
MILP-based Placement and Routing for
Dataflow Architecture

Michael Healy, Mongkol Ekpanyapong, and Sung Kyu Lim
School of Electrical and Computer Engineering

Georgia Institute of Technology
{mbhealy, pop, limsk}@ece.gatech.edu

Abstract— Dataflow architectures provide an abundance of
computing units that can be statically or dynamically configured
to match the computing requirements of the given application.
Wire delay has a reduced impact in dataflow architectures
because only neighboring architectural entities are allowed to
communicate within a single clock cycle. In this paper, we propose
MILP-based placement and routing algorithms for mapping
dataflow graphs to dataflow machines. The optimization process
is guided by profiling information available from the compiler.
Our goal is to minimize the total execution time of the given
application represented by a dataflow graph under architectural
constraints. We propose a hierarchical method to handle the
complexity of the initial MILP formulation. Our profile-driven
MILP algorithm reduces the total execution time of benchmark
applications compared to the conventional wirelength-driven
approach on average by 18%.

I. INTRODUCTION

As wire delay increasingly becomes a significant per-
formance bottleneck in monolithic architectures, with their
centralized structure requiring fast communication over long
distances, there is a strong motivation to move to Dataflow
Architectures. Dataflow computing is a computing paradigm
with an abundance of computing units that can be statically
or dynamically configured to match the computing require-
ments of the given application. Dataflow architectures dis-
tribute their ALUs, storage units and communication paths
over a 2-dimensional grid and enable enormous parallelism
in computation and communication by eliminating complex
centralized control. They fire operations into ALUs as soon as
the required input operands became available. The results are
then routed to other ALUs waiting on them. Wire delay has a
reduced impact since only neighboring architectural entities
are allowed to communicate within a single clock cycle.
This allows dataflow architectures to be extremely scalable
compared to the traditional von Neumann architecture.

Dataflow architectures have the potential to achieve very
high performance when parallelism is exploited at the pro-
gramming level. While this is not possible using standard
benchmarks the compiler is capable of extracting suitable
parallelism for dataflow architectures. There has been ongoing
research that targets non-streaming applications such as TRIPS
[1] and WaveScalar [2]. Dataflow architectures that target
streaming appliactions include TRIPS and MONARCH [3].

An efficient mapping of applications to the elements of
a dataflow architecture would place frequently and time-
critically communicating parts of the computation close to

each other, thereby delivering very high performance. How-
ever, the effective mapping of applications to the dataflow
architecture grid requires a synergistic interaction between
Compilers and Physical Design. A more rigorous approach
is to combine compilation and placement. This combined
approach allows compilers to expose more information to
the placement such as the access profile among different
instructions. On the other hand, compilers gain geometric
information for the instructions on the dataflow architecture
and perform more optimization.

The contributions of this paper are MILP-based place-
ment and routing algorithms for mapping dataflow graphs
to dataflow machines. The optimization process is guided
by profiling information available from the compiler. Our
goal is to minimize the total execution time of the given
application represented by a dataflow graph under architectural
constraints. We propose a hierarchical method to handle the
complexity of the initial MILP formulation. Our profile-driven
MILP algorithm reduces the total execution time of benchmark
applications compared to the conventional wirelength-driven
approach on average by 18%. Related works are hard to find.
A recent work [4] performs dataflow graph clustering targeting
distributed register-file machine and provides a survey on
related works in compiler community.

The rest of this paper is organized as follows. Section II
presents the basics of data flow graphs and architectures. Sec-
tion III presents the problem formulation . Our dataflow graph
mapping algorithm is described in Section IV. Experimental
results are presented in Section V, and we conclude in Section
VI.

