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Abstract—Modern designs are increasingly reliant on physical
design (PD) tools to derive full technology scaling benefits of
Moore’s Law. Designers do a lot of power, performance and
area (PPA) exploration through multiple, often parallel, PD
runs with different tool configurations. Efficient exploration of
PPA is mission critical for chip designers who are working
with stringent time-to-market constraints and finite compute
resources. Therefore, a framework that can accurately predict
a “doomed run” (i.e. will not meet the PPA targets) at early
phases of the PD flow can provide significant productivity boost
by enabling early termination of such runs. Multiple QoR metrics
can be leveraged to classify successful or doomed PD runs. In
this paper, we specifically focus on the aspect of timing, where
our goal is to identify the PD runs that cannot achieve end-of-
flow timing results by predicting the post-route total negative
slack (TNS) values in early PD phases. To achieve our goal, we
develop an end-to-end machine learning (ML) framework that
performs TNS prediction by modeling PD implementation as
a sequential flow. Particularly, our framework leverages graph
neural networks (GNNs) to encode netlist graphs extracted
from various PD phases, and utilize long short-term memory
(LSTM) networks to perform sequential modeling based on the
GNN-encoded features. Experimental results on seven industrial
designs with 5:2 train/test split ratio demonstrate that our
framework predicts post-route TNS values in high fidelity within
5.2% normalized root mean squared error (NRMSE) in early
design stages (e.g., placement, CTS) on the two validation designs
that are unseen during training.

I. INTRODUCTION

With the burgeoning surge of mobile applications that
demand ultra-law latency, building high-performance designs
becomes the top priority of most semiconductor companies.
To reach the best-achievable signoff timing, designers often
perform extensive design space exploration to achieve the
best timing closure by running many parallel physical design
(PD) implementations, which is highly time-consuming and
resource-inefficient because most of the the runs are “doomed
to fail” (i.e., not able to meet desired performance). Therefore,
to improve the chip design turn-around time (TAT), a method
that precisely predicts whether a PD run can successfully
achieve the final power, performance, and area (PPA) targets
in early stages of the design flow is urgently needed.

To solve the above issue, in this paper, we aim to build
an end-to-end machine learning (ML) framework that learns
to perform doomed run predictions in early PD stages. The
term “doomed runs” first originates in [9], which refers to the
design implementations that are not able to meet target signoff
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Fig. 1: High-level overview of our sequential modeling approach
of PD implementation flow. TNS is selected as the metric for
doomed run evaluation. We select three intermediate PD stages from
placement and CTS processes to perform sequential modeling. For
each intermediate stage, we encode the netlist graph using GNNs and
perform per-stage TNS prediction. In addition, we leverage a LSTM
network to perform final TNS prediction by taking GNN-encoded
features from the three modeling stages as time series inputs.

closures such as timing, power, and design rule violations
(DRVs) no matter how much computing resources have been
utilized. In this work, to demonstrate the feasibility of the
proposed framework, we specifically focus on the aspect of
timing, where we take the total negative slack (TNS) value
at the post-route stage as the criterion of a successful PD
implementation. The goal of this work is to build an accurate
post-route TNS predictor using information collected in early
stages of the design flow.

Figure 1 demonstrates a high-level overview of the proposed
modeling approach using a reference flow of a commercial
back-end PD implementation tool. The key idea behind is
to model the PD implementation as a sequential process and
perform post-route TNS prediction starting from early stages
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Fig. 2: Overview of our GNN-based LSTM framework. The goal of our framework is to predict the post-route TNS value (colored in orange)
in early design stages. by leveraging features extracted from the intermediate stages of the placement and CTS processes. A (global) GNN
module is utilized to perform graph encoding across the three stages. The encoded vectors in 64 dimensions are considered as time series
data and are taken as the input of the LSTM network. Note that the mean squared error (MSE) loss updates of all predictions (i.e., per-stage
prediction and sequential flow prediction) are calculated by taking the post-route TNS values as ground truths.

of the design flow. Therefore, designers can perform early
termination of an ongoing PD implementation based on the
prediction of our framework. As shown in the figure, our
framework is mainly composed of two components: graph
neural networks (GNNs) and long short-term memory (LSTM)
networks [7], which are responsible for netlist encoding and
sequential flow modeling, respectively. The goal of our GNN-
based LSTM framework is to predict the post-route TNS value
across various PD stages of the design flow that acts as the
criterion of a successful PD implementation.

