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Abstract—Modern physical design flows highly depend on
design space exploration to find the commercial tools’ clock tree
synthesis (CTS) parameters that lead to optimized clock trees.
However, such exploration is often time-consuming and compu-
tationally inefficient. In this article, we overcome this drawback
by proposing a novel framework named GAN-CTS, which uti-
lizes conditional generative adversarial network (GAN) to predict
and optimize CTS outcomes. Our framework is built upon three
sequential learning stages. First, to precisely characterize distinct
designs, we leverage transfer learning to extract netlist features
directly from placement images. Second, we perform regres-
sion learning using various methods to predict the target CTS
outcomes and demonstrate that the proposed multitask learn-
ing approach achieves better accuracy than the meta-modeling
method adopted by previous works. To fully benefit from the
predictions made by our framework, we further quantitatively
interpret the importance of each CTS input parameter subject
to various design objectives through attribution-based learning.
Finally, generative adversarial learning is leveraged to optimize
the target clock metrics with the guidance provided by the pre-
trained regression model. To substantiate the generality of our
framework, we perform validations on four unseen netlists that
are not utilized in the training process. The experimental results
conducted on real-world designs demonstrate that our frame-
work: 1) achieves an average prediction error of 3%; 2) improves
the commercial tool’s auto-generated clock tree by 20.7% in clock
power, 21.5% in clock wirelength, 36.1% in the worst skew;
and 3) reaches an F1-score of 0.93 in the classification task of
determining successful and failed CTS runs.

Index Terms—Clock tree synthesis (CTS), generative adversar-
ial learning, physical design.
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I. INTRODUCTION

CLOCK tree synthesis (CTS) is a critical stage of physical
design, since clock networks constitute a high percentage

of the total power in the final full-chip design. An opti-
mized clock tree helps to avoid serious design issues, such
as excessive power consumption, high routing congestion,
and elongated timing closure [7]. However, due to the high
complexity and run time of the modern electronic design
automation (EDA) tools, designers are struggling to synthe-
size high-quality clock trees that optimize key desired metrics,
such as clock power, skew, clock wirelength, etc. To find the
input parameters that achieve the design targets, designers have
to search in a wide range of candidate parameters, which
is usually fulfilled in a manual and highly time-consuming
calibration fashion.

To automate this task and alleviate the burden for design-
ers, several machine learning (ML) techniques have been
proposed to predict the clock network metrics [19]. Previous
work [14] utilizes data mining tools to estimate the achieved
skew and insertion delay. Kahng et al. [12] employed sta-
tistical learning and meta-modeling methods to predict more
essential metrics, such as clock power and clock wirelength.
Kahng et al. [13] further considered the effect of nonuni-
form sinks and different placement aspect ratios. Another
work [18] utilizes artificial neural networks (ANNs) to predict
the transient clock power consumption based on the esti-
mation of clock tree components. However, these previous
works merely focus on enhancing the prediction of CTS met-
rics rather than the optimization of the outcomes. Therefore,
their methods are not sufficient to achieve high-quality
clock trees without the aid of other heuristic algorithms.
To optimize CTS metrics, a recent work [16] develops an
ML-powered clock tree construction algorithm which gen-
erates optimized clock trees based on a pretrained CTS
buffer prediction framework that estimates buffer usage. The
proposed algorithm is proven to be generalizable on unseen
designs.

The goal of this work is to construct a general and prac-
tical CTS modeling framework, which has the ability to
predict CTS outcomes in high precision and perform CTS
optimization by generating the CTS input parameter sets that
lead to optimized clock trees for general designs in an unsu-
pervised manner. Specifically, we take an industry-leading
commercial tool, Cadence Innovus, as reference and demon-
strates the feasibility of the proposed framework upon it. The
proposed CTS prediction and optimization framework named
GAN-CTS achieves the following aspects.
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1) Generalizability: We aim to develop a generalizable
framework that achieves high-quality clock trees on gen-
eral designs. We achieve this by leveraging generative
adversarial learning which has the capability to inference
optimized CTS input parameter sets on unseen designs.

2) Interpretability: Instead of considering our framework
as a black box, we leverage a gradient-based attribu-
tion method [25] to interpret the prediction made by the
proposed framework.

3) Optimality: Despite that the optimality of a clock tree
is hard to demonstrate, in this work, we compare the
optimization results achieved by the proposed frame-
work to the ones achieved by the default settings of
Cadence Innovus, and show that the proposed frame-
work reaches never-seen, high-quality CTS optimization
results.

The remainder of this article is organized as follows. Section II
illustrates the background of ML techniques utilized in this
work. Section III presents a solid overview of our frame-
work. Section IV describes the problem formulations, database
generation, and identifies the difficulties of the problems.
Section V illustrates the algorithms and the detailed structures
of the models. The experimental results are demonstrated in
Section VI, and finally we conclude our work in Section VIII.

II. ML BACKGROUND

VLSI netlists are comprised of substantial and complicated
design characteristics that are hard to be enumerated manually.
To distill the essence of distinct designs, we leverage ResNet-
50 [10] to perform transfer learning by directly extracting
design features from placement layout images instead of man-
ually defining the proper features to differentiate different
designs as previous works [12], [13], [18]. The extracted fea-
tures from transfer learning not only ensures the generality of
our framework, but also improves the prediction accuracy of
the models.

Our proposed framework GAN-CTS consists of a regres-
sion model and a variation of generative adversarial network
(GAN) [9] named conditional GAN [22]. The regression
model is accounted for the predictions of CTS outcomes. In
this work, we analyze the impact of using different regression
methods, including the meta-modeling technique adopted by
previous work [13] and the proposed multitask learning tech-
nique. Due to the high correlation of different CTS outcomes
(e.g., clock wirelength and clock power), we substantiate that
the proposed multitask learning technique achieves higher
accuracy in a much shorter training time.

The conditional GAN is comprised of two modules: 1) the
generator and 2) the discriminator. The standard goal of the
generator is to generate the CTS input parameter sets that
have a high resemblance in terms of parameter distributions
to the ones in the database, where the traditional goal of the
discriminator is to differentiate between the generated samples
from the generator and the real samples from the database.
The adversarial learning that the discriminate provides helps
the generator to produce realistic parameters. Note that the
similarity between the generated samples and the real sam-
ples can be quantitatively interpreted by Kullback–Leibler
divergence [17].

