
RL-Sizer: VLSI Gate Sizing for Timing
Optimization using Deep Reinforcement Learning

Yi-Chen Lu12, Siddhartha Nath2, Vishal Khandelwal3, and Sung Kyu Lim1

1School of ECE, Georgia Institute of Technology, Atlanta, GA
2Synopsys Inc., Mountain View, CA; 3Synopsys Inc., Hillsboro, OR

yclu@gatech.edu; siddhartha.nath@synopsys.com; vishal.khandelwal@synopsys.com; limsk@ece.gatech.edu

Abstract—Gate sizing for timing optimization is performed
extensively throughout electronic design automation (EDA) flows.
However, increasing design sizes and time-to-market pressure
force EDA tools to maintain pseudo-linear complexity, thereby
limiting the global exploration done by the underlying sizing
algorithms. Furthermore, high-performance low-power designs
are pushing the envelope on power, performance and area
(PPA), creating a need for last mile PPA closure using more
powerful algorithms. Reinforcement learning (RL) is a disruptive
paradigm that achieves high-quality optimization results beyond
traditional algorithms. In this paper, we formulate gate sizing as
an RL process, and propose RL-Sizer, an autonomous gate sizing
agent, which performs timing optimization in an unsupervised
manner. In the experiments, we demonstrate that RL-Sizer can
improve the native sizing algorithms of an industry-leading
EDA tool, Synopsys IC-Compiler II (ICC2), on 6 commercial
designs in advanced process nodes (5−16nm). RL-Sizer delivers
significantly better total negative slack (TNS) and number of
violating endpoints (NVEs) on 4 designs with negligible power
overhead, while achieving parity on the others.

I. INTRODUCTION

Gate sizing for power, performance, and area (PPA) op-
timization is the backbone of modern physical design (PD)
flows, which is used extensively from synthesis to signoff.
It is an algorithmic process of assigning an appropriate size
(gate type) to each optimizable design instance from a set
of equivalent standard cell libraries under different process,
voltage, and temperature (PVT) corners. For an instance, the
number of available gate sizes is discrete and is limited by
the underlying technology. This makes gate sizing an NP-hard
problem [8], where the solution space scales exponentially
with respect to the size of netlist.

Existing gate sizing algorithms in electronic design au-
tomation (EDA) tools are based on various pseudo-linear
heuristics or analytical methods driven by (statistical) static
timing analysis (STA) that easily result in globally sub-optimal
sizing solutions. As the benefit of technology scaling saturates,
leading edge high-performance low-power design flows are
seeking to make the final PPA boost by leveraging more
powerful sizing algorithms, even at the cost of runtime (or,
increased turn-around time (TAT)), in order to achieve the
desired PPA scalability at advanced process nodes. Therefore,
time-to-market and best-in-class PPA requirements create a
push-pull situation in EDA flows under advanced technologies
(e.g., 16nm to 5nm).

Reinforcement learning (RL) is a promising machine learn-
ing (ML) paradigm that has been demonstrated to achieve
super-human performance in many high-dimensional control
problems [12]. In the realm of EDA, a recent work [7] shows
that how RL may be used for macro placement to improve
design TAT and PPA. In addition, RL is applied to solve
transistor sizing for analog designs [13], global routing [3],
and technology mapping [9]. Nonetheless, we have to invent
and engineer a different RL algorithmic framework to solve
our gate sizing problem due to the significantly larger solution
space compared with these previous works.

The goal of this work is to build the first high-dimensional
RL framework, RL-Sizer, which formulates the classic gate
sizing problem as an RL process and solves it by applying
advanced RL algorithms equipped with graph neural networks
(GNNs). To demonstrate the feasibility of the proposed RL
formulation, we specifically focus on the problem of gate
sizing for timing optimization at the post-route stage, where
the goal is to optimize the total negative slack (TNS) of a
design. Unlike prior works [1, 11] that perform aggressive
optimization based on meta-heuristics or non-generalizable
analytical methods that assume convexity of the objective
functions, our RL agent optimizes design performance in a
more global and flexible (i.e., customized loss function) man-
ner with the consideration of design and technology features
(multi-corner multi-mode) encoded by GNNs.