We use a supervised learning framework where we pre-
generate a complete dataset with ground truth TNS values
of complete PD implementations from seven benchmarks. To
ensure the generality of our model (i.e., to apply it successfully
on unseen designs), we train a GNN module as a universal
graph encoder to embed netlists that come in different sizes
and from various stages into meaningful representations in
same dimensions. This generalizability of the proposed frame-
work is critical in the realm of EDA, because ML models are
practical only if they have the capabilities to perform accurate
predictions on unseen benchmarks. These GNN-encoded graph
representations are further taken as (1) regular input of the per-
stage prediction model and (2) time series inputs of the LSTM
model.

The goal of this work is to provide designers a high-fidelity
TNS-based doomed run prediction framework for general
designs by distilling key design knowledge along the PD flow.
Note that our framework does not assume any pre-defined
netlist structure, nor the underlying design implementation.
Although we use the Synopsys ICC2 reference design flow,
the proposed framework can be extended to other commercial
PD tools by using modeling information from their specific
flow stages.

II. RELATED WORKS OF ML IN EDA

ML is a promising paradigm that has demonstrated a wild
success in the EDA field [8]. ML algorithms powered by deep
neural networks (NNs) have shown great promise in PPA
prediction in various PD stages such as placement [10, 17],
clock tree synthesis [12, 15], routing [14, 22, 24], DRC hotspot
prediction [5, 13, 26], IR drop estimation [25], and gate sizing
during engineering change order [16] (ECO). Specifically, for
post-route timing prediction, the authors of [2] utilize gradient
boosting trees to identify the floorplans that are potentially
leading to sub-quality timing results, and the authors of [20]
also leverage a tree-based method to further perform path-
based timing optimization. All of these ML methods harness
a rich set of netlist features as inputs that facilitates transfer
learning across different designs. Nonetheless, a complete end-
to-end ML framework that performs PPA prediction across
multiple PD stages is still lacking, which prevents designers
from fully exerting the benefits that ML algorithms provide to
save design TAT and computational resources. To solve this
issue, in this work, we adopt a different modeling approach
from previous works by modeling the PD flow as a sequential
process. Specifically, we consider features extracted across
different PD stages as time series inputs, and leverage a LSTM
network to perform cross-stage prediction.

III. OVERVIEW OF FRAMEWORK

An overview of our GNN-based LSTM framework is shown
in Figure 2. As shown in the figure, in this work, we take three
intermediate PD stages from a commercial tool in our model-
ing. These stages are: “detailed place”, “placement optimiza-
tion”, and “clock optimization”, where the first two are from
the placement process and the last one is from the CTS pro-
cess. For each targeted modeling stage, we handcraft important
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Fig. 3: Correlation analysis on the VGA benchmark. Each dot represents an actual PD implementation. For each targeted modeling stage,
we plot the scatter distribution between the estimated TNS values (x-axis) at that stage with the post-route TNS values (y-axis). We observe
that as the modeling stage getting closer to the final stage, the fidelity of per-stage TNS estimation (x-axis) becomes higher.

node features that characterize the underlying netlist graph and
leverage a GNN module to perform graph encoding. Note that
even for a single PD implementation, the netlist graphs across
the three modeling stages are dynamically changing because of
logic optimization, buffer insertion/deletion, etc. Nonetheless,
our GNN encoding is sufficiently expressive to generalize
to netlists of various sizes. In the experimental section, we
demonstrate that our GNN module has the ability to encode
designs with different characteristics into meaningful repre-
sentations that significantly help the per-stage and sequential
flow based TNS predictions.