In this work, apart from the GAN training process men-
tioned above, we advance the learning process by introducing
new objectives to the generator and the discriminator to solve

Fig. 1. High-level view of this work and the three objectives we have
achieved. The first objective is to predict the CTS outcomes in high precision.
The second objective is to recommend designers good CTS input settings.
The third objective is to determine whether the input settings outperform
commercial tool’s auto-setting.

the CTS parameters optimization problem. During the learning
process, we apply the pretrained regression model to evaluate
the quality of the generated CTS input parameter sets from the
generator. The generator will thus strive to generate the param-
eter sets that achieve good quality predictions. Therefore, aside
from the conventional goal to generate the CTS input param-
eter sets that are realistic (similar to the database), another
objective of the generator is to maximize the clock tree quality
evaluated by generating the pretrained regression model.

As for the discriminator, instead of only determining
whether its input is from the generator or from the database,
we introduce another objective to classify successful and failed
CTS runs. In this article, a successful CTS run indicates that
the achieved clock tree outperforms the one auto-generated by
the commercial tool (Cadence Innovus is utilized in this work).
Hence, the discriminator not only predicts whether the CTS
input parameter sets are generated by the generator or com-
ing from the actual database as the conventional approach,
but also predicts if the given parameter sets can result in suc-
cessful CTS runs or not. With this additional objective of the
discriminator, designers are able to tune the parameters in a
good guidance.

III. OVERVIEW OF GAN-CTS

It has been widely acknowledged that GAN is a promising
model that learns the complicated real-world data through a
generative approach [31]. A vanilla GAN structure contains a
generator and a discriminator which are both neural networks
(NNs). The goal of the generator is to generate meaningful
data from a given distribution such as random noise, while
the objective of the discriminator is to distinguish the gen-
erated samples from the real samples that are targeted to be
mimicked. Predicated on the vanilla GAN structure, in condi-
tional GAN, an external conditional input is further introduced
to both generator and discriminator. This conditional input
enables the model to direct the data generation process based
on different conditions, which benefits us to generate suitable
CTS input parameters sets with respect to different bench-
marks and even the ones that are not utilized in the training
process.

A high-level view of our framework named GAN-CTS is
shown in Fig. 1. The framework is comprised of three sequen-
tial training (learning) stages. The first training stage is to
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extract key design features from placement images which rep-
resent flip flop distributions, clock net distributions, and trial
routing results. Note that trial routing is a process performed
in the end of the placement stage in the modern physical
design flow. It provides a quick estimation of the routing
congestion based on the given placement. To extract features
from images, we adopt transfer learning by using a pretrained
convolutional NN (CNN) named ResNet-50 [10], which is
a 50-layer residual network that has skip connections. The
goal of transfer learning is to leverage the trained convolu-
tional filters to distill the hidden information in the placement
layouts.

In the second training stage, we leverage the extracted fea-
tures from the previous feature extraction stage as well as
the clock tree instances in the database to train the regres-
sion model for CTS outcomes predictions. In this work, we
select three essential CTS metrics that well represent the qual-
ity of a clock tree as the prediction and optimization targets.
These three selected metrics are clock power, clock wirelength,
and the achieved maximum skew. We compare two different
regression approaches which are the meta-modeling technique
adopted by previous work [13] and the proposed multitask
learning technique. We demonstrate that the proposed tech-
nique reaches better prediction accuracy with a much shorter
training time. Furthermore, as mentioned in Section I, we do
not consider our model as a black box as previous works. To
interpret the predictions made by the regression model, we
leverage a gradient-based attribution method [1] to quantita-
tively determine the importance of each CTS input parameter
subject to different target outcomes.

The last training stage of our framework involves gener-
ative adversarial learning, where we leverage a conditional
GAN to perform the CTS optimization and classification tasks.
The regression model trained earlier now acts as a supervisor
to guide the generator to generate the CTS input parameters
sets that lead to optimized clock trees. Note that the extracted
placement features from transfer learning are taken as the con-
ditional input, where the original inputs of the vanilla GAN
model are termed as the regular inputs in this work. The
advantage of having the conditional input is to control the
modes of the generated data, where we consider different
benchmarks as different modes. Therefore, with the condi-
tional approach, our framework has the ability to optimize
unseen benchmarks that are not utilized during the training
process.

Finally, a highlight of our framework is that a multitask
learning is conducted by the discriminator. In addition to the
conventional task of distinguishing between the generated and
the real samples, we introduce a new task of classifying suc-
cessful and failed CTS runs. In this article, we strictly define
a CTS run as successful if two out of the three achieved tar-
get CTS metrics mentioned earlier are better than the ones
achieved automatically by the commercial CTS engine.

In the end of the training process, we acquire four models
as follows.

1) A placement feature extractor E which precisely char-
acterizes different designs from placement images.

2) A regression model R which performs high precision
predictions of target CTS outcomes.

3) A generator G which generates CTS input parameters
sets that lead to optimized clock trees.

4) A discriminator D which predicts the success and failure
of CTS runs.

TABLE I
OUR BENCHMARKS AND THEIR ATTRIBUTES IN TSMC 28 NM

TABLE II
MODELING PARAMETERS WE USE AND THEIR VALUES

IV. DESIGNING EXPERIMENTS

A. Database Analysis

We formally define the CTS prediction and optimization
problems as follows.

Problem 1 (CTS Outcomes Prediction): Given a pre-CTS
placement P and a CTS input parameters set X, predict the
post-CTS outcomes Y without performing any actual CTS
process.

Problem 2 (CTS Outcomes Optimization): Given a pre-CTS
placement P, generate a CTS input parameters set X̂ that leads
to optimized CTS outcomes Ŷ .

In this work, we tackle Problems 1 and 2 through ML
approaches. Before elaborating the modeling process, we first
describe and analyze our database.

B. Database Construction

To build the database, we utilize Synopsys Design Compiler
2015 to synthesize the netlists and leverage Cadence Innovus
Implementation System v18.1 to perform the placement and
CTS processes. The database is constructed based on the
TSMC-28 nm technology node. In this work, we leverage five
designs which are B19, LEON3MP, NETCARD, DES_PERF,
and VGA_LCD from the ISPD 2012 benchmark [23], and
six other designs, including AES-128, LDPC, NOVA, ECG,
TATE, and JPEG, from Opencores.org to conduct the exper-
iments. Table I shows the attributes of all 11 designs after
being synthesized at 1125 MHz.

