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Abstract—Tier partitioning is one of the most critical stages
in monolithic 3-D (M3D) integrated circuits (ICs) implementa-
tion flows. It transforms 2-D netlists into 3-D by performing tier
assignment for each design instance, which directly impacts the
power, performance, and area (PPA) metrics of final 3-D full-chip
designs. However, the current state-of-the-art tier partitioning
approach named bin-based min-cut algorithm has fundamental
flaws that lead to severe drawbacks, such as timing degrada-
tion, 3-D routing overhead, and redundant monolithic intertier
vias (MIVs) insertion. To overcome these issues, in this arti-
cle, we propose TP-GNN, an unsupervised graph learning-based
tier partitioning framework that utilizes graph neural networks
(GNNs) and advanced machine learning (ML) techniques to per-
form tier partitioning. The proposed framework comprehends
design- and technology-related parameters properly so that it
is generalizable to various netlists and technologies. In addi-
tion, it can be integrated with any style of M3D design flows
that require tier assignments of standard cells. In the experi-
ments, we validate the proposed framework on seven industrial
designs with two different fashions of M3D implementation flows:
1) partitioning-first (Snap3D) and 2) partitioning-last (Shrunk2D
and Compact2D) flows. We demonstrate that our framework,
TP-GNN, significantly improves the 3-D quality of results (QoR)
across most testing designs in a large margin compared with
the bin-based min-cut tier partitioning algorithm. Specifically,
in OpenPiton, an RISC-V-based multicore system, we observe
27.4%, 7.7%, and 20.3% improvements in performance, wire-
length, and energy-per-cycle, respectively. Finally, we perform
a case study by applying the proposed framework to a het-
erogeneous M3D design flow, Pin3D, on a commercial CPU
design and observe that TP-GNN reaches better partitioning solu-
tions than the existing partitioning approaches for heterogeneous
3-D ICs.

Index Terms—3D integrated circuits (ICs), circuit partitioning,
physical design.
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I. INTRODUCTION

THREE-DIMENSIONAL integration technology is a
promising solution that provides technology scaling

beyond Moore’s law. It improves the power, performance, and
area (PPA) metrics of 2-D integrated circuits (ICs) by stacking
dies one on top of each other using intertier vias. Based on
different types of stacking approaches, 3-D ICs can be catego-
rized into three streams: 1) through-silicon via (TSV) based;
2) monolithic intertier via (MIV) based; and 3) face-to-face
(F2F) bonded [17]. TSV-based 3-D ICs were developed ear-
lier than the others; however, due to the large pitch in micron
scale (μm) and high parasitics of TSVs, TSV-based 3-D ICs
often result in low 3-D integration densities and thus, fail to
truly benefit from the 3-D integration [8]. Recently, mono-
lithic 3-D (M3D) integration has become the most promising
approach to build 3-D ICs. Thanks to the nanoscale (nm)
size of MIVs, M3D stacking enables cheaper intertier con-
nections and a more fine-grained physical design, leading to
a much higher device density compared with the TSV-based
3-D designs [1], [33]. Therefore, in this work, we will focus
on improving M3D implementation flows [21].

3-D placement is recognized as the grandest challenge to
build high-quality 3-D ICs [6], which is mainly due to the
fact that currently there does not exist any commercial elec-
tronic design automation (EDA) tools that can perform 3-D
placement directly from 2-D netlists such as the commercial
approach in [22]. To obtain commercial-grade 3-D ICs using
commercial EDA tools, state-of-the-art M3D implementation
flows Shrunk2D [27], Compact2D [18], and Snap3D [32]
leverage 2-D commercial placers to mimic 3-D placements
by performing tier partitioning on “projected 2-D designs”
(detailed explanations in Section II) as an alternative of per-
forming “true 3-D placement” (i.e., obtain final 3-D placement
solutions directly from 2-D netlists).

Tier partitioning refers to the algorithmic process of assign-
ing each design instance to a specific tier. This process is
critical as it determines the locations and of standard cells and
intertier vias (e.g., MIVs), which directly impacts the qual-
ity of results (QoR) of full-chip designs. Currently, all of the
state-of-the-art M3D flows adopt a partitioning method named
bin-based min-cut tier partitioning algorithm that partitions
netlists by minimizing cutsize. The algorithm first divides the
entire 2-D design into multiple “bins” (rectangular regions)
on the x-y plane. Then, it adopts an area-balanced min-cut
partitioning algorithm to partition the cells inside each bin into
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different tiers (z-direction) by minimizing the cutsize of the
partial netlist within a bin. The idea behind this approach is to
minimize the intertier connections across tiers while balancing
the standard cell area of the overall layout. However, there
are several significant drawbacks of this approach that lead to
suboptimal 3-D full-chip designs, namely, as follows.

1) Timing Degradation: The bin-based partitioning algo-
rithm fails to consider the global connections among
bins. It only iteratively partitions the subnetlist within
a single bin, which inevitably leads to a severe timing
degradation.

2) Low 3-D Integration Density: Min-cut partition is not
necessarily good for 3-D integration as it might not real-
ize the full potential of the high integration density that
monolithic 3-D (M3D) integration provides.

3) Placement Quality Degradation: Hierarchy information
from RTL is completely ignored in the existing bin-
based algorithm. Therefore, extra cutsize will be intro-
duced and intertier vias will be inserted in subopti-
mal locations, which results in a placement quality
degradation.

In this article, we address all the drawbacks raised above.
We present TP-GNN, an unsupervised graph-learning-based
framework that performs tier partitioning using graph neural
networks (GNNs) and the weighted k-means clustering algo-
rithm [20]. Unlike previous works that neglect design-related
and technology-related parameters, we consider timing, hier-
archy, and library information in our algorithm. The goal of
this work is to present a novel tier partitioning framework
that advances the state-of-the-art M3D implementation flows
in terms of the full-chip PPA metrics.