Since the back-end PD flow is a sequential process, the
encoded graph vectors in Figure 2 are highly related to
each other. Therefore, we leverage a LSTM architecture to
model such dependency in order to accurately predict the
final achieved TNS value. Note that the LSTM network use
the same parameters to take the encoded features in different
time steps as time series inputs, and outputs a single number
acting as TNS prediction after three time steps. Finally, with
the supervised TNS ground truth obtained after the routing
stage, we utilize the mean squared error (MSE) loss to update
the parameters in our framework. In Figure 2 we propose an
end-to-end framework, which means the parameters from both
GNN module and LSTM network can be stored in a single
computational graph and be updated jointly by optimizing the
loss function (MSE) through gradient descent.

IV. DESIGN OF EXPERIMENTS

Now, we formally define the PD doomed run prediction
problem as follows. Problem: TNS-Based Doomed Run Pre-
diction Given a RTL with a target synthesis frequency f and
a cell density target d, predict whether a PD implementation
can successfully achieve post-route TNS value in early stages
of the design flow.

A. Database Construction

In this paper, we study supervised learning techniques to
solve the doomed run prediction problem. Therefore, pre-
generating a representative database is a must in this work.

To build the database, we leverage Synopsys Design Compiler
2016 to synthesize the netlists from RTL to gate-level designs.
Since post-route TNS prediction is the focus of this work, the
timing results obtained from the synthesis stage is critical. For
each design, we perform experimental sweeps on its synthesis
target frequencies to find the maximum frequency that results
in a worst negative slack (WNS) greater than zero.

After obtaining the maximum synthesis target frequency of
a netlist, we tighten up this frequency target by up to 1GHz
as the new frequency target with a step size of 100MHz. For
example, assume a design has a synthesis frequency target
f , then we will tighten up this frequency target f to get
f + 100MHz, f + 200MHz, ..., and f + 1000MHz as the
new PD frequency targets of the PD implementations. The
rationale behind is that we want to generate a database as
diverse as possible in terms of post-route timing results, so that
our model would comprehend which netlist features contribute
to the success of a PD implementation during the sequential
flow modeling process.

Aside from target frequency, routability is also an important
factor that affects post-route timing, which is largely deter-
mined by the target cell density in early stages. A high cell
density target often results in a high congestion during routing,
and therefore impacts the timing quality. Following from
the frequency setting as aforementioned, for each PD target
frequency, we pair it with five different cell density targets:
{0.7, 0.75, 0.8, 0.85, 0.9}. Therefore, for each benchmark, we
will generate 50 runs with different pairs of frequency and
cell density targets. In total, we have 350 runs across seven
designs.

B. Database Analysis

Before diving into the details of our modeling approach,
we first perform a detailed analysis of our database, where
we take one of our unseen netlists (i.e., not utilized during
training), the VGA benchmark, as our case study. Specifically,
as the reference flow shown in Figure 1, we take the netlist
features in the “detailed place” and “opt. place” stages from
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Fig. 4: Frequency sweeping experiments of the VGA benchmark. For
each plot, we fix the target cell density whose value is shown on the
top of the plot, and sweep around the target synthesis frequency (x-
axis). Each dot in the plots represents an actual PD implementation.

placement, and the features in the “opt. CTS” stage from CTS
to perform the modeling. Therefore, in total, our GNN-based
LSTM framework comprehends the time series information
across three sequential PD stages.

Figure 3 demonstrates a correlation analysis of the three
targeted modeling stages in this work to the final post-route
TNS values (y-axis). Each dot in the figure represents an actual
PD implementation. For each targeted modeling stage, we plot
the scatter distribution of the estimated TNS of each stage
(x-axis) to the final post-route TNS of the underlying PD
implementation. As shown in the figure, we observe that as
we move closer to the post-route stage, the commercial tool’s
pre-route TNS values (x-axis) are more correlated with the
post-route TNS values (y-axis). To model the sequential (time-
domain dependent) relationship between each PD stage, we
use a LSTM network which takes the GNN-encoded features
from each stage as its time series input. Detailed algorithms
of our framework are discussed in Section VI.