Table II presents the modeling parameters and their ranges
of values that we utilize. The ranges of the CTS-related param-
eters are determined by reasonably widening the commercial
tool’s auto-setting values based on domain expertise. The goal
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Fig. 2. Total power (mW) and wirelength (mm) distributions among 115.5k full-chip designs of all 11 benchmarks in our database.

TABLE III
CLOCK TREES WITH DIFFERENT INPUT SLEW CONSTRAINTS

FOR NOVA BENCHMARK

is to generate a database with a high variety in terms of clock
metrics so that the proposed framework can better differentiate
good designs from the bad ones, and comprehend which com-
binations of the parameters can lead to optimized clock trees.
Among the modeling features, aspect ratio and utilization rate
represent physical structures. The min and max early rout-
ing layers (min ≤ max) indicate the metal layers utilized in
the early global routing (EGR) stage, which is a procedure to
reserve space for future detailed signal routing during the CTS
stage (EGR is contained in CTS). Note that although “skew”
is taken as an input target as shown in the table, commercial
tools will not necessarily meet the skew target during CTS
(skew is often further improved in future design steps), which
makes the skew prediction (one of the CTS outcomes we focus
in this work) problem nontrivial.

The combinations of the two placement-related parameters
give us 35 different placements per netlist. By running CTS
with randomly sampled input parameters, we generate 300
clock trees per placement. Therefore, in total, we have 115.5k
datum (clock tree instances) across 11 different netlists in our
database. To substantiate the generality of our framework, in
the experiments, we only utilize seven netlists during the train-
ing process and perform the validations on the remained four
unseen netlists as indicated in Table I.

Fig. 2 shows the total power and wirelength distributions of
all 115.5k clock trees in the database. It demonstrates the vari-
ety of our database as well as the difficulty to model the CTS
process across different benchmarks. Table III demonstrates
the complicated impact of different input slew constraints on
essential CTS metrics. We observe that if a single tighter
slew constraint is merely given on leaf cells (from design
A to design B), the total number of inserted buffers drasti-
cally decreases. However, if tighter slew constraints are given
on both trunk cells and leaf cells (from design A to design
C), more buffers are inserted compared with the previous
approach. In summary, the above analyses show that the
behavior of the commercial CTS engine is very sophisticated

and counterintuitive, which is mainly due to the complicated
high-dimensional intercorrelation among different CTS input
parameters [12]. In this article, we aim to employ ML methods
to demystify the complicated CTS process.

In this article, we consider the clock tree auto-generated
by the commercial tool as a baseline to evaluate the trees
generated by our framework. As mentioned in Section III, we
define a CTS run as successful if two out of the three achieved
target metrics, which are clock power, clock wirelength, and
clock skew, are better than the ones of the auto-generated clock
tree. In Section VI, we demonstrate the CTS metrics and layout
comparisons between the optimized clock trees generated by
our framework and the one auto-generated by the commercial
tool.

V. GAN-CTS ALGORITHMS

In this section, we first describe the process of feature
extraction. Then, we present our methodologies to solve
the CTS outcomes prediction and optimization problems
(Problems 1 and 2). In the meantime, we illustrate the detailed
structures of the models. In the end, we summarize the overall
training process in a complete algorithm.

A. Placement Image Feature Extraction

One of the innovations of this work is that we directly utilize
placement images as inputs to predict and optimize the target
CTS outcomes. The key rationale is that placement images
contain important information of designs. Previous work [33]
has demonstrated the efficiency of using placement images
to predict routability and design rule violations (DRVs). In
this work, we leverage the extracted features from placement
images to solve CTS outcomes prediction and optimization
problems. Our approach is built upon CNN and transfer learn-
ing. As shown in Fig. 3 we devise our own fully connected
(FC) layers upon the pretrained model named ResNet-50 [10],
which is a CNN-based model pretrained on the well-known
ImageNet [8] dataset with millions of images.

Fig. 4 shows the visualization of a trial routing image
passing through 12 selected convolutional filters inside the
pretrained ResNet-50 model. In the figure, we observe that
important information such as usage of metal layers is well
captured. Although ResNet-50 is powerful on many image
datasets, it is not devised specifically for the physical design
problems. Therefore, to extract key design features from
the high dimensional vectors, we devise a feature extraction
flow with transfer learning as shown in Fig. 3, where four
self-designed FC layers are appended on top of the ResNet-
50 model to predict the commercial tool’s estimation of total
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Fig. 3. Our image feature extraction flow. The extracted features are colored
in red. Note that each raw image vector extracted from ResNet-50 has 1024
dimensions. The concatenate layer thereby forms a vector in 3072 dimensions.
Finally, with an auxiliary input that denotes the number of flip flops, the input
of the self-devised FC layers are in 3073 dimensions.

power right after the placement stage. As shown in the figure,
since placement images cannot precisely reflect the actual size
of a design, we introduce an auxiliary input with one dimen-
sion which represents the total number of flip flops to the first
FC layer by concatenating it with the direct extracted features
of the ResNet-50, In the training process, we fix the param-
eters of the pretrained ResNet-50 model and only update the
parameters of the self-devised FC layers. When the training is
completed, each pre-CTS placement is encoded into a vector
with 512 dimensions, which is the output of the first FC layer
(denoted in red in the figure).

Our transfer learning approach accepts any image sizes,
since we only utilize the pretrained convolutional filters rather
than the FC layers of the original ResNet-50 model. In the
implementation, all the images in the database are in a dimen-
sion of 700×717×3. The achieved mean absolute percentage
error (MAPE) of the unseen validation netlists is less than
0.7%, where the maximum absolute percentage error is 5%
across training designs. However, since a low prediction error
does not guarantee a good feature representation, we leverage
a dimension reduction technique named t-distributed stochas-
tic neighbor embedding (t-SNE) [21] to visualize the extracted
features (∈ R512) in R2 as shown in Fig. 5. In the figure, we
observe that different placements belonging to the same netlist
are clustered together and those belonging to different netlists
are well separated. Therefore, we conclude that the extracted
features well capture the design characteristics.

Finally, to justify the achievement of transfer learning, in
Section VI, we perform an experiment of comparing the CTS
prediction results between with and without using transfer
learning from the ResNet-50 model. Since the goal of transfer
learning is to precisely characterize different designs, in the
setting without using transfer learning, we handcrafted four
features to represent the extracted features in Fig. 3. These
four features include the number of cells, number of flip flops,
number of nets, and number of ports in the design.