Throughout the years, active research in M3D ICs has been
conducted extensively and numerous styles of M3D implemen-
tation flows have been developed. Given the fact that all M3D
approaches must separate logics onto different tiers during
tier partitioning, and this partitioning step can happen either
early (partitioning-first) or late (partitioning-last) with respect
to the placement stage, M3D design flows can be categorized
into two streams: 1) partitioning-first and 2) partitioning-last
flows as shown in Figs. 1 and 2, respectively. In this arti-
cle, we use the proposed TP-GNN framework to explore
both options. In addition, since different technologies can be
leveraged in different tiers of M3D ICs (i.e., heterogeneous
3-D designs), we further validate the proposed framework
with a heterogeneous M3D design flow named Pin3D [29]
based on a commercial multicore CPU design. We demonstrate
that the proposed framework has the ability of comprehend-
ing the technology features so as to perform effective tier
partitioning.

The remainder of this article is organized as follows.
Section II gives an introduction of the targeted M3D design
flows and the graph representation learning. Section III
revisits related works on tier partitioning methods for
3-D ICs. Section IV describes the TP-GNN algorithms
and implementation details. The experimental results are
presented in Section V, and critical discussions are deliv-
ered in Section VI. Finally, we conclude our work in
Section VII.

Fig. 1. Partitioning-first M3D design flow Snap-3D [32] versus our GNN-
based partitioning flow.

Fig. 2. Partitioning-last M3D design flows Shrunk2D [27] and
Compact2D [18] versus our GNN-based partitioning flow.

II. BACKGROUND

A. State-of-the-Art 3-D Implementation Flows

Based on the granularity of 3-D integration, 3-D designs
can be categorized into three levels: 1) transistor level; 2) gate
level; and 3) block level. Since the gate-level design method-
ology provides much more implementation freedom than
the others, in this work, we will focus on the 3-D ICs
implementation flows in this level. Furthermore, as afore-
mentioned, depending on the timing of the tier partitioning
stage with respect to the placement stage, M3D design flows
can be categorized into two streams: 1) partitioning-first and
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2) partitioning-last [28] flows. In this article, we apply the
proposed tier partitioning framework TP-GNN on both kinds
of gate-level M3D design flows and demonstrate that our
framework outperforms the bin-based min-cut tier partitioning
algorithm that currently most flows adopt in terms of full-chip
QoR. In the following, we introduce the two kinds of M3D
flows in more detail.

1) Partitioning First: Chang et al. [9] proposed the first
partitioning-first M3D implementation flow named Cascade-
2D, where they focus on the 3-D implementation of improving
memory-heavy commercial CPU designs. Nonetheless, since
Cascade-2D does not generalize to a wider range of design
styles, in this article, we take a recent flow named Snap-3D [32]
that achieves state-of-the-art results over popular benchmarks
as our baseline partitioning-first M3D flow. Fig. 1 shows the
design steps of the Snap-3D flow. The key idea of Snap-3D lies
in the observation that the row structure of a 2-D placement can
be divided into even and odd sites (rows) that naturally represent
two different 3-D dies (tiers). Therefore, by carefully setting the
placement constraints, one can easily place cells in different dies
simultaneously (i.e., co-optimization) through any 2-D placer.
In the original Snap-3D work, they utilize tiling methods, which
resemble the min-cut partitioning method that Shrunk2D and
Compact2D adopt to generate such placement constraints as
partitioning solutions. In this work, we leverage the proposed
tier partitioning framework to generate the constraints and
demonstrate that our design-aware partitioning approach can
lead to better PPA results.

2) Partitioning Last: Shrunk2D [27] and Compact2D [18]
are the two state-of-the-art partitioning-last M3D implementa-
tion flows. They both leverage commercial tools for physical
design implementations, where the main difference lies in
the approach of mimicking 3-D designs in the 2-D stage. In
Shrunk2D, standard cells are shrunk into half of the original
sizes for placement and routing (P&R), whereas Compact2D
scales the RC parasitics by a factor of 1/

√
2 instead of shrink-

ing the cells. After 2-D P&R, cells are expanded (Shrunk2D)
or projected (Compact2D) onto a 2-D die with half of the
original footprint. In the subsequent partitioning stage, both
flows adopt the bin-based partitioning method as described in
Section I to perform tier partitioning, which highly degrades
the quality of the final full-chip 3-D design. The remaining
stages are similar, starting from the legalization for both tiers
to the timing closure for tape-out. In this work, we signif-
icantly improve these state-of-the-art flows by introducing a
novel tier partitioning framework, TP-GNN, which overcomes
the severe degradation occurred in [18] and [27] as aforemen-
tioned. The detailed algorithms of our framework are described
in Section IV.

3) MIV Planning (Insertion) Details: For both partitioning-
first and partitioning-last design flows, MIV insertions are
performed after obtaining the partitioning results at the 3-D
global routing stage as shown in Figs. 1 and 2. Specifically, in
this stage, we stack the metal layers from top die and bottom
die together, and advise the router to perform global routing
on the stacked metal layers, where MIVs are the vias that
the router inserts between the top metal layer of the bottom
die and the bottom metal layer of the top die. For example,

assume a two-tier M3D design and each die has six metal
layers (M1–M6), which results in 12 metal layers (M1–M12)
when stacked together during the 3-D global routing phase, the
MIVs are the vias that the router inserts between the M6 and
M7 layers. Note that the main purpose of MIVs is to connect
the cells located in different dies. In the above example, MIVs
are leveraged to connect the pins of the bottom die cells that
are located in M1 with the pins of the top die cells located
in M7.