Finally, Figure 4 and Figure 5 demonstrate the target fre-
quency and target cell density sweeping experiments, respec-
tively. In the figures, we observe that although in general the
post-route TNS value becomes worse as the target frequency
or the target cell density becomes tighter. However, in some
situations, the trends become counter-intuitive, which is due
to inherent tool noise. For example, in Figure 4(b), the final
TNS value becomes better when the frequency is tightened.
Therefore, our modeling approach must comprehend such
inherent tool noise.

V. ALGORITHMS

Our TNS-based PD doomed run prediction framework is
constructed with two main components: the GNN module
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Fig. 5: Target density sweeping experiments on the VGA benchmark.
We select eight different target frequencies and sweep around the
target cell density (x-axis). We observe that in general, with the same
target frequency, the final achieved TNS value degrades as the target
cell density increases.

TABLE I: Initial node features for graph representation learning.

name description
wst slack worst slack of cell
wst output slew maximum transition of output pin
wst input slew maximum transition of input pin
drv net power switching power of driving net
int power cell internal power
leakage cell leakage power

and the LSTM network, which together form an end-to-end
differentiable ML model. The rationale behind the selection
of these architectures is two-fold. First, given that netlists are
originally represented as hypergraphs where the edge con-
nectivity and cell characteristics contain valuable information,
we leverage GNNs to perform meaningful graph encoding
with the consideration of such information. Second, based on
the fact that PD implementation is actually a stage-by-stage
sequential process where the status of the current stage highly
depends on the outcomes from the previous stages, we utilize
a LSTM network to model such time-series information. In
the following sub-sections, we will discuss each component
of our framework in detail.

A. Initial Node Features

GNNs are known to perform effective graph representation
learning by constructing meaningful node-level or graph-
level embeddings that accurately characterize the underlying
graphs [23]. In the realm of EDA, previous works [17, 18] have
leveraged GNN modules to iteratively transform the feature
vector of a node into better representations by considering
the cell characteristics and connectivity information of the
neighboring nodes. These learned representations are further
leveraged to solve the partitioning [18] and the placement
optimization [17] tasks.

To successfully apply GNNs on specific EDA tasks, we
have to manually define task-related node features that GNN
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Fig. 6: Illustration of encoding a netlist graph using GNNs. Starting
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is used to transform the initial node features into meaning high-
dimensional node representations (64 dimensions). Finally, a global
graph pooling operation is utilized to transform the node embedding
into a single graph vector. This graph vector is further taken as the
input of the LSTM network and per-stage NN model as shown in
Figure 2.

modules can extract insight from. The initial node features
we define in this work are shown in Table I. We use domain
expertise to extract these features from timing reports, power
reports, and technology files. Note that in this work, as shown
in Figure 2, our GNN module performs the graph repre-
sentation learning across various (intermediate) PD stages,
which implies we are performing encoding on dynamic graphs.
Therefore, the features shown in Table I can be obtained from
all the three targeted modeling stages across placement and
CTS processes. Based on these initial features, we train our
GNN module to obtain meaningful representation in graph-
level by performing graph representation learning.

B. GNN as Graph Encoder

Figure 6 shows an illustration of our graph encoding pro-
cess. As shown in the figure, the goal of graph learning is to
transform the initial features defined in Table I into a high-
dimensional vector that represents the underlying netlist at a
particular intermediate PD stage. Note that for each targeted
modeling stage as shown in Figure 2, we perform the netlist
graph encoding with the same GNN module (i.e., one GNN
module is utilized across all modeling stages). The reason we
leverage the same module to encode netlists at different stages
rather than developing a per-stage GNN encoder is because
we want our framework to be generalizable. Training separate
encoding modules for various stages may boost the training
accuracy but will lower generalizability and practical adoption
of our framework.