B. CTS Outcomes Prediction

Constructing a precise regression model is the key step to
solve Problem 1. Following the feature extraction process,
we train the regression model with the extracted features to
predict the target CTS outcomes. As mentioned in Section III,
in this article, we target at predicting and optimizing three

CTS outcomes which are clock power, clock wirelength, and
the maximum skew. In this work, we analyze two different
strategies to construct the regression model.

Multimodel Uni-Output: The first strategy is built upon
meta-modeling, which is the strategy adopted by the state-
of-the-art academic works [12] and [13]. The key concept of
meta-modeling is that for each target CTS outcome, a sin-
gle meta-model is constructed by combining multiple base
models through a high-level aggregation function. This ensem-
bled meta-model is expected to make more stable and accurate
predictions than any individual base model. In [12] and [13],
traditional regression techniques, such as radial basis functions
(RBFs) [3] and support vector machine (SVM) are utilized
as the base models, where the weighted least square regres-
sion [6] is leveraged as the aggregation function in both works.
However, these regression techniques utilized in the base mod-
els of previous works are known to be easily biased to the
dataset [30], which thereby cannot be generalized to unseen
designs.

To overcome the drawback of previous works, we lever-
age xgboost [4], catboost [24], NN as the base models of
our framework. These base models are combined through
the weighted least square regression [6] as previous works
to construct the meta-model. Note that each target CTS out-
come requires a meta-model for the prediction, therefore, we
construct three meta-models to predict the three target CTS
metrics as mentioned earlier. As shown in Fig. 6, each base
model takes the features extracted from the feature extrac-
tion process and the CTS parameters as inputs, and outputs
the prediction of the specific clock metric. The core idea of
meta-modeling is to reduce the variance of each base model,
and therefore eliminate the impact of the bias in the database.
However, a foreseeable issue of using the meta-modeling
technique is that it requires a long training time due to the
large number of the training parameters.

Uni-Model Multioutput: The second strategy we adopt
to construct the regression model is through multitask
(multiobjective) learning, where we build a multioutput deep
NN to predict the three target CTS metrics simultaneously.
The visualization of the model is shown in Fig. 7. The model
takes the extracted features along with the CTS parameters
as inputs and outputs three predictions simultaneously. As
shown in the figure, the inputs are passed through shared lay-
ers and dedicated layers to predict the clock metrics. The key
rationale of multitask learning is that different CTS outcomes
are not independent of each other (e.g., clock wirelength
often has a high correlation with clock power). Therefore,
instead of isolating the parameters for each prediction as in the
meta-learning approach, we leverage shared layers to enable
different objectives to own mutual information, which helps to
reduce the training time as well as enhances the accuracy of the
predictions. In the training process, we utilize mean squared
error as the loss function, and leverage dropout layers inside
the model to prevent it from overfitting. The validation results
of this experiment are shown in Section VI, where we observe
that the multitask learning approach achieves higher accu-
racy in a shorter training time comparing to the meta-learning
approach.

C. Interpreting Prediction Results

In this work, we do not treat the regression model as a black
box as previous works. Instead, we leverage a gradient-based
attribution algorithm named DeepLIFT [25] to interpret the
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Fig. 4. Visualization of trial routing image in 12 different convolutional filters of ResNet-50 [10], where the usage of metal layers is well captured across
different filters.

Fig. 5. t-SNE visualizations of the original placement image vectors and the extracted feature vectors from our transfer learning flow, where the extracted
features successfully characterize different designs.

Fig. 6. Visualization of single metal-model, which is stacked by three base
models through weighted least square regression.

predictions. The algorithm aims to determine the attribution
(relevance) value of each input neuron subject to different
outputs. Assume our regression model R takes an input vec-
tor x = [x1, . . . , xN] ∈ RN and produces an output vector
S = [S1, . . . , Sk]. DeepLIFT proceeds al

i, the attribution of
neuron i at layer l, in a backward fashion by calculating the
activation difference of the neuron between the target input x
and reference input x̂. The procedure is derived as

aL
i =

{
Si(x)− Si

(
x̂
)
, if neuron i is the output of interest

0, otherwise
(1)

Fig. 7. Our proposed multiobjective regression model. The detailed archi-
tectures are as follows. The shared FC layers colored in green have number
of neurons equal to 512, 256, and 128 in sequential, where each dedicated
FC layer group has number of neurons equal to 64, 32, and 1 from input to
output.

al
i =

∑
j

zji − ẑji∑
i zji −∑

i ẑji
· al+1

j (2)

where L denotes the output layer and zji is the weighted acti-
vation of neuron i onto neuron j in the next layer. In the
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Fig. 8. Detailed structure of our GAN generator.

implementation, we take the reference input x̂ as the input
parameters of the auto-generated clock tree.

D. CTS Optimization

In this article, we develop two CTS optimization techniques
based on the presented regression model. Specifically, the
objective of the optimization problem (Problem 2) is to find the
CTS input parameter sets of the commercial tool that lead to
optimized clock trees. Note that in the experiments, we select
the multitask learning regression model (uni-model multiout-
put) as the base model (guidance provider) for optimization,
since it achieves the best prediction accuracy compared with
other models.

1) GAN-Based Optimization: The first optimization
approach we develop leverages generative adversarial learn-
ing to perform the optimization, where we train a generative
model (the generator) that learns to generate the parameter
sets which lead to optimized CTS outcomes. As aforemen-
tioned, prior to the GAN learning, we pretrain the regression
model as the guidance provider. The generator is expected to
generate optimized CTS input parameter sets by maximizing
the CTS quality predicted by the pretrained regression
model. Before illustrating the objectives of the optimization
process, we first describe the model structure of the
generator.