The outcome of our effort is a universal RL-based gate
sizing framework that performs timing optimization across
various advanced technologies for industrial-scale designs. To
our knowledge, this is the first work that formulates the classic
gate-sizing problem as an RL problem (control problem), and
presents advanced RL algorithms equipped with graph repre-
sentation learning techniques to solve it. The contributions of
this work are as follows:
• We present RL-Sizer, the first-ever RL-based gate sizing

algorithm for timing optimization. RL-Sizer achieves
competitive TNS optimization results to an industry-
leading commercial tool on six commercial designs using
advanced technology nodes (5nm, 12nm, 16nm), and
specifically, in four designs, RL-Sizer can significantly
outperform the commercial sizing engine on TNS and
number of violating endpoints (NVEs) with negligible
total power overhead.

• We develop a graph-based feature encoder using GNNs

978-1-6654-3274-0/21/$31.00 ©2021 IEEE

that captures the instance characteristics related to timing
optimization. These encoded features are taken as the
inputs of RL-Sizer and are proven to be highly useful.

• We demonstrate the effectiveness of our “local-graph”
method for fast timing approximation. For a target in-
stance, we elegantly take the TNS change of its “lo-
cal three-hop neighborhood graph structure” (termed as
local-graph) as the reward of the sizing move taken in-
stead of the entire netlist. This local-graph approximation
can be easily threaded across various instances, which
significantly accelerates the learning process.

II. REINFORCEMENT LEARNING FORMULATION

A. Gate Sizing as a Control Problem

The gate sizing problem can be intuitively formulated as a
Markov Decision Process (MDP), as there are many sequential
decisions made iteratively regarding sizes of gates on critical
(and, sometimes sub-critical) paths to achieve target timing
closure. Therefore, we can conceptually apply RL algorithms
to solve it (i.e., maximize the reward of this process). Given
a set of design instances to be sized for timing optimization,
we train an RL agent to sequentially determine their final gate
sizes. Here we present key terminologies and concepts of an
RL process, and illustrate how they are mapped to the gate
sizing problem in our work.
• State (s): A state s represents a “design instance”, which

is realized by concatenating the encoded features of
its local three-hop neighborhood (by GNNs), and the
technology features extracted from libraries.

• Action (a): An action a refers to the “new gate size”
assigned to the design instance in state s. In the imple-
mentation, it is realized as the “driving strength change”
∆d. Assume an instance whose current size has strength
d. After taking an action (a sizing move), it is assigned the
gate size in the technology whose strength is the closest
to d′ = d+ ∆d among all possible choices.

• Reward (r): A reward r is the outcome of performing an
action a on an instance in state s. In our case, it represents
the TNS change of the instance’s “local-graph”. For each
sizing iteration, the goal of RL-Sizer is to maximize the
total reward (sum of individual rewards) of all instances.

• Trajectory (τ): A trajectory τ refers to a sizing iteration
(an RL process), from time step t = 0 to t = T (final
time step). At each time step t, there is a corresponding
state st, action at, and reward rt pair denoted as (st, at,
rt). Note that a complete gate sizing run in commercial
tools consists of multiple trajectories.

Figure 1 shows an illustration of our RL gate sizing process,
where we consider each selected instance as a unique RL state
and determine their new gate sizes sequentially (the instance
selection algorithm is illustrated in Section III). Note that
STA update using a commercial tool is performed once at the
end of a sizing iteration, which provides the RL reward for
each action taken. We want to emphasize that instances in a
common sizing iteration (RL trajectory) are not independent of

EP

EP

a

b

c

d

e

f

g

h

EP

(a) instance selection

a b d

fh

(b) RL trajectory

state 1 state 2 state 3

state 4 state 5

STA

update

d

c

a

b

f

g

h

(c) local-graph encoding

state vector

Fig. 1: Illustration of our RL gate sizing process. (a) Input netlist
with 3 end points (EPs). First, we identify the worst critical path in
the design (red), and then for each endpoint, we identify the most
negative slack path (e.g. blue) overlapping with the design critical
path. Finally, instances on these paths (the design critical path and the
other paths overlapped with it) are selected for one sizing iteration.
(b) Sort the selected instances in topological order, and determine
their final gate sizes sequentially by considering each of them as an
RL state. STA is performed after all selected instances are assigned
new sizes. (c) Example of local-graph encoding using GNNs on gate
“d”. The encoded state vector is taken as the input of the RL agent
to determine the action (new gate type).

each other. Actions (gate sizes) that are taken in previous time
steps (prior instances) will contribute to the sizing decision of
the current time step. We leverage a policy gradient algorithm
named Deep Deterministic Policy Gradient (DDPG) [4] to
capture this dependency and to optimize the total reward.

