes, since this feed-through
insertion is a recursive process. This algorithm runs in OðkjV 0jÞ; where k is the maximum degree of
V 0: Fig. 3 shows the graph before and after feed-through insertion.

3.2. Row-folding algorithm

After the feed-through insertion stage, some rows may have more gates than the average
number of gates per row. The row with the largest number of gates defines the width of the entire
zone, and hence the width of the global column that the zone belongs to. This increases the circuit

ARTICLE IN PRESS

Fig. 3. Illustration of feed-through insertion, where a cell-level k-layered bipartite-graph is formed via feed-through

nodes.

R. Ravichandran et al. / INTEGRATION, the VLSI journal 38 (2005) 541–548 545
area by a huge factor. Hence, rows with a large number of cells are folded into two or more rows.
This is done by inserting feed-through gates in place of the logic gates and moving the gates to the
next row. Row-folding decreases the width of the row since feed-throughs have a lower width than
the gate it replaces. A gate g is moved into the next existing row if it belongs to the row that needs
to be folded and all paths that g belongs to contain at least one feed-through with a higher
topological order than g. The reason for the feed-through condition is that g, along with all gates
between g and the feed-through can be pushed to a higher row, and the feed-through can be
deleted without violating the topological ordering constraint. The following algorithm performs
row folding.
row_foldingðG;wÞ
if (w is a feed-through)
return(TRUE);

if (w:level ¼ G:max level)
return(FALSE);

RETVAL = TRUE;
k ¼ w:outdegree;
i ¼ 0;
while (RETVAL and iok)
RETVAL = row_foldingðG;w:CHILDðiÞÞ;
i ¼ i þ 1;

return(RETVAL);
This algorithm returns true if a node can be moved, and false if a new row has to be inserted. If
this feed-through criterion is not met, and the row containing g has to be folded, then a new row is
inserted and g is moved into that row.

3.3. Wirelength and wire crossing minimization

A width-balanced k-layered bipartite graph is formed via feed-through insertion and row
folding stages. This graph is placed in such a way that all cells of the same longest path length
are placed in the same row. The next step is then to rearrange the cells in each row to reduce
wire crossing. Wire crossing minimization is already NP-hard for bipartite graphs with two rows

ARTICLE IN PRESS

(b)

A B C D

1 2 3

A

B

C

D

1

0

1

0

1

1

0

0

1

2

0

1

0

0

3

(a) (c)

A

B

C

D

1

0

1

0

1

2

0

1

1

2

2

1

1

1

3

(d)

A

B

C

D

2

1

1

0

1

4

2

2

1

2

5

3

2

1

3

Fig. 4. Illustration of incremental wire crossing computation. (a) a bipartite graph with 3 wire crossings, (b) adjacency

matrix of (a), (c) row-wise sum of (b) from left to right, (d) column-wise sum of (c) from bottom to top. Each entry in

(d) now represent the total sum of entries in low-left sub-matrix. Using (b) and (d), wire crossing is A2	 B1þ B3	

C2 ¼ 3; where A2 and B3 are from (b) and B1 and C2 from (d).

R. Ravichandran et al. / INTEGRATION, the VLSI journal 38 (2005) 541–548546
only [4]. Our approach for wire crossing minimization in k-layered bipartite graphs is to use a
well-known barycenter heuristic [4] to build the initial solution and refine it with Simulated
Annealing. In barycenter heuristic, the nodes in the top layer are fixed and used to rearrange the
nodes in the bottom layer. For each node v in the bottom layer, we compute the center of mass,
i.e., mðvÞ ¼

P
u2FIðvÞcolumnðuÞ=jFIðvÞj; where FIðvÞ denotes the fan-in nodes of v. These nodes are

then sorted in an increasing order of mðvÞ and placed from the left-most column. During
Simulated Annealing, a move is performed by swapping two randomly chosen gates in the same
row in order to minimize the total wirelength and wire crossing. We initially compute the
wirelength and wire crossing and incrementally update these values after each move so that the
update can be done much faster. This speedup allows us to explore a greater number of candidate
solutions, and as a result, obtain better quality solutions.
We use the adjacency matrix to compute the number of wire crossings. In a bipartite graph,

there is a wire crossing between two layers v and u if vi talks to uj and vx talks to uy; where i, j, x,
and y denote the relative positional ordering of the nodes, and either, ioxojoy or ioxoyoj or
xoioyoj or xoiojoy without loss of generality. In terms of an adjacency matrix, this can be
regarded as if either the point ði; jÞ is included in the lower left sub-matrix of ðx; yÞ or vice versa.
Fig. 4 shows an example of wire crossing computation. The total crossing is computed by adding
the product of every matrix element and the sum of its left lower sub-matrix entries. i.e.