II. PRELIMINARIES

A. Dataflow Architecture and Graph

A MONARCH-like architecure, with some WaveScalar
extensions is targeted in this paper. Figure 1(a) shows an
illustration of the generic dataflow architecture that is used.
Squares in the dataflow fabric represent arithmetic clusters
and circles represent memory clusters. Figure 1(b) shows the
extension made to the ALUs, which is similar to the ALUs
used in WaveScalar. In each ALU, the input operands contain
a tag field which must be matched in order for the ALU
to execute the instruction. Therefore, this extension requires
additional buffers, comparison hardware, and extension of the
operand field to include tag assignments. Along with additional

0-7803-9362-7/05/$20.00 ©2005 IEEE 71

MEM. Interface

MEM. Interface
IO IO

Input Control

Input Q ue ue

A L U

(a) (b)

Fig. 1. (a) Example of generic dataflow fabric, where squares epresent arith-
metic clusters and circles represent memory clusters, (b) extended processing
element used in our dataflow architecture.

hardware, additional instructions are inserted by the compiler
to handle this extended feature. A tag generation mechanism
is included for the modifications made to the ALUs. The
purpose of this tag system is to allow many iterations of a
loop to be executed in parallel whenever there are available
resources. Throughout our experiment, we assume that each
arithmetic block consists of eight ALUs and four multiplexers,
whereas memory blocks consist of four memory nodes and
four multiplexers.

Dataflow graphs (DFG) are used to identify which instruc-
tions produce data needed by other instructions. If-conversion
[5] is performed to convert control dependencies in an appli-
cation into dataflow edges. Operations in DFGs can now be
conditionally executed by consuming a predicate operand pro-
duced by the original control-branching condition. An instruc-
tion is only executed if its predicate input is set to true. Loops
in a program are captured as cycles in the DFG. After the
compiler constructs a DFG, each node in the DFG is mapped
to some processing element on the dataflow architecture grid.
General processing elements consist of ALUs and input buffers
to store operands. Processing elements can execute and com-
municate in parallel subject to dataflow constraints captured by
the DFG. Typically, dataflow architectures have built-in flow-
control mechanisms. A processing element producing a result
will stall automatically if the input buffers on a processing
element consuming the result are full. Similarly, a processing
element will not execute until all its inputs are available.

III. PROBLEM FORMULATION

A. Design Flow

First, an application is fed into the system by the front-
end compiler. The dataflow graph is then generated. High-
level machine independent compiler optimization is performed
here. Then low-level optimization is invoked during back-
end compilation. We modify the Trimaran compiler [6] such
that the placer reads the annotated dataflow graph, performs
placement, and annotates the placement and routing solution
back to the assembler. Then the assembler is used to generate
the binary for a given architecture. Note that the architecture

description is read by compiler, placer, and assembler such that
minor architecture modifications can be done without system
modification. Statistic information for the given application is
extracted from the front-end compiler and available for other
parts of flow.

B. Dataflow Graph Mapping Problem

Our dataflow graph mapping process is divided into place-
ment and routing steps. We model DFG using G(V,E), where
V is the set of dataflow nodes and E is the set of dataflow
edges. There are three types of dataflow nodes: arithmetic,
memory, and multiplexing nodes. Each node is associated
with a non-uniform delay, where more complex operations
such as multiplcation and division incur larger delay than
simpler operations such as addition and subtraction. Each edge
e(x,y) ∈ E is associated with profile information that denotes
how many times x accessed y during a DFG simulation.

Our dataflow architecture contains two-levels of hierarchy:
element-level and cluster-level. Each element can accommo-
date (and thus execute) a single dataflow node, and each
cluster contains multiple elements. We assume all elements
in the same cluster are located at the same position. There
are three types of architectural clusters: arithmetic, memory,
and multiplexing clusters. We model the dataflow architecture
using a graph A(N,W), where N is the set of clusters and W

is the set of wires connecting the clusters. In addition, each
cluster c ∈ N is further represented via Ac(Nc,Wc), where
Nc is the set of elements contained in c, and Wc is the set
of wires connecting these elements. Each cluster is given a
unique 2D location and is under a capacity constraint. Each
inter-cluster wire w ∈ W and intra-cluster wire wc ∈ Wc

is under capacity constraint. Formal problem definitions are
given as follows:

Definition 1 (Dataflow Graph Placement): we map each
DFG node v ∈ V to a unique architecture node n ∈ N such
that the type and capacity constraints are satisfied.