B. Heterogeneous 3-D ICs Design Flow

Heterogeneous 3-D ICs refer to the 3-D chips that adopt
more than one technologies within. A common practice is to
use different technologies for various dies (tiers). The main
benefit is that by using heterogeneous 3-D stacking, 3-D ICs
in old technologies can reap the performance gain of the 2-D
chips equipped with new technologies, which are prohibitively
expensive to be developed. In other words, heterogeneous
3-D integration may produce competitive products as 2-D
technology scaling but at a lower cost. However, the design
flows (Shrunk2D, Compact2D, and Snap3D) introduced in the
previous section do not support building heterogeneous 3-D
designs. To validate the proposed tier partitioning framework
in a broader scale, in this article, we take Pin3D [29], a novel
heterogeneous 3-D design flow, as our reference flow, and
demonstrate that the proposed partitioning strategy can achieve
better full-chip PPA than the original partitioning strategy in
Pin3D [29].

C. Graph Neural Networks

Recently, GNNs have gained great traction across various
research areas [13]. In general, GNNs are based on a message
passing scheme, where the objective is to learn a representation
vector for each node by recursively aggregating and transform-
ing the features of its neighboring nodes. After k iterations,
a node will be represented by a vector, which captures the
structural information and the attributes within its k-hop neigh-
borhood. VLSI circuits can be naturally modeled as graphs.
In this work, we first devise a hierarchy-aware graph transfor-
mation algorithm to convert the original netlist (hypergraph)
into an edge-contracted clique-based graph. Then, we lever-
age GNNs to perform graph representation learning, where
the goal is to construct a node representation that captures the
design characteristics related to tier partitioning for each node.
After the graph learning, we utilize the weighted k-means algo-
rithm [11] to perform area-balanced partitioning based on the
learned representation for each cell.

III. RELATED WORKS

Many research groups have proposed tier partitioning meth-
ods for 3-D ICs. Previous work [19] employs a dynamic
programming algorithm and a flow-based min-cost algorithm
to minimize TSV count and wirelength. Banerjee et al. [4] and
Ghosal and Chatterjee [12] leveraged breadth-first search to
further perform area-balanced partitioning. Another work [23]
proposes a force-directed algorithm with cost-based heuristics
to break long wires. However, these studies fail to consider the
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(a) (b) (c)

Fig. 3. TP-GNN visualization. (a) Input netlist with two design hierarchies: {a, b, d, f , h} and {c, e, g, i, j}. Numbers represent cell locations. (b) Hierarchy-
aware edge contractions on the transformed clique-based graph. Edge weights represent the Manhattan distance. (c) For target node g, sampling and aggregating
features from its k-hop neighbors.

timing and power degradation when performing the partition.
Furthermore, the keep-out-zone of TSVs and the requirement
of die alignment limit the 3-D device integration density in
these studies [7].

A study of unbalanced area partitioning for M3D designs
is conducted in [31], where a crucial conclusion is drawn that
the minimization of intertier via count is no longer critical to
obtain high-quality 3-D ICs as in TSV-based designs (this con-
clusion also holds for F2F stacking fashion). In [5], an iterative
partitioning tool for M3D designs is presented, where a simu-
lated annealing algorithm is introduced to optimize a wire-cost
function without limiting the usage of intertier (3-D stacking)
vias. Another work [14] presents a folding-based method to
transform 2-D layouts into 3-D. Also, a bin-connection graph
is proposed in [14] to remove cell overlaps. However, these
studies [5], [14] are shaded by Shrunk2D and Compact2D due
to the absence of optimizations from commercial tools.

To benefit from commercial tools, previous studies [6], [26]
have proposed 3-D design flows similar to Fig. 2, but with dif-
ferent tier partitioning strategies. Billoint et al. [6] introduced a
folding-based partitioning technique similar to [14]. However,
even with the aid of commercial tools, this approach [6]
only shows marginal 3-D savings. Panth et al. [26] proposed
a routability-driven tier partitioning model, which leverages
min-overflow routing heuristics to perform bin-based par-
titioning. Nonetheless, this approach only achieves minor
improvement on few designs, since it retains the significant
drawbacks of the bin-based partitioning method as described
in Section I.

IV. TP-GNN ALGORITHMS

A. Overview

Figs. 1 and 2 demonstrate the integration of our proposed tier
partitioning framework TP-GNN with the state-of-the-art 3-D
design flows. As shown in the figure, the input to the TP-GNN
framework is a projected 2-D design, where all the cells are
placed, routed, and projected onto a 2-D die with half of the
2-D counterpart’s footprint. The output of the framework is a
partitioned design, where each cell is assigned to a unique tier.

Fig. 3 shows the visualization of our framework. Given a
projected 2-D design as shown in Fig. 3(a), we transform the

netlist hypergraph into an edge-contracted clique-based graph
as shown in Fig. 3(b) by devising a hierarchy-aware edge con-
traction algorithm. After the contraction, we leverage GNNs to
perform instance-based graph representation learning as shown
in Fig. 3(c), where features within K-hop neighbors (K = 2) of
the target node are sampled and aggregated to learn accurate
representations for the downstream clustering stage.

Finally, our tier partitioning framework TP-GNN is gen-
eralizable to every design, since it learns the feature rep-
resentations by optimizing an unsupervised loss function
(unsupervised learning). Also, it does not assume anything
regarding the netlist structure or design characteristics. Instead,
it learns and adapts to various netlists using graph embedding
techniques. Finally, TP-GNN can be easily integrated with
existing 3-D implementation flows to significantly improve
the quality of the final full-chip design. Note that ideally, our
method can be extended to support multitier partitioning by
clustering the nodes into k > 2 groups. However, the transition
will not be that smooth because it will depend on the ways
that pseudoplacements are generated and MIVs are inserted
into multitiers. Furthermore, currently state-of-the-art M3D
design flows (Shrunk2D [27], Compact2D [18], Snap3D [32],
and Pin3D [29]) only support two-tier M3D designs, and in
this article, we focus on improving the full-chip PPA met-
rics of two-tier 3-D designs. The detailed algorithms of our
framework are described in the following sections.