Fig. 8 shows the detailed structure of the generator. The
generator G is an NN parameterized by θg which samples a
regular input z with 100 dimensions from a N(0, 1) Gaussian
distribution pz, and samples the extracted placement features
f from the database pd as the conditional input. The leaky
ReLU [34] layers are employed as activation functions of the
input and hidden layers to project latent variables onto a wider
domain, which eliminates the bearing of vanishing gradients.
Batch normalization [11] layers are utilized to normalize the
inputs of each hidden layers to zero mean and unit variance,
which accelerates the training process since the oscillation of
gradient descent is reduced. Finally, for the output layer, the
number of neurons D denotes the number of CTS modeling
parameters, and a hyperbolic tangent layer is chosen as the
activation function to match the domain of the normalized
samples drawn from the database. Since when training the dis-
criminator, we normalize the real samples x from the database
to x̂ ∈ [−1, 1] as

x̂ = x

maxx∈supp(x)(x)
× 2− 1. (3)

Algorithm 1 Bayesian Optimization for CTS. We Leverage
UCB [27] to Realize the Acquisition Function
Input: R: a pre-trained regression model, a(x): an acquisition

function.
Output: {x}: optimized CTS parameter sets.

1: Initialize a prior function f (x).
2: repeat
3: {x}ki=1 ← Sample k sets of CTS parameters based on a(x)

such that f (x) is maximized.
4: {r}ki=1 ← Evaluate {x}ki=1 using R by Equation 5.
5: Update f (x) with {x}ki=1, {r}ki=1 using Gaussian Process.
6: until {r}ki=1 no longer improve.

In GAN-CTS, the generator has two objectives. The first
is to generate realistic samples that deceive the discriminator,
where the corresponding objective function is

LGD = Ez,f
[
log(D(G(z, f ))

]
. (4)

The second objective is to generate the CTS input parameter
sets that lead to optimized clock trees by maximizing the clock
tree quality r predicted by the regression model, where r is
defined as

r := H(G(z, f )) = −
N∏

i=1

Ri(G(z, f ))

auto-setting result of target i
. (5)

In (5), N denotes the number of target CTS outcomes and Ri
denotes the corresponding prediction of the regression model.
In the implementation, we have N = 3 which represents the
clock wirelength, clock power, and the maximum skew. The
objective function of maximizing the prediction of clock tree
quality can be formulated as

LGP = Ez,f [r]. (6)

Finally, by combining the two objective functions, we
formulate the training process of the generator as

max
G

Ez∼pz
f∼pd

[
log(D(G(z, f )))+ r

]
. (7)

2) Bayesian Optimization: In addition of training a GAN-
based framework that performs the optimization by learning
key parameter distributions in a generative manner, in this
work, we also leverage the Bayesian optimization [26] tech-
nique to solve the CTS optimization problem for comparison.
Bayesian optimization is a popular surrogate optimization
technique that optimizes black-box functions of arbitrary
forms. Unlike NNs that require gradients to update the network
parameters, Bayesian optimization models a prior (surrogate)
function using the Gaussian process to characterize the target
black-box function. Recently, in the realm of EDA, previous
work [20] has applied such technique to perform parame-
ter optimization of commercial tools, where it is shown that
the achieved results are better than the ones achieved by the
genetic algorithm [32] which is used widely for parameter
optimization.

In this article, instead of the leveraging Bayesian
optimization to directly optimize the commercial tool that
introduces significant runtime as the previous work [20] that
introduces costly runtime, we leverage it to optimize the pre-
trained regression model. The optimization is summarized in
Algorithm 1, which outputs the CTS input parameter sets {x}
that lead to optimized clock trees. The acquisition function
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a(x) guides the sampling of the next CTS parameter sets {x}ki=1
which are utilized to update the prior (surrogate) function
f (x). In the implementation, the sampling of the acquisi-
tion function a(x) is performed based on upper confidence
bound [27] (UCB). Note that since in our scenario, our goal
is to minimize the reward r (5) to optimize clock trees, we
leverage Bayesian optimization to maximize −r. At each step
of the iteration, the Gaussian process is fit into known sam-
ples (parameter sets previously explored) to update the prior
(surrogate) function f (x).

3) Joint GAN-Based and Bayesian-Based Optimization: In
this work, we further combine the two presented optimization
techniques to optimize the CTS metrics. Since a trained GAN-
based framework has the ability to suggest optimized CTS
input parameter sets in constant time, for the Bayesian-based
approach, instead of starting with randomly sampled observa-
tions as shown in Algorithm 1, we leverage the GAN-based
model to suggest the initial CTS parameter sets. Furthermore,
because the CTS input parameter sets suggested by the GAN-
based model are expected to be in a more reliable (optimized)
region than the ones achieved by sampling randomly, we
further leverage a sequential domain reduction technique intro-
duced in [28] to adaptively refine the search space based on
the existing explored solutions. The key rationale behind is
that instead of searching new parameter sets from the original
wide ranges as shown in Table II, for each parameter, we can
refine the sample range based on parameter sets suggested
by the GAN-based framework which are already optimized.
We expect this combined optimization technique can help
us achieve better optimization results than any individual
technique. The optimization results are shown in Section VI.

E. Success Versus Failure Classification

The classification of successful and failed CTS runs is per-
formed in the discriminator. To describe how the classification
task works, we first illustrate the structure of the discrimi-
nator as shown in Fig. 9. The discriminator takes a regular
input which is either the generated samples G(z, f ; θg) or the
real samples x from the database pd, and a conditional input
which denotes the features extracted from placement images.
Note that when the regular input represents the real samples
x, the conditional input f should be aligned to x. The reason
we introduce a conditional input to the discriminator is that it
helps the discriminator to distinguish better between the gener-
ated and the real samples under different modes (benchmarks).
As shown in (3), since each CTS input parameters has a dif-
ferent unit, we normalize real samples x from the database
to x̂ ∈ [−1, 1] to improve the stability of the GAN training
process.

In GAN-CTS, the discriminator also has two objectives as
the discriminator. One is to distinguish the generated samples
from the real samples, which is derived as

LDg = E(x,f )∼pd

[
log(Dg(x, f ))

]
+ Ez∼pz

f∼pd

[
log

(
1− Dg(G(z, f ))

)]
. (8)

The other objective is to classify whether a given input
parameter set can lead to a successful CTS run or not, where
the objective is be formulated as

LDs = Ex∼pd

[
log(Ds(x, f ))

]
(9)

which represents the cross-entropy between the classification
groundtruths and the predictions made by our framework.

Fig. 9. Detailed structure of our GAN discriminator.