Definition 2 (Dataflow Graph Routing): we map each
DFG edge e ∈ E to a set of wires from W (inter-cluster)
and/or Wi (intra-cluster) such that the capacity constraint is
satisfied.

Our minimization objective includes wirelength and profil-
ing weight. Wirelength is calculated as the half perimeter of
the bounding box among each edge in G (Manhattan Dis-
tance). The profiling weight is equal to the normalized access
frequency gathered by the front-end compiler. Therefore the
edges of the graphs are both weighted and directed. The
calculation of the total execution time is explained in the
following section.

C. Execution Time Estimation

Since our dataflow computer has no speculation, we esti-
mate the total execution time of a given application as follows.
The estimation is based on the number of times each node and
edge are executed. For each path p, the execution time of p,

72

C Code

in t m a in (in t a rg c , c h a r * a rg v []){
in t i.m ;
in t j1 ,j2 ,j3 ,j4 ,j5 ,j6 ,j7 ,j8 ;
in t k 1 ,k 2 ,k 3 ,k 4 ;
in t l1 ,l2 ,l3 ;
for (i= 0 ; i < N U M ; i+ +){
 j1 = 2 * i;
 k 1 = i* i;
 ...
 l3 = j3 + k 3 ;
 if(i < 1 0 0)
 j8 = j7 ;
 els e
 k 4 = k 3 ;
}}

A s s em b ly Code

A c t 7 1 rid:0 M X (CM E R G E)
A c t 1 1 rid:4 CO (M P Y W)
A c t 1 3 rid:5 CO (M P Y W)
A c t 6 0 rid:6 CO (P B R R)
A c t 6 1 rid:7 CO (CM P W L T)
A c t 4 1 rid:8 CO (M O V E)
...
A c t 6 4 rid:2 CO (P B R A)
A c t 1 0 4 rid:3 CO (A D D W)
A c t 1 0 3 rid:4 M E M (R E S T O R E)
A c t 4 6 rid:5 M X (R T S)
A c t 7 0 rid:0 M X (CM E R G E)
A c t 9 rid:2 CO (M O V E)
A c t 5 9 rid:4 CO (CM P W G E Q)
A c t 1 0 rid:5 M X (B R CT)

D a ta flow G ra p h Clu s terin g a n d
G lob a l P la c em en t

Fig. 2. Illustration of DFG mapping. A sample C code and its assembly code are shown. We also show the corresponding dataflow graph. We cluster the
nodes in the DFG and map it onto our 5× 5 architecture block set.

denoted exec(p), is computed as follows:

exec(p) =
∑

e(u ,v)

{f r eq (e) · (d ela y (u) + d ela y (e))}

where u,v ∈ V and for all e ∈ p. f r eq (e) denotes the access
frequency collected by profiling.

During profiling, high level simulations are performed on
C source codes. By running the application on sample input
sets, statistic information, such as how many times each path
is executed, is collected. This statistic information is then
annotated back into each edge in the DFG. Then the total
execution time is estimated as m a x {exec(p) | ∀ p ∈ G}. In other
words, we compute the weighted longest path delay where
frequency information is used as the weight on each edge.
Thus, a topological ordering based O(n) timing analysis is
enough to compute the total execution time. To compute the
longest path, cycles have to be removed first. However the
back edges are included during execution time computation–
we add the delay of source gate and the delay of the back
edge to all paths that contain this back edge.

To evaluate our placement result, we assume perfect
memory and large enough input queue buffers. Note that
Wavescalar [2] also assumes perfect L1 data cache and un-
bounded input queues. Assuming that dataflow architectures
are governed by parallelism, performance can be calculated
based on how many times each path is executed as well as
its delay. Note that TRACE simulation is also similar to this
approach. We use a training input set for profiling and a
reference input set for performance evaluation.