B. Hierarchy-Aware Edge Contraction

Starting from a projected 2-D design, we first transform
the original netlist (a directed hypergraph) into an undirected
clique-based graph G, where a net that originally contains
k cells forms a k-clique in G, and each edge e = (u, v)
is assigned a weight representing the Manhattan distance
between cell u and cell v in the projected 2-D placement.
Then, we apply a hierarchy-aware edge contraction algorithm
(Algorithm 1) on this graph G, where pairs of nodes within
the same hierarchy are contracted into supernodes based on
the ascending order of edge weights (lines 1–4). When a
supernode v′ is obtained, we update the edge weights between
its neighbors and its center of gravity (lines 5–7). Note that
the term “hierarchy” refers to the “module” defined in the
synthesized netlist (RTL).
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Algorithm 1 Hierarchy-Aware Edge Contraction Algorithm
Input: G(V, E): original clique-based graph.
Output: G′(V ′, E′): edge-contracted clique-based graph.

1: E ← SortEdgesByWeight(E) (in ascending order)
2: for e = (u, v) ∈ E do
3: if u, v not contracted and u, v in the same hierarchy then
4: contract (u, v) to form a new vertex v′ � in-place
5: v′x ← ux+vx

2 , v′y ← uy+vy
2 � update location

6: for n ∈ {neighbors(u) ∪ neighbors(v)} do
7: edgeWeight(v′, n) = |v′x − nx| + |v′y − ny|
8: G′(V ′, E′)← G(V, E)

The goal of Algorithm 1 is to prevent the severe placement
quality degradation occurred in Shrunk2D and Compact2D,
which can be accounted by two reasons. First, cells within the
same hierarchy are highly connected with each other. If the
hierarchy information is ignored in the partitioning algorithm,
intertier vias will be inserted in suboptimal locations that intro-
duce redundant cuts. Second, previous works fail to consider
the actual cell distance in the 2-D placement while perform-
ing partitioning. Cells that are nearby and connected should
have a higher chance to remain in the same tier compared
with other distant cells; otherwise, designs will suffer from
severe 3-D routing overhead. Finally, Algorithm 1 can be per-
formed recursively to condense the graph and to benefit from
the runtime and memory requirement of the later graph learn-
ing. However, a denser graph does not always achieve better
PPA. In the experiments, we perform two runs of Algorithm 1
for each design implemented by our framework.

C. GNN Feature Aggregator

After obtaining the edge-contracted clique-based graph G′
from Algorithm 1, we leverage GNN to perform graph learn-
ing. The goal of this stage is to learn accurate node represen-
tations that capture the characteristics of the design regarding
tier partitioning. These learned representations are further uti-
lized to determine the tier assignment in the later clustering
stage.

Before the actual learning process, we determine an ini-
tial feature vector for each node as shown in Table I. Note
that features in Table I are designed for partitioning-last M3D
flows where the tier partitioning stage happens after the 2-D
physical implementation stage as shown in Fig. 2. For the
partitioning-first design flow, the features are extracted right
after the synthesis stage. Due to the lack of physical imple-
mentations (e.g., placement and routing), we drop the slack
and slew features presented in Table I while remaining others.

The features in the table span from a node’s structural
information and its design attributes. Unlike previous works
that ignore timing information during tier partitioning, we
prevent the severe timing degradation by considering four tim-
ing related features as shown in Table I. Note that these initial
node representations are insufficient to perform tier partition-
ing. To learn better representations, we train GNNs to sample
and aggregate the neighboring features for each node. The
GNN model will capture the local structural information as
well as the node attributes that are related to tier partitioning.

TABLE I
INITIAL NODE FEATURES FOR PARTITIONING LAST DESIGN FLOWS IN

EDGE-CONTRACTED GRAPH G′ . NOTE THAT A NODE MAY REPRESENT

MULTIPLE CELLS IN THE DESIGN

Fig. 4. Graph learning for target node g. Following from Fig. 3(c), we
demonstrate the detailed learning process, where {f 0} represent the initial
features and f 2

g represents the learned representations.

Inspired by [13], our feature aggregator aggregates the k-hop
neighborhood features of a node v as follows:

f k
v = σ

⎛
⎝f k−1

v + θk · 1

sk

∑
u∈SNk(v)

f k−1
u

⎞
⎠ (1)

where σ is the sigmoid function, f k
v denotes the representa-

tion vector of node v at level k, SNk(v) denotes the neighbors
sampled at k-hop, sk denotes the corresponding sampling size,
and θk represents the parameters of the neural network (NN)
at k-hop (each hop has its own NN). Note that the concept
of “level” is corresponding to the concept of “hop,” where f 0

v
is the initial features defined in Table I for node v, and f k=K

v
is the final representation after aggregating the information
within the K-hop neighborhood of v. The aggregator (1) can be
considered as a “graph filter,” since it performs instance-based
learning that aggregates a node’s neighboring information iter-
atively. In the experiments, we set K = 2 and each NN
(θ1, θ2) has an output dimension of 128. Finally, Fig. 4 fur-
ther demonstrates the feature aggregation process based on
Fig. 3(c), where our goal is to construct the node represen-
tation for the target node g. The learning process happens as
follows. First, we sample a fixed amount of neighbors from its
1-hop (denoted in blue) and 2-hop (denoted in green) neigh-
bors. Then, starting from the initial features {f 0}, we leverage
a two-layer GNN to perform iterative feature aggregation in
order to construct the final representation f 2

g .
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D. Unsupervised GNN Learning