Note that the definition of successful and failed CTS runs are
defined in Section III, and the discriminator is updated by (9)
only when the regular input represents the real samples x. The
reason we introduce a new objective to the discriminator is
because its attribute is similar as the discriminator’s conven-
tional objective, where both of them are performing binary
classification. Therefore, some latent features can be shared
in the early network as shown in Fig. 9. Finally, the training
process of the discriminator is summarized as

max
D

E(x,f )∼pd

[
log

(
Dg(x, f )

)+ log(Ds(x, f ))
]

+ Ez∼pz
f∼pd

[
log

(
1− Dg(G(z, f ))

)]
. (10)

F. Training Methodology

Based on the structures and the objective functions
presented, we now illustrate the training process of our frame-
work in Algorithm 2, where a gradient descent optimizer
Adam [15] is utilized across different training stages. First,
we train the regression model (lines 2–9) which serves as a
guidance provider in the training process of the conditional
GAN. Note that the regression model we adopt in the GAN-
CTS framework is constructed through multitask learning.
Following from the regression learning, we train the gener-
ator and discriminator alternatively (lines 10–25), since the
two networks have antagonistic objectives. The parameters of
the discriminator are split into θd1 and θd2 (θd1 ∩ θd2 �= φ)
to represent different tasks, since a multitask learning is con-
ducted. The overall training process is completed when the
losses of the generator and the discriminator reach an equilib-
rium, which takes about 24 h on a machine with 2.40 GHz
CPU and an NVIDIA RTX 2070 graphics card.

VI. EXPERIMENTAL RESULTS

In this section, we describe several experiments that demon-
strate the achievements of GAN-CTS framework. The frame-
work is implemented in Python3 with Keras [5] library.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on December 11,2022 at 00:54:00 UTC from IEEE Xplore.  Restrictions apply. 



3112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 9, SEPTEMBER 2022

TABLE IV
CTS OUTCOMES PREDICTION RESULTS OF THREE REGRESSION APPROACHES. MAPE DENOTES MAPE (%), MAXE DENOTES MAX. ABSOLUTE

PERCENTAGE ERROR (%), AND CC DENOTES CORRELATION COEFFICIENT. NOTE THE VALIDATIONS ARE PERFORMED ON Unseen Netlists

Algorithm 2 GAN-CTS Training Methodology. We Use
Default Values of αr = 1e−4, αGAN = 1e−4, β1 = 0.9,
β2 = 0.999, and m = 128
Input: {f }: extracted placement features, {x}: training data,
{Y}: target CTS metrics for prediction and optimization.

Input: αr: learning rate of regression model, αGAN : learn-
ing rate of GAN, m: batch size, {θr}0: initial parameters
of regression model, θg0 : initial parameters of generator,
{θd}0: initial parameters of discriminator, {β1, β2}: Adam
parameters.

Output: R: regression model, G: generator, D: discriminator.
1: N ← length(y)
2: while {θr} do not converge do
3: Sample a batch of training data {x(i)}mi=1 ∼ pd

4: Take features {f (i)}mi=1 corresponding to {x(i)}mi=1
5: for k← 1 to N do
6: grk ← ∇r[ 1

m

∑m
i=1(Rk(f (i), x(i))− Y(i)

k )2]
7: θrk ← Adam(αR, θrk , grk , β1, β2)
8: end for
9: end while

10: while θg and θd do not converge do
11: Sample a batch of training data {x(i)}mi=1 ∼ pd

12: Take features {f (i)}mi=1 corresponding to {x(i)}mi=1
13: Sample a batch of random vectors {z(i)}mi=1 ∼ pz

14: gd1 ← ∇θd1
[ 1

m

∑m
i=1 log(Dθd1

(x(i), f (i)))

+ 1
m

∑m
i=1 log(1− Dθd1

(Gθg(z
(i), f (i))))]

15: θd1 ← Adam(αGAN, θd1 , gd1 , β1, β2)

16: gd2 ← ∇θd2
[ 1

m

∑m
i=1 log(Dθd2

(x(i), f (i)))]
17: θd2 ← Adam(αGAN, θd2 , gd2 , β1, β2)

18: Sample a batch of random vectors {z(i)}mi=1 ∼ pz

19: Sample a batch of features {f (i)}mi=1
20: gθ ←−∇θg

1
m

∑m
i=1 log(Dθd1

(Gθg(z
(i), f (i))))

21: θg ← Adam(αGAN, θg, gθ , β1, β2)

22: r←∏N
k=1

Rk(G({z(i)}mi=1,{f (i)}mi=1))

auto-setting result of outcome k

23: gθ ←−∇θg
1
m

∑m
i=1 r(i)

24: θg ← Adam(αGAN, θg, gθ , β1, β2)
25: end while

As mentioned in Section IV, we utilize Cadence Innovus
v18.1 to generate a database containing 115.5k clock trees
with 385 different placements across 11 netlists under the

TSMC-28 nm technology node. The designs we utilize are
shown in Table I, which are from ISPD 2012 benchmark [23]
and OpenCores.org To prove the generality of our framework,
we only use seven netlists during the training process, and
leverage the rest four designs (ECG, LEON, JPEG, and VGA)
to perform the validations.

A. CTS Prediction and Interpretation Results

In this experiment, we evaluate the regression approaches
on three target CTS outcomes with two evaluation metrics:
MAPE, maximum absolute percentage error (MAXE), and cor-
relation coefficient (CC). Table IV demonstrates the evaluation
results of the three different regression approaches presented
earlier. The first approach termed multimodel uni-output rep-
resents the meta-modeling method, where for each CTS target
outcome, we build a dedicated meta-model using the struc-
ture defined in Fig. 6. The second approach named uni-model
uni-output leverages the modeling method shown in Fig. 7,
where we build a single model to predict three target CTS out-
comes simultaneously. Finally, the third approach follows the
modeling structure of the second approach, however, instead of
using the features (∈ R512) extracted from the transfer learn-
ing flow, we handcrafted four features to represent different
designs. These four features include number of cells, number
of flip flops, number of nets, and number of ports in a given
design.

It is shown that the second approach (multitask learn-
ing with transfer learning enabled) achieves lower evaluation
errors among all target metrics on the unseen netlists than
the other approaches. Note that the training time of the mul-
titask learning approach is about 3 h, where the training
time of the meta-learning approach is about 6 h (calculated
by summing training time of individual meta-models). Two
main conclusions can be drawn from this experiment. First,
the multitask learning takes the advantage of the fact that
different CTS outcomes are not independent of each other.
Therefore, shared layers not only expedite the training pro-
cess but also improve the prediction accuracy of CTS targets.
Second, it is demonstrated that the transfer learning approach
provides a better way to characterize different designs com-
pared with using the manually enumerated features. Indeed,
many important design characteristics related to CTS pro-
cess, such as the distribution of flip flops and the metal layer
usage of trial routing are not straightforward to be enumerated
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Fig. 10. Relative importance of CTS input parameters on skew, power, and
wirelength for JPEG benchmark.

manually. Therefore, transfer learning provides a great benefit
to characterize different designs.