IV. DATAFLOW GRAPH MAPPING ALGORITHM

A. Overview of the Algorithm

Due to the size of the dataflow graphs being considered,
it is infeasible to optimally solve the mapping problem using
MILP. Therefore, our DFG mapping algorithm is based on
a clustering paradigm. At each stage, except clustering, the
solution is found using the MILP formulations enumerated
below. An architectural cluster consists of a central set of

8 arithmetic nodes and 4 switch nodes and four peripheral
groups consisting of 2 switch nodes and 2 memory nodes.
Therefore, there are 8 arithmetic, 8 memory, and 12 switch
nodes in each cluster. For the sake of clarity, architectural
clusters will be referred to as architectural blocks and DFG
clusters will be referred to as clusters.

The first step in our algorithm is clustering the DFG. Then
the DFG clusters are mapped to architectural blocks. This is
followed by high level inter-cluster routing. Next each cluster
is individually mapped onto its architectural block while taking
into consideration terminal propagation information, explained
below, passed to it from the previous routing stage. This
mitigates much of the non-optimality introduced during the
clustering process. Finally, intra-cluster routing is done to
obtain the final solution.

During every step profiling information is used to determine
edge weights. The weights are normalized and then raised to a
variable power factor. Experimentation showed that 5 was an
empirically good choice for the power factor. This power factor
had the effect of pushing weights that were closer to zero
even closer to zero. This effects the solution by concentrating
computational effort more on the edges that have the highest
weight. DFGs characteristically have large dispersion among
profiled weight [0-10,000] so the power factor ensures that
only edges that have a large impact on execution time are
considered.

We experimented with two types of terminal propagation,
cardinal direction style and dispersed style. In cardinal direc-
tion propagation only 4 extra terminals were added, up, down,
left, and right, while in dispersed style terminals were added
in the proper direction for every node that had an edge to an
extra-cluster node. We found that the difference between the
two styles was negligible and so do not report those results
here. Figure 2 shows an illustration of the entire flow of our
algorithm.

73

MILP-based DFG Placement

Minimize
∑

(i,j)∈C

Cij (1)

Subject to:

m a p i,j = {0, 1}, i ∈ N, j ∈ A (2)∑

j

m a p i,j = 1, i ∈ N, j ∈ A (3)

∑

i

m a p i,j ≤ cj , i ∈ N, j ∈ A (4)

∑
m a p i,j ≤ 0, typ e(Mi) �= typ e(Aj) (5)

Pi,j =
∑

k,l

[λi,j ∗ (m a p i,k ∗ Xk − m a p j,l ∗ Xl)], i, j ∈ N, k , l ∈ A (6)

Qi,j =
∑

k,l

[λi,j ∗ (m a p i,k ∗ Yk − m a p j,l ∗ Yl)], i, j ∈ N, k , l ∈ A (7)

Ci,j ≥ Pi,j + Qi,j , i, j ∈ N (8)
Ci,j ≥ Pi,j − Qi,j , i, j ∈ N (9)

Ci,j ≥ −Pi,j + Qi,j , i, j ∈ N (10)
Ci,j ≥ −Pi,j − Qi,j , i, j ∈ N (11)

Fig. 3. MILP-based PCA Placement

B. Clustering Algorithms

Three different clustering algorithms, random, edge-
separability based (ESC) [7], and greedy, were investigated
for solution quality. A good clustering solution is one that
sufficiently utilizes each architectural block while retaining
routability and minimizing impact upon the optimality of the
placement solution. Type constraints were met during the
clustering process in order to ensure that each cluster was
mappable to its architectural block.

In random clustering the DFG nodes were randomly as-
signed to architecture blocks as long as it was feasible to
add that node considering space and type constraints. In
greedy clustering the DFG nodes were first ordered by highest
profiling frequency on incident edges. The list was then
iterated through from largest weight to smallest weight. In
each iteration the current cluster was combined with the node
connected to it with the highest profiling frequency until that
cluster was full.

ESC is an efficient graph-search-based bottom-up cluster-
ing algorithm. Unlike existing algorithms that are based on
local connectivity information of the netlist such as edge
weights, ESC exploits more global connectivity information
called edge separability to guide the clustering process. For
given edge e = (x, y) in an edge-weighted undirected
graph U(V, EU , W U), edge separability of e is defined as
the minimum cutsize among the cuts separating x and y in
U . Thus, computing the edge separability for a given edge
e = (x, y) is equivalent to finding the x-y mincut. Direct
computation of edge separability for all edges in U requires
max-flow computation for |EU | times, which is extremely

time-consuming. ESC provides an efficient way to compute
a tight lower bound of separability of all edges in U in
O(|V | lo g |V |) time without using any flow computation.