As shown in Figure 6, our GNN-based netlist encoding pro-
cess has two stages. The first stage is termed as node embed-
ding, where for each instance (node) in the design (graph), we
transform the manually defined features in Table I into better
representations by aggregating local-neighborhood’s features.
Since in the implementation, our GNN module has 64 neurons
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Fig. 7: Detailed architecture of our GNN-based LSTM framework.
The proposed framework performs two kinds of modeling approaches
with a shared GNN module. The left-hand side is the sequential
modeling approach, where the GNN-encoded features across different
PD stages are taken as the input of the LSTM network. On the right
shows the per-stage modeling approach, where the GNN-encoded
features of each stage are taken as the input of a dedicated feed-
forward neural network that also performs post-route TNS prediction.

at the last layer, each initial feature vector originally in 6
dimensions (Table I) will be transformed into a vector in 64
dimensions. This node representation learning is based on the
approach presented in [6]. Given a netlist graph G = (V,E)
of an intermediate PD stage, for each node v ∈ G, we first
transform the initial node features f0v into embeddings at level
k = K as

fk−1
Nk(v)

= reduce mean
(
{Wagg

k fk−1
u , ∀u ∈ Nk(v)}

)
,

fkv = σ
(
Wproj

k · concat
[
fk−1
v , fk−1

Nk(v)

])
,

(1)

where σ denotes the sigmoid function, Nk(v) denotes the
neighboring nodes of node v which is limited by the sam-
pling size sk, W agg

k and W proj
k denote the aggregation and

projection matrices at level k respectively, which are learnt by
NNs. In the experiments, we set K = 2, which means our
GNN module has two layers.

Finally, after obtaining the learned node embeddings in 64
dimensions, at the second stage of the GNN encoding process,
we perform a global mean pooling over {fk=K

v ,∀v ∈ V } to
obtain the final graph vector in 64 dimensions. The encoded
graph vectors across various intermediate PD stages are taken
as the input to (1) the dedicated model at each stage that
performs per-stage TNS prediction and (2) the LSTM network
that performs sequential modeling of the PD flow.

C. Sequential Modeling of PD Flow

Given that the PD flow is sequential, we use a LSTM [7]
network to perform TNS-based doomed run prediction based



on the features extracted from various stages. The LSTM
network is a type of recurrent neural network (RNN) that
predicts time-series data using feedback loops by taking the
predictions made in previous time steps as the inputs of the
current time step. Therefore, it can be considered as a network
that unrolls over time based on the length of sequence. In this
work, the graph vectors extracted from the three modeling
stages as shown in Figure 2 form a sequence of length three.
Hence, our LSTM network unrolls three times to make the
final TNS prediction.

The LSTM architecture is composed of three gates, which
are input gate i, forget gate f , and output gate o. These gate
connections are known to facilitate the network to preserve
long term “memories” (i.e., information from previous time
steps). Given an input sequence xt at time step t, the gate
connections are governed as

it = σ(Wi · [ht−1, xt] + bi), (2)
ft = σ(Wf · [ht−1, xt] + bf ), (3)
ot = σ(Wo · [ht−1, xt] + bo), (4)

where {W} and {b} denote the weights and biases, σ denotes
the sigmoid activation function, and ht−1 denotes the output
from the previous time step, where h is often termed as the
hidden state, and is obtained from the cell state c as

c̃t = tanh(Wc · [ht−1, xt] + bc), (5)
ct = ft � ct−1 + it � c̃t, (6)
ht = ot � tanh(ct), (7)

where � denotes the element-wise multiplication.
The detailed architecture of our GNN-based LSTM frame-

work is shown in Figure 7. We first leverage GNNs to perform
graph encoding across different intermediate PD stages, then
we utilize a LSTM network to perform TNS prediction by
considering the encoded vectors as time-series inputs. Note
that the TNS value prediction is targeted at the post-route
stage. The reason we adopt ELU [3] rather than ReLU [1] as
the activation function is because ELU provides a smoother
non-linearity around zero value and solves the dying ReLU
problem. Finally, we want to emphasize that although the pro-
posed framework is composed of two components: the GNN
module and the LSTM network, it is end-to-end differentiable.
The parameters in both components are stored in the same
computational graph and are updated jointly by optimizing
the MSE loss of the prediction through gradient descent.