In spite of the high prediction accuracy achieved, design-
ers would not benefit much without explaining the predictions
made by the model. Understanding the reasons behind
the predictions is crucial. As shown in Fig. 10, we
evaluate the importance of each CTS input parameter based
on the predictions presented in Table IV. As mentioned
in Section V-B, we define the importance through a
gradient-based attribution method named DeepLIFT [25]. The
algorithm quantifies the relevance of input parameters with
respect to different outputs. Since the input of the regression
model contains the CTS input parameters and the extracted
features, in this interpretation experiment, we focus on deter-
mining the relative importance among CTS input parameters
by further normalizing the relevance scores to [0, 1]. Note that
the normalization is performed within the CTS input parame-
ters. Below, we explain two important phenomenons observed
from Fig. 10.

1) The slew constraints for leaf cells and trunk cells have
great impacts on clock power and clock wirelength.
Indeed, with a tight slew constraint, more buffers need
to be inserted to meet the timing target, which ultimately
results in higher clock power and clock wirelength.

2) The max EGR layer has high impacts on the maximum
skew and clock wirelength. The reason is that signal nets
are often routed in top metal layers (e.g., M5 and M6).
If signal nets are forced to route in low metal layers
(e.g., M1. M2) that are reserved to route clock nets,
there will be many detours in the clock routing because
clock nets will inevitably use low metal layers to connect
the sinks, which results in long clock paths and hence a
large maximum skew.

B. CTS Optimization Results

In this experiment, we demonstrate the optimization results
achieved by our GAN-CTS framework compared with the
Bayesian optimization [26] technique leveraged by previous
work [20] and the auto-setting offered by the commercial tool,
where a joint optimization is performed on three target CTS
metrics: 1) clock wirelength; 2) clock power; and 3) the max-
imum skew. Fig. 11 first shows the optimization result of the
ECG benchmark, where the blue dots denote the original clock
trees in the database, and the red stars represent the clock trees
generated by GAN-CTS. To plot the figure, we first take the

Fig. 11. Distributions of random generated versus GAN-CTS generated clock
trees on the ECG benchmark. The commercial auto-setting achieved a clock
tree with values of 23.56 mW in clock power, 49.69 mm in clock wirelength,
and 16 ps in skew.

extracted features of the pre-CTS placements as conditional
inputs, and then utilize the trained generator to suggest 100
sets of CTS input parameters. With these suggested parameters
sets, we further leverage the commercial tool to perform actual
CTS processes. Finally, according to the target optimization
metrics, we plot the scatter distributions of the clock trees
suggested by GAN-CTS together with the ones originally gen-
erated in the database. Note that the input parameters of the
clock trees in the database are randomly sampled from the
ranges shown in Table II.

The detailed optimization results on the four unseen netlists
are shown in Table V and the corresponding CTS input param-
eters are shown in Table VI. The method “GAN-CTS + bayes”
denotes the combined optimization technique presented in
Section V-D3, where we take the GAN-CTS suggested param-
eter sets as the initial sets of the Bayesian optimization process
and leverage the sequential domain reduction technique [28]
to refine the search space. We observe in general, the com-
bined technique reaches better CTS optimization results in
terms of the reward defined in (5), and the proposed GAN-CTS
framework outperforms the basic Bayesian optimization tech-
nique adopted by the previous work [20] across all unseen
designs. This in fact demonstrates that the proposed GAN-
CTS framework provides better starting points for the vanilla
Bayesian optimization approach. Note that the selection of
the GAN-CTS generated trees is conducted by taking the
clock tree with the least maximum skew among the 100 trees
suggested. Fig. 12 further shows the Bayesian optimization
process on the VGA benchmark, where the iteration stops
when the reward evaluation no longer improves after 15 itera-
tions. Finally, Fig. 13 further exhibits the layout comparison
of the four testing benchmarks (unseen during training). It is
observant that the clock wirelength of the GAN-CTS opti-
mized tree is much shorter than the one auto-generated by the
commercial engine.

C. Success Versus Failure Classification Results

In the final experiment, we demonstrate the classification
results achieved by the discriminator of determining successful
and failed CTS runs. As mentioned in Section III, success
and failure are defined by comparing the CTS metrics of the
clock trees generated by GAN-CTS to the one auto-generated
by the commercial tool. If two out of three target metrics
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TABLE V
ACHIEVED CLOCK METRICS COMPARISON BETWEEN COMMERCIAL AUTO-SETTING (AUTO), BAYESIAN OPTIMIZATION (BAYES), AND GAN-CTS.

THE METHOD “GAN-CTS + BAYES” DENOTES USING THE GENERATOR SUGGESTED CTS PARAMETER SETS AS THE INITIAL SOLUTIONS OF

BAYESISAN OPTIMIZATION ALONG WITH THE SEQUENTIAL DOMAIN REDUCTION TECHNIQUE [28].
NOTE THAT THE FOUR BENCHMARKS ARE Unseen DURING THE TRAINING PHASE

TABLE VI
GAN-CTS SUGGESTED AND COMMERCIAL AUTO-SETTING’S CTS INPUT

PARAMETERS (REFER TO TABLE V). NOTE THAT THE COMMERCIAL

CLOCK ROUTER HAS THE SAME AUTO-SETTING VALUES FOR

DIFFERENT DESIGNS. THE CAPACITANCE CONSTRAINTS IN THE

AUTO-SETTING SCENARIO ARE VARIED FROM NET TO NET,
WHICH ARE SUBJECT TO THE MAX CAPACITANCE

CONSTRAINT OF THE DRIVING PINS

TABLE VII
CONFUSION MATRIX OF SUCCESS VERSUS FAILURE CLASSIFICATION IN

LEON BENCHMARK. FAILURE MEANS WORSE THAN AUTO-SETTING

are better, then we consider it as a success. Table VII sum-
marizes the classification results in a confusion matrix with
NOVA benchmark. The accuracy and the F1-score are 0.930
and 0.932, respectively. With the accuracy demonstrated, we
believe designers can not only benefit from the generator but
also the discriminator by efficiently pruning out the CTS input
parameter sets that have little advantage over the commercial
auto-setting.