ESC clusters grow from the contraction of contractible
edges, i.e., the set of edges whose contraction preserves the
mincut in U . This graph search algorithm is based on travers-
ing vertices of U according to the Maximum Adjacency (MA)
ordering of vertices in U . The intuition behind MA ordering
is that it chooses a vertex that is most tightly connected to
the vertices that are already in the order. Then, our search
algorithm traverses through vertices in MA ordering while
labelling each edge with q(e), a tight lower bound of edge
separability. Finally, the contractible edges are computed by
comparing q(e) to λ̄(G), where λ̄ denotes the minimum
cutsize discovered so far.

For both ESC and greedy clustering a post-process was
done that compared all pairs of clusters to determine whether
or not they could be combined considering space constraints.
This post process improved the utilization of the architectural
blocks while simplifying the top level cluster placement.
Because utilization of the architectural blocks is high when
using all the clustering algorithms this post process did not
detectably alter wirelength.

C. MILP-based Placement Algorithm

The basic idea behind the MILP placement formulation is to
minimize weighted wirelength using Manhattan distance and
a mapping matrix while following the type constraints. The
parameters used in the placement MILP formulation shown in
Figure 3 are defined as follows. Let N denote the set of DFG

74

nodes, E denote the set of directed edges where edge (i,j)
represents an edge from DFG node i to j, and A denote the set
of architectural nodes. Let m a p be a mapping matrix where
rows are associated with DFG nodes, columns are associated
with architecture nodes, and a 1 in position i,j implies that
DFG node i is mapped to architecture node j. Also, let λi,j

be the statistical traffic on DFG edge (i,j), typ e (Mi) be the
type of DFG node i, typ e (Aj) be the type of architectural
node j, and cj be the capacity of architectural node j. Finally,
let Xj be the x position of architectural node j, and Yj be the
y position of architectural node j.

The first constraint forces the integrality of the mapping
matrix. Constraint (3) guarantees that each DFG node is
mapped to exactly one architectural node. (4) guarantees that
each architectural node has at most its’ capacity mapped to
it. Constraints (6)-(7) compute the standard weighted distance
function. The matrix P corresponds to the weighted X distance
between two modules while the matrix Q corresponds to the
weighted Y distance between two modules. Constraints (8)-
(11) linearize the absolute value function for the sum of the
X and Y differences. Finally, (5) ensures that type constraints
are observed when finding a solution. Additionally, for the
purposes of terminal propagation, a psuedo node set can be
created and statically mapped to their correct position on the
architecture to effect the placement solution as desired above.
This is done by simply constraining a particular entry in the
matrix corresponding to the psuedo node to have a value of 1.

D. MILP-based Routing Algorithm

The parameters used in the placement MILP formulation
defined in Figure (4) are defined as follows. Let N denote
the set of DFG nodes, E denote the set of directed edges
where edge (i,j) represents an edge from DFG node i to
j, and A denote the set of architectural nodes. Let flo w be a
electronic signal flow sending from source to sink, where rows
and columns are associated with architecture nodes based on
each path, and a 1 in position i,j,k implies that architecture
node i is sending signal to architecture node j on DFG edge
k. In addition, let λk be the statistical traffic on edge (k).
Finally, let cj be the capacity of architectural channel j, fi,j,k

represent the flow from architecture node i to node j from
MDFG edge k and bi,k represent the summation of all flows
into and out of architectural node i for DFG edge k.

Constraint (13) guarantees that the inflow and outflow of
each wire channel do not exceed the capacity limit. (14)
guarantees that the inflows are equal to the outflows for all
nodes in the route and equal 1 for the supply node and -1 for
the demand node. Weighted wirelength is the minimization
objective.