D. Training Methodology

Algorithm 1 presents the training methodology of our GNN-
based LSTM framework, where a gradient descent optimizer
Adam [11] is utilized to optimize the loss function (MSE)
through supervised learning. The procedure of the graph
encoding process is shown in Lines 1–9. Note that we utilize
the same GNN module to encode netlist graphs taken from dif-
ferent PD stages (Lines 14–16) in order to make the framework
generalizable. Finally, after the graph encoding processes, we
leverage the LSTM network to perform sequential modeling

Algorithm 1 GNN-based LSTM framework training methodology.
We use default values of α = 1e− 4,K = 2, β1 = 0.9, β2 = 0.999.
Input: {G1}: netlist graphs at the “detailed place” stage, {G2}:

netlist graphs at the “opt. place” stage, {G3}: netlist graphs
at the “opt. CTS” stage, {Y }: groundtruth TNS values at the
post-route stage.

Input: α: learning rate, {f0}: initial node features, K: maximum
aggregation level, {sk, ∀k ∈ {1, ...,K}}: k-hop neighborhood
sampling size, {Wk, ∀k ∈ {1, ...,K}}: parameters of NN at
hop (level) k, {θL}: initial parameters of the LSTM network,
{β1, β2}: Adam parameters.

Output: {ŷ}: post-route TNS predictions.
1: function GNN Encode(graph = (V,E)):
2: f0

v ←
f0v
‖f0v‖2

,∀v ∈ V
3: for k ← 1 to K do
4: Nk(v)← Sample sk neighbors at k-hop
5: fkNk(v)

= reduce mean
(
{Wagg

k fk−1
u , ∀u ∈ Nk(v)}

)
6: fkv = sigmoid

(
Wproj

k · concat[fk−1
v , fkNv(v)

]
)

7: fkv ←
fkv
‖fkv ‖2

, ∀v ∈ V
8: return v ← reduce mean{fKv ∀v ∈ V } . encoded graph

vector
9:

10: while {θL,Wk} do not converge do
11: loss← 0
12: for (g1, g2, g3, y) in (G1, G2, G3, Y ) do
13: g′1 ← GNN Encode(g1) . detail place
14: g′2 ← GNN Encode(g2) . opt. place
15: g′3 ← GNN Encode(g3) . opt. CTS
16: h0 ← 0 . hidden vector initialization
17: h1 ← LSTM(h0, g

′
1; θL)

18: h2 ← LSTM(h1, g
′
2; θL)

19: ŷ ← LSTM(h2, g
′
3; θL)

20: loss += (y − ŷ)2

21: gradient← ∇θL,W (loss)
22: θL,W← Adam(α, gradient, θL,W, β1, β2)

TABLE II: Our seven benchmarks and their attributes in TSMC 28nm.

Design Name # Nets # FFs # Cells Usage
JPEG 231,414 37,540 214,666

training
LEON 442,635 108,720 445,381
ECG 85,058 14,028 84,127

LDPC 51,534 2,048 48,339
TATE 206,780 31,416 209,002
AES 104,704 10,688 114,086 testingVGA 57,072 17,052 56,897

of the PD flow (Lines 18–20) with an aim to predict the TNS
value after the post-route stage.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we perform thorough experiments to demon-
strate the achievements of our GNN-based LSTM sequential
flow modeling framework. We validate our framework on
seven industrial designs with a train/test split ratio of 5:2.
The characteristics of each benchmark after synthesized under
TSMC 28nm technology node using Synopsys Design Com-
piler are shown in Table II. As mentioned in Section IV, to
generate the dataset for supervised learning, for each bench-
mark, we tighten the PD performance target from the maxi-
mum frequency obtained from the synthesis stage that achieves
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Fig. 8: t-SNE visualizations of the GNN learned node representations.
We concatenate the GNN-extracted features from the three targeted
intermediate modeling stages, and leverage t-SNE [19], a dimension
reduction technique, to plot the GNN-extracted high dimensional
features (64*3 dimensions) on a 2D plane. Note that each dot
represents a complete PD implementation of the underlying design.