In this work, we leverage unsupervised learning to train
the TP-GNN framework. Therefore, our framework is gen-
eralizable, since it does not require any pretraining before
using. Here, we introduce an unsupervised instance-based loss
function L(yv), which takes yv = f K

v , the final representation
vector of node v, as the input and calculates the cross-entropy
between v and its neighboring nodes N(v) (not necessary in
K-hop) as

L(yv) = −
∑

u∈N(v)

log
(
σ
(

y	v yu

))

−
M∑

i=1

Eni∼Neg(v) log
(
σ
(
−y	v yni

))
(2)

where Neg(v) denotes the negative sampling distribution of
node v, and M denotes the negative sampling size. In prac-
tice, rather than taking N(v) as the full k-hop neighborhood of
node v, which causes overfitting and damages computational
efficiency, we perform a random walk starting from node v
to generate N(v) that represents the passed by nodes. Also,
in (2), the negative sampling technique improves the efficiency
of GNN learning, where an underlying idea is that the GNN
model should not only improve the similarity between a node
v and its true contexts N(v) but also enhance the disparity of
v to the false samples Neg(v) (nodes that are not occurred in
the random walk).

E. GNN Training Methodology

To update the parameters of our framework, we introduce a
gradient descent optimizer Adam [16] to minimize L (2). The
detailed training methodology is described in Algorithm 2. In
lines 1–9, we perform random walks on every node v ∈ V ′
to generate the neighborhood structures. Then, starting from
the initial features (Table I), we aggregate the neighborhood
features for each node through (1) (lines 11–17). Finally, in
lines 18–23, we leverage Adam to update the parameters of the
GNNs through the introduced unsupervised loss function (2).
After the learning process, the learned node representations
{y} ∈ R128 are fed to the later clustering stage to determine
the tier assignment for each cell.

F. Weighted K-Means Clustering

The final stage of the proposed framework is the clustering
process, where we leverage the weighted k-means clustering
algorithm [11] to partition the edge-contracted clique-based
graph G′ = (V ′, E′). The goal at this stage is to determine
the tier assignment for each node v ∈ V ′ based on its learned
representation yv from Algorithm 2. In this work, we introduce
a weight to each node v ∈ V ′, which denotes the total area
of the gates that it represents. Note that a node may represent
multiple gates in the actual netlist, and gates corresponding
to the same node will be assigned to the same tier. Given
the learned node representations {y} and the weights {w}, the
algorithm clusters the nodes V ′ into k weight-balanced groups
based on the similarity of {y}. Assume V ′ is classified into k
clusters {C1, . . . , Ck}, the loss function is derived as

Algorithm 2 TP-GNN Training Methodology. We Use Default
Values of α = 0.001, K = 2, NRW = 5, LRW = 5, M = 30,
s1 = 30, s2 = 20, β1 = 0.9, and β2 = 0.999

Input: G′(V ′, E′): edge-contracted clique-based graph. {f 0}:
initial features. α: learning rate, K: depth of neighborhood,
NRW: # random walks starting from a node, LRW: length
of a walk, M: negative sampling size, {sk,∀k ∈ {1, ..., K}}:
k-hop neighborhood sampling size, σ : sigmoid function,
{θk,∀k ∈ {1, ..., K}}: parameters of NN at hop k, {β1, β2}:
Adam parameters.

Output: {y}: learned node representations.
1: for v ∈ V ′ do � random walks on each node
2: N(v)← {} � initialization of neighboring nodes
3: for n← 1 to NRW do
4: cur_v← v
5: for l← 1 to LRW do
6: next_v← Sample a 1-hop neighbor of cur_v
7: if next_v is not v then
8: add next_v to N(v)
9: cur_v← next_v

10: while {θk} do not converge do � train to converge

11: f 0
v ← f 0

v
‖f 0

v ‖2 ,∀v ∈ V ′
12: for k← 1 to K do � aggregate neighborhood

features
13: for v ∈ V ′ do
14: Sk ← Sample sk neighbors at k-hop

neighborhood
15: f k

v = σ
(

f k−1
v + θk · 1

sk

∑
u∈Sk

f k−1
u

)

16: f k
v ← f k

v
‖f k

v ‖2 ,∀v ∈ V ′

17: yv ← f K
v ,∀v ∈ V ′

18: for v ∈ V ′ do � minimize unsupervised loss
19: for u ∈ N(v) do
20: Neg(v) ← Sample M samples from {V ′ −

N(v)} \ v
21: neg_loss←∑

ni∈Neg(v) log(σ (−y	v yni))

22: gv ← ∇θ [ log(σ (y	v yu))+ neg_loss]
23: {θk} ← Adam(α, {θk}, gv, β1, β2)

Lkmean =
k∑

i=1

∑
v∈Ci

w(v) · ‖yv − ci‖2 (3)

where ci = ([
∑

v∈Ci
yvw(v)]/[

∑
v∈Ci

w(v)]) denotes the
weighted centroid of cluster Ci. To update (3), we adopt an
iterative minimization technique as illustrated in Algorithm 3.
Starting from an initial centroids {c1, . . . , ck}, for each
iteration, we determine the clusters {C1, . . . , Ck} by assigning
each node to the centroid that has the minimum weighted dis-
tance (line 3). After the assignments, we update the centroids
based on the newly obtained clusters (line 4). The clustering
process is complete when the assignments no longer change.

G. Postpartitioning Optimization

The clustering results of the weighted K-means algorithm
(Algorithm 3) can already be taken as valid tier partitioning
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Algorithm 3 Weighted k-Means Clustering. We Use Default
Value of k = 2
Input: G′(V ′, E′): edge-contracted clique-based graph, {w}:

node weights, {y}: node representations, k: number of
clusters.