P
ðAij 	PP

AxyÞ; where i þ 1oxon and 1oyoj
 1: However, this method is computationally
expensive if we have to perform it frequently. In our incremental wire crossing calculation, we first
take the row-wise sum of all entries as in Fig. 4(c). Then we use this to compute the column-wise
sum as in Fig. 4(d). Finally, we multiply all the entries in the original matrix and the column-wise
sum matrix to compute the total wire crossing–each entry ðr; cÞ in the original matrix is multiplied
by the entry ðr þ 1; c
 1Þ in the column-wise sum matrix. In the Simulated Annealing process,
when we swap two nodes, it is identical to swapping the corresponding rows in the above matrices.
Hence, it is enough if we just update the values of the rows in between the two rows that are being
swapped.
4. Experimental results

Our algorithms were implemented in C++/STL, compiled with gcc v2.96 run on Pentium III
746MHz machine. The benchmark set consists of seven biggest circuits from ISCAS89 and five

ARTICLE IN PRESS

Table 1

QCA cell placement results

Analytical SA+WL SA+WC SA+WL+WC

wire xing wire xing wire xing wire xing

b14 5586 1238 28680 23430 54510 3740 5113 4948

b15 9571 1667 23580 40400 69030 7420 8017 8947

s13207 3119 548 14060 15530 30610 1450 3250 1982

s15850 3507 634 18610 22130 42700 2140 3919 2978

s38417 9414 1195 45830 48400 80240 7320 9819 9929

s38584 19582 4017 59220 75590 140130 9820 20101 33122

s5378 1199 156 6280 6690 13600 730 1344 841

s9234 2170 205 10720 11540 23290 980 1640 2159

Ave 4192 741 16980 19950 38950 2740 3880 6878

Ratio 1.00 1.00 4.05 26.9 9.29 3.69 0.92 9.27

Time 180 604 11280 12901

R. Ravichandran et al. / INTEGRATION, the VLSI journal 38 (2005) 541–548 547
biggest circuits from ITC99 suites due to the availability of signal flow information. Table 1 shows
our cell placement results where we report net wirelength and number of wire crossings for the
circuits using our analytical solution and all three flavors of our Simulated Annealing algorithm.
We observe in general that analytical solution is better than all three flavors of the Simulated
Annealing methods, except the wirelength of SA+WL+WC. But, the tradeoff in wire crossings
makes the analytical solution more viable, since wire crossings pose a bigger barrier than
wirelength in QCA architecture. One interesting note is that when comparing amongst the three
flavors of Simulated Annealing we find that SA+WC has the best wire crossing number. But
surprisingly, in terms of wirelength, SA+WL does not outperform SA+WL+WC. We speculate
that this behavior is because lower number of wire crossings has a strong influence on wirelength,
but smaller wirelength does not necessarily imply smaller crossing.
5. Conclusions and ongoing works

In this article, we proposed a QCA cell placement problem and present an algorithm that will
help automate the process of design within the constraints imposed by physical scientists. Work to
address QCA routing and node duplication for wire crossing minimization are underway. The
outputs from this work and the work discussed here will be used to generate computationally
interesting and optimized designs for experiments by QCA physical scientists.
References

[1] R. Ravichandran, N. Ladiwala, J. Nguyen, M. Niemier, S.K. Lim, Automatic cell placement for quantum-dot

cellular automata, in: Proceedings of the Great Lakes Symposium on VLSI, 2004.

ARTICLE IN PRESS

R. Ravichandran et al. / INTEGRATION, the VLSI journal 38 (2005) 541–548548
[2] I. Amlani, A. Orlov, G. Toth, G. Bernstein, C. Lent, G. Snider, Digital logic gate using quantum-dot cellular

automata, Science (1999) 289–291.

[3] J. Nguyen, R. Ravichandran, S.K. Lim, M. Niemier, Global placement for quantum-dot cellular automata based

circuits, Technical Report GIT-CERCS-03-20, Georgia Institute of Technology, 2003.

[4] K. Sugiyama, S. Tagawa, M. Toda, Methods for visual understanding of hierarchical system structures, IEEE

Trans. Syst. Man Cybern. (1981) 109–125.

	Automatic cell placement for quantum-dot cellular automata
	Introduction
	Problem formulation
	Cell placement algorithm
	Feed-through insertion
	Row-folding algorithm
	Wirelength and wire crossing minimization

	Experimental results
	Conclusions and ongoing works
	References