WNS greater than zero. The PD performance tightening is
achieved by increasing the obtained synthesis frequency by a
maximum value of 1GHz with an interval of 100MHz (i.e., we
generate 10 different PD target frequencies by tightening). In
addition, we map each target PD frequency with five different
target cell densities: {70, 75, 80, 85, 90}%, since the final
timing results are greatly affected by routability. Therefore, in
total for each benchmark in Table II, we generate 50 different
PD runs with various combinations of frequency and cell
density targets.

Finally, the proposed GNN-based LSTM framework is
implemented in Python3 with the aid of the PyTorch library.
Specifically, the GNN implementation is based on the help
from the PyTorch Geometric [4] library. The seven benchmarks
utilized in this work are obtained from OpenCores.org and the
ISPD 2012 benchmark suite [21].

A. GNN Graph Embedding Results

Graph embedding conducted by the GNN module is a highly
critical modeling stage in this work, since it enables us to
perform transfer learning that facilitates our model to gener-
alize to unseen netlists. To evaluate the effectiveness of graph
learning, we leverage the t-distributed stochastic neighboring
embedding [19] (t-SNE) dimension reduction technique to
visualize the high dimensional encoded graph representations.
Specifically, for a PD implementation, we concatenate the
graph vector in 64 dimensions of each modeling stage (i.e.,
forming a 192 dimensions vector), and leverage t-SNE to
visualize the encoding in 2D. The result is demonstrated in
Figure 8. Note that each dot in the figure denotes a complete
PD run. As shown in the figure, we observe that different PD
implementations of a same netlist form a self-contained cluster
with very few exceptions. This suggests that our GNN module
has the ability to differentiate different designs by extracting
key netlist features across seen and unseen netlists. Therefore,
we have confidence that our framework is generalizable, which
is a crucial aspect of the feasibility of ML models in EDA.
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Fig. 9: Training loss iterations of the per-stage TNS prediction and
the sequential flow based TNS prediction.

B. Per-Stage TNS Prediction

The proposed framework models a PD implementation by
extracting netlist features from three intermediate PD stages
spanning from placement and CTS. The “per-stage prediction”
means that for each modeling stage, we train a neural network
to directly predict the post-route TNS value by taking the
GNN-encoded features at that stage as inputs. The key reason
for conducting the modeling approach is that we expect our
framework to have the ability to perform TNS prediction,
so that designers can apply it as a doomed run predictor by
stopping PD implementations in early stages.

The first three plots in Figure 9 show the training loss
iterations in the three modeling stages. ”Epoch” on the x-axis
represents the number of times that the proposed framework
iterates through the whole training dataset. “NRMSE” on the
y-axis denotes the normalized root-mean-squared error and
is calculated by normalizing the obtained root-mean-squared
error (RMSE) that comes with “unit” (e.g., ns) by the differ-
ence between the maximum and minimum ground truth values,
where the formula is NRMSE = RMSE

ymax−ymin
. NRMSE is a

popular metric that is utilized to compare prediction results in
different scales. In our case, since the post-route TNS distri-
butions of different designs vary greatly, NRMSE is a suitable
evaluation metric that helps to evaluate the predictions across
various designs. In the figure, we observe that the loss of
each modeling stage converges quickly as the training iteration
increases. Finally, the validation results are shown in Table III,
where we observe that with the modeling stage getting closer
to the final stage, the post-route TNS prediction made by per-
stage dedicated NN model becomes more accurate.

C. Sequential Flow-Based TNS Prediction

Now, we demonstrate the accuracy of the proposed frame-
work for the sequential modeling approach. Unlike the per-
stage prediction approach that directly predicts the post-route



TNS value based on the GNN-encoded vector of that stage
using a dedicated NN model, in this experiment, we model
the encoded graph vectors across the three targeted modeling
stages as time series data, and take them as the inputs of the
LSTM network to perform the TNS prediction. The training
loss iteration of this experiment is shown in Figure 9(d),
where we see that the loss decreases steadily when the training
iteration increases. As shown in the figure, the LSTM network
is trained with more epochs than the dedicated per-stage NN
model, which is because there are more modeling parameters
in the LSTM network than in the dedicated models as shown
in Figure 7.