Output: {C1, ..., Ck}: k clusters.
1: Select k initial centroids {c1, ..., ck} randomly
2: repeat
3: {C1, ..., Ck} = argmin

C

∑k
i=1

∑
v∈Ci

w(v)‖yv − ci‖2

4: ci =
∑

v∈Ci
yvw(v)∑

v∈Ci
w(v) ,∀i = 1, ..., k

5: until {C1, ..., Ck} no longer change

Algorithm 4 Postpartitioning Optimization. We Assume a
Two-Tier 3-D Design and Top Die Is Faster
Input: G(V, E): original 2D design, Ctop: instances in top tier,

Cbot: instances in bottom tier.
Output: C′top and C′bot: updated partitioning results.

1: critCells ← FindCellsOnCriticalPaths(G) � in hash
map

2: for net ∈ Nets do
3: critiCount ← 0
4: for cell ∈ net do
5: if cell in critCells then � O(1) look-up
6: critiCount++
7: if critiCount ≥ 0.5 ∗ countCell(net) then
8: Fix all cells on net in top tier. � in-place

solutions. However, for certain design flows such as the hetero-
geneous 3-D design flow, extra handling on timing degradation
during tier partitioning phase is needed. The reason is that such
design flow leverages different technologies in various tiers,
where the performance (timing) between BEOLs can vary by
as much as 30% [30]. Therefore, the 3-D designs can easily
result in worse performance if cells on critical paths in the
original 2-D design are partitioned randomly as occurred in
Shrunk2D and Compact2D.

To solve the above issue, in this work, we further pro-
pose a postpartitioning optimization algorithm to mitigate
the performance degradation of tier partitioning in heteroge-
neous 3-D design flows. The proposed algorithm is shown in
Algorithm 4. Given a tier partitioning result that denotes the
cell locations in top tier and bottom tier, we first build a hash
map to identify the critical cells in the original 2-D design
(line 1). Then, for each net in the design, if greater or equal
to half of the cells are in the critical cell map, then we fix
the entire cells on the net in top tier (lines 2–8). Note that
the algorithm is based on the assumption that top die is faster
than bottom die (as in the Pin-3D [29] design flow).

H. Implementation Details

In this article, we apply the proposed TP-GNN frame-
work to a variety styles of M3D design flows, which
include partitioning-first, partitioning-last, and heterogeneous
3-D design flows. In the partitioning-first design flow, since
the tier partitioning happened before the pseudoplacement, the

Fig. 5. t-SNE visualizations of the learned node representations from GNN.
Each dot represents a cell in the design and is colored by its final tier
assignment from Algorithm 3.

timing related features in Table I are taken from a synthesis
tool (Synopsys Design Compiler), where in the partitioning-
last design flow, the features are found in Cadence Innovus.
As for the feature “dist2source,” we take the hop count as
the representation in partitioning-first design flows, and take
the actual physical distance on layout as the denotation in
partitioning-last design flows. Finally, in the heterogeneous
design flow Pin-3D, since it accepts a partitioned design as
inputs and continues the design flow through 3-D legaliza-
tion to tape-out, the feature extraction process is same as the
partitioning-last design flow.

V. EXPERIMENTAL RESULTS

In this section, we perform thorough experiments to demon-
strate the achievements of the TP-GNN framework. We
validate our framework on seven industrial designs, includ-
ing two RISC-V-based multicore systems OpenPiton [3]
and RocketCore [2], NOVA, LDPC, TATE, JPEG from
OpenCores.org, and NETCARD from ISPD 2012 bench-
mark [25]. All the seven benchmarks are synthesized
under TSMC 28-nm technology node using Synopsys
Design Compiler 2015. We leverage the Cadence Innovus
Implementation System v18.1 to perform placement and rout-
ing, and utilize Synopsys PrimeTime 2018 for signoff analysis.
Finally, the TP-GNN framework is implemented in Python3
with the Tensorflow library, and the training time is mea-
sured on a machine with 2.40 GHz CPU, 16-GB RAM, and
a NVIDIA RTX 2070 graphics card. Note that for all 3-D
designs implemented by Shrunk2D and Compact2D, we have
performed bin sweeping to find the optimal bin size for fair
comparisons.

A. GNN-Related Results

First, to evaluate the graph learning, we leverage the
t-distributed stochastic neighboring embedding [24] (t-SNE)
technique to visualize the learned node representations {y} ∈
R128 from Algorithm 2 in R2 with OpenPiton [3]. The visu-
alization result is shown in Fig. 5, where we observe that
the learned representations form two observable linear sep-
arable clusters. Based on the embedded locations in R2, we
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TABLE II
PERFORMANCE, AREA, AND ENERGY COMPARISON OF SHRUNK2D

(S2D) [27] AND TP-GNN FLOWS ON RISC-V-BASED DESIGNS USING

F2F STACKING. � DENOTES THE PERCENTAGE DIFFERENCE BETWEEN

TP-GNN AND S2D

further color each dot (cell) by its tier assignment from the
weighted k-means algorithm (Algorithm 3) and demonstrate
that the algorithm efficiently identifies the two observable
clusters. Now, we conclude that our TP-GNN framework is
capable of transforming the initial features into meaning-
ful high-dimension representations. In the later experiments,
we demonstrate the superior achievements of TP-GNN in a
complete design flow.