V. EXPERIMENTAL RESULTS

The framework was run on Pentium IV 2.4 GHz dual
processor systems. It was written using a combination of C++
compiled with g++ version 3.2.2 and perl scripts using perl
version 5.8.0. Table I shows the non-streaming benchmarks
used in our experiment. The solutions to the MILPs were

MILP-based DFG Routing

Minimize
∑

(i,j,k)

λk × fi,j,k (12)

Subject to:
∑

i,j,k

fi,j,k + fj,i,k ≤ ci,j + cj,i, i,j ∈ A,k ∈ E (13)

∑

l

fi,l,k −
∑

j

fj,i,k = bi,k ≤ cj, i ∈ N,j ∈ A (14)

fi,j,k ≥ 0 (15)
λi,j ≥ 0 (16)

Fig. 4. MILP-based PCA Routing

TABLE I
SPEC2000 BENCHMARK CHARACTERISTICS

graph function #co #nodes #edges #aclus
gzip fill windows 140 217 239 5x5
vpr get non upd 228 382 429 8x8
mcf price out 269 435 548 8x8
equake phi0 37 54 54 5x5
parser region valid 504 755 892 8x8
vortex mem getword 79 126 128 5x5
bzip2 spec putc 56 81 85 5x5
twolf ucxx1 353 574 590 8x8

found using the Gnu Linear Programming Kit’s [8] vesion
4.5 glpsol executable. While finding the optimal solution,
the linear program solver first finds a linear optimal solution
and then attempts to make the solution integral. Because
the linear solution can be equal to zero in some cases, the
integer optimization step could iterate through every possible
solution before giving up, which would cause the runtime to
be extremely long. Therefore it was necessary to limit the
runtime to 1 hour per MILP for standard, and 2 hours per
MILP for larger cases. Typically, the solver iterates around the
same minimum value for millions of iterations before being
terminated, so we believe the non-optimality introduced by
this time limit is negligible.

MILP problems can be solved near optimally. Thus the
largest factor introducing non-optimality in the solution al-
gorithm is the clustering process. A comparison of the three
clustering algorithms is given in Table II. It can be seen
that the random clustering algorithm produces solutions that
are significantly worse in execution time than that of the
best result. Wirelength is also significantly worse, and is in
many cases unroutable because of this. This is due to the
fact that the random clustering algorithm frequently places
nodes connected with edges in different clusters while ESC
and the greedy clustering algorithm specfically target nodes
connected by edges for clustering. When comparing ESC vs
greedy clustering it can be seen that greedy clustering produces
slightly worse solutions in terms of execution time. This is
explained when one analyzes the wirelength numbers and sees
that ESC generally has better wirelength.

When comparing the number of clusters, it is very no-

75

TABLE II
IMPACT OF CLUSTERING, WIRELENGTH (HOP) IS GIVEN AFTER ROUTING, EXECUTION TIME (EXEC) IS GIVEN AFTER ROUTING AS A RATIO WITH ESC

CLUSTERING WIRELENGTH-ONLY DRIVEN PLACMENT AS THE BASIS, RUNTIME (CPU) IS GIVEN IN SECONDS

random clustering ESC clustering greedy clustering
bench #clust hop exec CPU #clust hop exec CPU #clust hop exec CPU
gzip 18 1984 3.63 3663 18 263 1.11 3636 18 425 0.81 3654
vpr — — — – 29 1135 0.87 3881 29 1197 0.99 3749
mcf — — — – 34 2170 0.50 36040 34 2170 0.7 36942
equake 5 206 3.04 172 5 48 1.00 97 5 91 1.00 71
parser — — — – 63 3206 0.61 4650 63 3930 0.79 36060
vortex 10 711 3.15 3623 10 181 0.89 3647 10 366 0.78 3623
bzip2 7 400 2.09 3612 7 239 0.65 158 7 207 0.78 141
twolf — — — – 44 1331 0.69 4639 44 1578 0.77 1499
ratio 2.98 0.82 0.83