The validation results with the sequential modeling ap-
proach is shown in Table III, where we observe that the
LSTM network predicts the post-route TNS values with high
accuracy than the single-stage model. This is largely because
the LSTM network leverages a richer set of input features
than the dedicated per-stage model by considering the GNN-
encoded vectors from all modeling stages as time series inputs.
Nonetheless, there exists a trade-off between the modeling
accuracy and the runtime of feature collection. Although the
predictions in early stages are not as accurate as the predictions
that leverages features from later stages of the design flow,
our per-stage prediction models still predict the final TNS
value with high accuracy because of successfully encoding the
netlists by GNN modules from different stages into meaningful
representations.

Figure 10 demonstrates scatter and bin-based distribution
plots of the predicted and ground truth TNS values on two
unseen netlists. Note that each dot in the figure denotes a
complete PD implementation. As shown in the figure, although
post-route TNS distributions of the two unseen designs vary
significantly, our model still has the capability to perform high-
fidelity predictions across these two designs. Furthermore,
compared with the analysis shown in Figure 3, we conclude
that our framework not only makes the predictions in high-
correlation but also in high-fidelity. This conclusion is made
by observing that the ranges of x-axes in Figure 10 are much
closer to the ranges of ground truth TNS values than the
ones in Figure 3 which are achieved by tool’s estimation. The
proposed framework can easily be leveraged by designers to
stop ongoing PD runs in early stages of the design flow that are
predicted to be doomed (based on the predicted TNS values).

VII. DISCUSSION

Ideally, we want to perform the doomed run prediction as
early as possible in the PD flow. However, there is a trade-
off between the fidelity of an ML model’s prediction and the
runtime of its input features collection. With more and more
features collected from latter stages of the design flow, ML
models are prone to make more accurate predictions. Nonethe-
less, the runtime of feature collection will increase if more
features from late design stages need to be collected. This
will make the model not amenable for practical adoption. In
this work, we balance this trade-off by performing sequential
modeling and confining the framework to collect features up

TABLE III: Prediction results on validation designs of our modeling
approaches that include three per-stage TNS predictions and one
sequential flow based TNS prediction, RMSE denotes root-mean-
squared error, NRMSE denotes normalized root-mean-squared error,
and CC denotes the Pearson correlation coefficient.

Unseen Designs RMSE (ns) NRMSE (%) CC
per-stage modeling: detailed place (placement)

AES 0.91 11.2 0.90
VGA 22.2 12.6 0.88
per-stage modeling: place opt. (placement)
AES 0.88 10.9 0.91
VGA 14.7 8.3 0.91

per-stage modeling: clock opt. (CTS)
AES 0.54 9.3 0.92
VGA 11.4 6.5 0.94
all-stage sequential modeling using LSTM
AES 0.47 5.4 0.91
VGA 9.34 5.2 0.95

predicted TNS (ns)
-20-40-60-80-100 0

predicted TNS (ns)
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Fig. 10: Scatter and distribution plots of the sequential modeling
approach using LSTM on unseen netlists. The regression lines in
both plots are generated by fitting least square on the scatter points.

to the routing stage (not included). As shown in Table III, our
framework predicts TNS with high accuracy using information
from early PD stages. Our framework, therefore, enables
designers to terminate a PD run early based on the predictions,
which improves productivity and resource usage.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have propose an innovative sequential
modeling approach that performs post-route TNS prediction
starting from early stages of the design flow. The proposed
framework leverages a GNN module to encode netlist features
extracted from three intermediate PD stages across placement
and CTS. The encoded features are taken as the inputs of per-
stage prediction models and a LSTM network that performs
sequential modeling of PD implementation. Based on the high-
fidelity and high-correlation prediction results achieved, we
envision designers to easily leverage the proposed framework
to perform PD doomed run prediction and terminate the
implementations that are doomed to fail. In the future, we
aim to enable the framework to comprehend more doomed
run criteria of PD flows and to apply it on more technology
nodes.
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