B. Maximum Performance Comparison

In this experiment, we perform maximum performance
comparison between 2-D, Shrunk2D, and TP-GNN flows on
two RISC-V-based designs: 1) OpenPiton [3] (# macros:
28) and 2) RocketCore [2] (# macros: 6). Note that for
designs with extensive memory macros, such as OpenPiton and
RocketCore, Shrunk2D significantly outperforms Compact2D.
Therefore, we have taken the best-case scenario (Shrunk2D) of
the existing state-of-the-art flows to perform the comparison.
The results are shown in Table II, where we observe that our
TP-GNN flow significantly outperforms the Shrunk2D flow
across the two designs. The savings in timing-related metrics
are noteworthy, where the critical path wirelength saving is
52% in average and the effective frequency is 27.4% better
in OpenPiton. Also, even with a higher target frequency, TP-
GNN has consistently large wirelength saving. Fig. 6 further
shows the GDS layout comparison, where we observe that TP-
GNN introduces fewer cross-macrowires than Shrunk2D. Note
that the partitioning time of the proposed framework TP-GNN
includes the runtime of both graph representation learning and
the weighted k-means clustering algorithm. Since the graph
learning is conducted in an unsupervised manner (i.e., we do
not need to pretrain the model), there is no runtime overhead
to apply the proposed framework.

C. Isoperformance Comparison

In the this experiment, we perform isoperformance val-
idation of TP-GNN in the state-of-the-art partitioning-first

Fig. 6. GDS layouts of OpenPiton [3] using TP-GNN versus Shrunk2D [27]
flow. TP-GNN flow achieves 7.7% better wirelength.

(Snap-3D [32]) and partitioning-last (Shrunk2D [27] and
Compact2D [18]) M3D design flows across six real-world
designs. Furthermore, due to the fact that active research has
been conducted extensively on solving the problem of 3-D
placement [10], [15], [22], in this article, we take a recent
MIV-compatible 3-D placement work [22] as our reference
“true” 3-D placement flow termed True3D. The reason we use
the term true here is to show the difference between the (3-D)
placement results obtained by 3-D analytical placers [10], [15],
[22] and 2-D commercial tools (Shrunk2D and Compact2D).
Note that [22] does not propose a complete 3-D design flow,
and to benchmark it against other flows in full-chip design,
we further route the placements results achieved by the 3-D
analytical placer using Cadence Innovus.

Note that in order to reasonably benchmark the analyti-
cal approach [22] that is originally developed for TSV-based
3-D ICs with other M3D flows that we focus on in this arti-
cle, we relax the penalty of inserting intertier vias in the
objective function. The reason is because M3D technology
provides much cheaper 3-D stacking cost than the TSV-based
3-D technology.

As aforementioned, in this article, we validate the proposed
tier partitioning framework on two different styles of M3D
design flows. The results for partitioning-first design flow,
Snap3D [32], are shown in Table III, and the results
for the partitioning-last design flows, Shrunk2D [27] and
Compact2D [18], are shown in Table IV. In the partitioning-last
design flows, we observe that TP-GNN consistently outperforms
Shrunk2D and Compact2D in QoR across all designs with only
a little runtime overhead in tier partitioning. As for the com-
parison between pseudo-3D (Shrunk2D and Compact2D) and
true 3-D (T3D) flow, we observe that the pseudo-3D flows
consistently achieve much better PPA in terms of wirelength
and power, where the T3D flow does not always obtain better
QoR metrics compared with the original 2-D designs.
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TABLE III
PARTITIONING-FIRST ISOPERFORMANCE COMPARISON OF SNAP-3D [32]
AND TP-GNN FLOWS. �Snap DENOTES THE PERCENTAGE DIFFERENCE

BETWEEN TP-GNN AND THE SNAP-3D FLOW. WE REPORT THE TIME

SPEND ON TIER PARTITIONING IN MINUTES

In the partitioning-first design flow comparison, we observe
that the final PPA results of the original Snap-3D and the
proposed TP-GNN enhanced flow are similar. This is mainly
because in such design flows, the tier partitioning stage occurs
before any physical implementation (e.g., placement, routing,
etc.). Therefore, the impact of partitioning solutions to the QoR
of the 3-D full-chip design is not as direct as the case of that in the
partitioning-last design flows, where tier partitioning directly
determines the design quality degradation occurred by 2-D–3-D
transformation. Furthermore, we want to emphasize that the
reason Snap-3D implementation flow takes hours to perform
tier partitioning is because it still relies on the partitioning
solutions from Shrunk2D to take them as placement constraints.
Hence, we include the time to build the 2-D implementation
of Shrunk2D in the partitioning time.

Finally, head-to-head comparisons are available between
partitioning-first and partitioning-last design flows. We observe

TABLE IV
PARTITIONING-LAST ISOPERFORMANCE COMPARISON OF TRUE3D

(T3D) [22], SHRUNK2D (S2D), COMPACT2D (C2D), AND TP-GNN
FLOWS. �S AND �C , RESPECTIVELY, DENOTE THE PERCENTAGE

DIFFERENCE BETWEEN TP-GNN VERSUS S2D AND C2D. WE REPORT

THE TIME SPEND ON TIER PARTITIONING IN MINUTES

that in general, the Snap-3D (partitioning-first) design flow
gives better PPA metrics than the partitioning-last design flows.
The key reason is that Snap-3D tricks the commercial tool to
optimize 3-D placements during the pseudo 2-D placement
stage (more description in Section II), where both Shrunk2D
and Compact2D require die-by-die legalization to obtain a
legal 3-D placement solution after tier partitioning, which may
degrade the quality of the obtained partitioning solutions.