VII. DISCUSSION

The proposed framework, GAN-CTS, is a helper model
(rather than a surrogate model) of commercial CTS engines,
whose goal is to support the engines to find the CTS input

Fig. 12. Bayesian optimization on VGA benchmark (starting from random
sampled CTS parameter sets). Reward r is defined in (5).

parameter combinations that result in optimized clock trees.
In this work, we take Cadence Innovus as our reference com-
mercial tool, however, the proposed method can be easily
applied to other tools which also parameterize the CTS pro-
cess into different input settings. Note that the goal of this
work is not to replace the existing commercial CTS engines,
but to provide tool users fast and reliable CTS prediction and
optimization techniques without spending significant amount
of time in design space exploration. In the below sections,
we further describe different aspects of the proposed CTS
modeling method in detail.

A. Nontriviality of the CTS Modeling Problem

The CTS modeling problem we are dealing with in this
work is in fact a high-dimensional modeling problem, which
is stated in [13] to be difficult and nontrivial due to the curse
of high dimensionality [29]. To quantify the nontriviality of
this problem in our experimental settings, we perform a slew
sweeping experiment on the VGA benchmark, where we gen-
erate 500 clock trees by sweeping the leaf and trunk slew
targets while fixing all other input parameters in Table II as
auto-set. The experimental result is shown in Fig. 14. For the
three CTS metrics we focus on in this work, we plot the scatter
distribution of the 500 clock trees, where the red-colored dots
denote the trees whose achieved metric is better than the one
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Fig. 13. Clock tree layout comparison of four validation benchmarks. GAN-CTS optimized clock trees have observant clock wirelength saving. The detailed
comparisons are reported in Table V.

Fig. 14. VGA slew sweeping experiments. Out of the ten CTS input parameters as shown in Table II, we sweep around the leaf and trunk target slew values
while fixing others as auto-set and generate 500 clock trees in total. For each CTS metrics (i.e., clock power, clock wirelength, and maximum achieved skew),
we plot the scatter distribution of the 500 clock trees denoted in blue and red dots, where red dots denote the ones whose underlying CTS metric are better
than the auto-generated clock tree from the commercial tool. In summary, compared with the auto-generated clock tree, there are 61 (out of 500) trees whose
clock power are better, 50 whose clock wirelength are better, and 32 whose achieved skew values are better, where the corresponding Venn diagram is shown
in Fig. 15.

achieved by the commercial tool auto-generated clock tree. In
the figure, we observe that there is no apparent “sweet spot”
that guarantees high-quality clock trees. In addition, Fig. 15
shows the Venn diagram from the three subplots in Fig. 14
and Fig. 16 demonstrates further the distributions of the tree
targeted CTS metrics in this work, where we observe that there
is no apparent sweet spot of the slew targets that guarantee
to result in optimized clock trees. It is shown that out of 500
generated clock trees, only 14 of them (2.8%) whose all three
CTS outcomes (clock power, clock wirelength, and achieved
skew) are better than the ones achieved by the auto-generated
clock tree.

B. Train/Test Splitting of Benchmarks

The training and testing split among the 11 designs uti-
lized in this work is not performed in a purely random
fashion. Instead, we strive to make the training set to be “com-
prehensive” that covers a variety of designs from small to
large. One of the limitations of the proposed work is that
the model is required to be pretrained on a few designs,
however, as shown in the experiment, after training on the
seven designs as shown in Table I, GAN-CTS is able to
achieve accurate prediction and high-quality prediction results
on the largest design, (LEON), which also has the largest
power consumption. The main reason is that GAN-CTS does
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Fig. 15. Venn diagram of the VGA slew sweeping experiment (Fig. 14).
Note that a number on a colored region denotes the number of trees fall into
that region, where a number on an uncolored region denotes the number of
trees in the shape boundary.

Fig. 16. CTS metric distribution of the VGA slew experiment (Fig. 13). The
red dots denote the clock trees that are achieved with both trunk slew and
leaf slew targets smaller than 0.1 ns.

not perform the optimization completely based on previous
experience (seen designs). Instead, given a new design, it
leverages unsupervised techniques to extract the underlying
design features in order to generate high-quality clock trees.
Finally, we expect the proposed framework to achieve lower
MAPE/MAXE prediction error and better optimization results
if a bigger a higher variety of training set is available.

C. Discussion of Prediction Results

As shown in Table IV, we observe that the MAXE (worst-
case prediction error) is slightly high for the skew prediction.
This in fact can be accounted in twofold. First, as mentioned
in Section V, the regression model is trained by least-square
regression [6], which minimizes the mean squared (L2) error
to update the network parameters. It is known that the L2 error
(loss) minimization tends to optimize the average prediction
error across all samples that reaches stable solutions, where the
L1 error minimization tends to optimize the error on outliers
and thus results in unstable (sparse) solutions [2]. Therefore,
as shown in the table, even the MAPE (average error) for
skew prediction is bounded within 5%, some outliers still cre-
ate corner cases that aggravate the MAXE metric. Second, as
pointed out in previous works [12], [13], timing in general is a

hard-to-predict metric due to the sophisticated behavior of the
commercial timing engines. In particular, during CTS, com-
mercial tools will often override the skew target that is taken
as input in order to optimize other metrics, such as power
and wirelength, which results in the uncorrelation between the
target closure and the final achieved outcome.

D. Discussion of Optimization Results

The success of GAN-CTS on optimizing CTS metrics can
mainly be explained in twofold. First, instead of performing
block-box optimization as the Bayesian optimization tech-
nique, GAN-CTS leverages the generator to learn the key
distribution for different designs through conditional gener-
ative learning, which gives our framework better generality
over other approaches. Second, the proposed transfer learning
technique well differentiates various designs. The extracted
features that contain precious design information help the
framework to find better and more curated CTS parameter
sets that result in optimized clock trees for unseen netlists.

VIII. CONCLUSION

In this article, we have shown that ML offers promising
solutions for designers to reach the desired CTS targets with
a small amount of effort. We have proposed a novel frame-
work named GAN-CTS that uses discriminative techniques
to predict and classify the CTS outcomes as well as lever-
ages generative adversarial learning to optimize the desired
metrics. The experimental results conducted on the unseen
netlists demonstrate the proposed framework is generalizable
and practical.
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