TABLE III
IMPACT OF PROFILE-BASED PLACEMENT ON EXECUTION TIME

wirelength-driven profile-driven
bench #cl wire exec CPU #cl wire exec CPU
gzip 18 114 5,158 4002 18 168 5,536 3636
vpr 29 489 6,729 6658 29 625 6,250 3881
mcf 34 772 37,668 6400 34 2170 22,872 36040
equake 5 24 3,162 221 5 30 3,162 97
parser 63 1577 14,840 5241 63 1678 9,869 4650
vortex 10 63 6,009 3829 10 114 6,009 3647
bzip2 7 41 2,789 610 7 129 2,202 158
twolf 44 572 512 5153 44 747 406 4639
ratio 1.00 0.88

ticeable that the three different clustering algorithms produce
exactly equal numbers of clusters. When comparing greedy
and random clustering this is very probable because both
algorithms simply pack nodes into clusters until more nodes
cannot be fit. When delving further into the subject it is
revealed that DFGs are forests and that the number of nodes in
each tree of the forest could be as small as one. These nodes
with no edges correspond to control instructions or noops
inserted by the compiler that do not have data dependancies
with the rest of the instructions. Because of the forest-like
nature of DFGs both ESC and greedy clustering will arrive at
similar numbers of clusters if a large percentage of trees in
the forest is of sufficiently small size so as to fit into a single
architectural block. This will be only compounded by the post
process. However our analysis shows that though the number
of clusters is the same the size and nodes of each cluster are
different between all the algorithms.

A comparison of profile-driven versus wirelength-driven
placement (Table III) and routing (Table IV) is given in their
respective Tables. Our profile-driven placement algorithm out-
performs the traditional wirelength-only driven algorithm by
12% in average execution time calculated before routing was
done and our profile-driven router outperforms the traditional
router by 18% in average execution time calculated after
routing was done. Upon inspection one will notice that gzip

has longer execution time for the profiling case. This occurs
because our profiling method relies on capturing real data
behavior. If the data changes drastically from the training input
set then profiling may have negative impact on performance.

TABLE IV
IMPACT OF PROFILE-BASED ROUTING ON EXECUTION TIME

wirelength-driven profile-driven
bench #cl wire exec CPU #cl wire exec CPU
gzip 18 182 6,793 4002 18 263 7,550 3636
vpr 29 867 9,968 6658 29 1135 8,689 3881
mcf 34 1439 63,582 6400 34 2170 31,764 36040
equake 5 37 3,162 221 5 48 3,162 97
parser 63 3034 26,999 5241 63 3206 16,396 4650
vortex 10 107 7,726 3829 10 181 6,867 3647
bzip2 7 63 3,377 610 7 239 2,202 158
twolf 44 927 857 5153 44 1331 593 4639
ratio 1.00 0.82

VI. CONCLUSION

Configurable dataflow architectures recently became more
popular due to their ability to extract more parallelism and
reduce the impact of wire delay. In this paper, we proposed
a MILP based placement and routing algorithm that uses
clustering to reduce problem complexity while still retaining
solution quality.

ACKNOWLEDGMENT

This research was funded in part by DARPA PCA Program
under contract #F33615-03-C-4105.

REFERENCES

[1] K. S. et. al, “Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architecture,” in Proc. IEEE Int. Conf. on Computer Architecture,
2003.

[2] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,” in
IEEE Micro, 2003.

[3] J. J. Granacki and M. D. V., “MONARCH: A high performance embed-
ded processor architecture with two native computing modes,” in High
Performance Embedded Computing, 2002.

[4] M. Chu, K. Fan, and S. Mahlke, “Region-based hierarchical operation
partitioning for multicluster processors,” in Proc. Programming Language
Design and Implementation, 2003, pp. 64–74.

[5] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann,
“Effective compiler support for predicated execution using the hyper-
block,” in IEEE Micro, 1992.

[6] http://www.trimaran.org.
[7] J. Cong and S. K. Lim, “Edge separability based circuit clustering with

application to multi-level circuit partitioning,” IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, pp. 346–357, 2004.

[8] “GLPK (GNU linear programming) kit.” [Online]. Available:
http://www.gnu.org/software/glpk/glpk.html

76