D. Sweeping Experiments on Contracting Edges

In this experiment, we demonstrate the PPA effect of exe-
cuting different number of times of the hierarchy-aware edge
contraction algorithm (Algorithm 1) on the LDPC benchmark.
The results are shown in Table V. As aforementioned, the
designs built by TP-GNN in this work are achieved by run-
ning the algorithm two times. The straightforward benefit of
running Algorithm 1 is to prevent the short nets in the original
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TABLE V
SWEEPING EXPERIMENTS ON RUNNING HIERARCHY-AWARE EDGE

CONTRACTION ALGORITHM (ALGORITHM 1) MULTIPLE TIMES

TABLE VI
ISOPERFORMANCE COMPARISON ON A HETEROGENEOUS 3-D DESIGN OF

A COMMERCIAL CPU DESIGN IMPLEMENTED BY PIN3D [29].
TP-GNNopt DENOTES THE POSTPARTITIONING OPTIMIZATION

(ALGORITHM 4) IS ENABLED

2-D designs from being partitioned into two separate tiers and
turned into long nets, which may cause severe QoR degra-
dation. Nonetheless, as shown in the table, overrunning the
algorithm may as well incur the QoR degradation in final full-
chip design, because some optimization opportunities are lost
when various nodes are forced to be merged into one node.

E. Results on Heterogeneous 3-D ICs

In this experiment, we validate the proposed framework on
a heterogeneous 3-D IC of a commercial CPU-core based on
the Pin3D [29] design flow, where fast corner is used for top
tier and slow corner is used for bottom tier (both in foundry
28 nm). The results are shown in Table VI. First, we observe
that the proposed TP-GNN framework improves many critical
QoR metrics of the original Pin3D design flow. Second, we
find that with the postpartitioning optimization algorithm, TP-
GNN can further optimize the full-chip PPA with little runtime
overhead. In particular, the performance of the 3-D full-chip
design is pushed much higher.

We attribute the success of TP-GNN in heterogeneous 3-D
ICs in twofold. First, due to the fact that TP-GNN compre-
hends the technology features, timing related information is
taken into account while performing tier partitioning, where
the original partitioning algorithm that Pin3D adopts only con-
siders to minimize the cutsize of connections. Second, the
postpartitioning optimization algorithm reckons the idea that
cells on critical paths should be considered carefully, which
prevents the severe timing degradation that happens in the
original Pin3D design flow.

VI. DISCUSSION

A. Why Does GNN Work Better?

Across the experiments for various fashions of M3D design
flows, we observe that TP-GNN framework significantly

improves the timing from the state-of-the-art flows in con-
sistent. The main reason is that the original bin-based parti-
tioning method ignores the global connections among bins.
It only partitions the subnetlist within a bin. Therefore,
critical nets in the projected 2-D designs are partitioned
randomly. In the TP-GNN framework, we solve this issue
by introducing timing-related features to the graph learning,
which encourages cells on critical nets to be partitioned into
same tier.

Furthermore, we observe that the TP-GNN framework
achieves great wirelength savings, which can be explained by
two reasons. First, Algorithm 1 prevents nearby and connected
cells from being partitioned into different tiers, which reduces
the significant 3-D routing overhead occurred in Shrunk2D
and Compact2D flows. Second, with the structural features
introduced in Table I and the message passing characteris-
tics of the graph learning, cells that are logically connected
would have similar node representations. Therefore, unlike
bin-based partitioning method that partitions long nets ran-
domly, our framework partitions long nets based on the netlist
structure.

Finally, we want to emphasize that TP-GNN runtime is
measured from the beginning of Algorithm 1 to the end of
Algorithm 3. The runtime of our GNN-based tier partitioning
algorithm basically involves training our GNN using unsuper-
vised learning. Therefore, we do not report training versus
inferencing time separately as our GNN learns while travers-
ing the nodes in netlist graphs and collecting features from
their neighbors. The time complexity of our TP-GNN is lin-
ear in terms of the netlist size. This is because our GNN model
visits all the nodes in the netlist graph and spends a constant
amount of time collecting features from the neighbors. The
total number of neighbors for a given node under considera-
tion is constant as we limit our neighbor search within a fixed
hop count.

B. MIV Impact

In the experiments, we do not refrain the router to insert
MIVs during the routing stage. This is because as pointed
out in [33], the intertier vias density of M3D designs can
achieve up to 100 million/mm in a 14-nm technology node,
which leads to the conclusion that in M3D designs, no intertier
via density constraints are needed as in TSV-based designs.
Furthermore, as mentioned in [31], the minimization of MIV
count no longer has a major impact on the full-chip PPA of
M3D designs. Therefore, in this article, we do not strive for
minimizing the MIV count.

C. Timing Impact on Crossing Tiers

Due to the small pitch and low parasitic of MIVs (nano-
scale), in M3D designs, the timing impact of a net crossing
different tiers is not as severe as in TSV-based designs. Since
MIVs possess similar RC characteristics to regular vias, the
timing delay of a net in M3D designs is proportional to its time
(RC) constants. Table VII quantifies the delay and wirelength
between cross-tier and same-tier nets on the ECG benchmark.
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TABLE VII
TIMING IMPACT BETWEEN 3-D (CROSS-TIER) AND 2-D (SAME-TIER)
NETS ON ECG BENCHMARK. THE UNIT FOR NET LENGTH IS μM, AND

THE UNIT FOR DELAY IS PS

As shown in the table, although the average net delay of cross-
tier nets is higher than same-tier nets, the reason behind is that
cross-tier nets tend to have longer wirelength and therefore,
higher RC timing constants.

VII. CONCLUSION

In this article, we proposed TP-GNN, a novel tier partition-
ing framework based on GNN. First, we proposed a hierarchy-
aware edge contraction algorithm to reduce the severe 3-D
routing overhead occurred in the bin-based partitioning algo-
rithm. Then, we mapped the classical tier partitioning problem
into a clustering problem and solved it with advanced machine
learning (ML) techniques. The graph representation learning
provides the freedom for designers to deal with various parti-
tioning objectives, and the unsupervised learning promises the
generality.
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