B. Our Key Concept: Local-Graph Approximation

As mentioned earlier, we propose the concept of “local-
graph” for RL state encoding (Figure 1(b)) and RL reward
approximation. Given a target instance, the “local-graph” of
this instance refers to its local “three-hop neighborhood graph
structure” from the netlist. The rationale is two-fold. First, the
final gate size of a target instance not only depends on the
characteristics of itself, but also the behavior of its neighbors
(e.g. the capacitive load that this target instance is driving). We
leverage GNNs (to be elaborated in Section III-C) to encode
such neighboring information into a vector as an RL state
vector, which serves as the input of the RL agent for the
decision of the corresponding RL action (i.e., new gate size).

Second, the timing impact of a gate sizing move on a design
instance to the overall netlist diminishes as the hop count
increases. Therefore, instead of taking the total design TNS
change as the RL reward of a sizing move (ideal case, but
computationally expensive), we take the TNS change of its
local-graph. This way, the reward gives fast and good fidelity
approximation, while offering an opportunity for parallel com-

putation. That is, an improvement in local-graph TNS mostly
results in positive design (netlist) TNS change, and vice versa.

C. Graph Representation Learning

GNNs have revolutionized many research areas [2] by per-
forming effective graph representation learning that encodes
graph information into meaningful embeddings through a
message passing scheme. Since VLSI netlists are represented
as hypergraphs, we can apply GNNs to them. Recently, many
studies have demonstrated the great potency of applying GNNs
to solve EDA problems, such as transistor sizing [13], layout
decomposition [10], power estimation [5, 14], and circuit par-
titioning [6]. We leverage GNNs to distill netlist features that
are related to timing. Specifically, given a target instance for
sizing, we utilize GNNs to encode the features within its local-
graph (3-hop neighborhood), and take the encoded features as
the input of the RL framework to determine its final gate size.

III. RL-SIZER ALGORITHMS

In this work, we focus our problem on the post-route stage,
which is the PD stage that designers struggle the most for
timing optimization. However, our method generalizes to other
stages of the PD flow as well. The goal of our framework, RL-
Sizer, is to optimize the design performance in terms of TNS
by making good sizing moves on combinational instances.
Note that we do not size sequential instances.

A. Overview

Figure 2 shows a high-level overview of our framework.
First, we develop an instance selection algorithm to select the
combinational instances that must be sized to improve design
TNS. These selected instances form a sizing iteration (an RL
trajectory). Note that a complete gate sizing run consists of
multiple sizing iterations. For each selected instance, we use
GNNs to encode its “local-graph” (described in Section II),
and take the encoded features along with the technology fea-
tures that represent the driving strength, capacitance, and slew
constraints as the RL state st. We define the corresponding RL
reward rt subject to the RL action at taken at time step t as the
TNS change on its local-graph. Note that as aforementioned,
each selected instance belongs to a unique time step and is
sized sequentially from time step t = 0 to t = T (last
instance). This order is based on netlist topology.

At each time step t, the objective of RL-Sizer is to maximize
the long-term return Gt, which is denoted as

max
θ
Gt(πθ) = Eτ

[
T∑
k=0

γkrt+k

]
, (1)

where π denotes the policy function (network) parameterized
by θ, which takes the state st as input and outputs the
action at, γ denotes the reward discount factor. To maximize
this objective G, we perform gradient descent on the policy
parameters θ using the DDPG [4] loss function update. In
the following sub-sections, we present each component of our
framework in detail.

Algorithm 1 Instance selection for a sizing iteration (RL trajectory).
Input: G = (V,E): a post-route netlist.
Output: V ′ ∈ V : selected instances to be sized.

1: Run full-chip STA.
2: W ← current worst negative slack (WNS) path in the design
3: Initialize V ′ ← {non-overlapping instances in W}
4: {P} ← for each endpoint, identify its worst negative path
5: for p ∈ {P} do
6: if p is overlapping with W then
7: for v ∈ p do
8: if v’s local-graph does not overlap with {V ′}’s then
9: add instance v on path p to set V ′

10: V ′ ← topological sort(V ′) . linear time, achieved by DFS

TABLE I: Initial node features for GNN encoding.

features descriptions
slack worst slack of paths through instance

in slew worst input pin slew
out slew output pin slew
arc delay worst cell arc (input to output pin) delay

nom delay nominal delay (fan-out of 4)
cell cap cell capacitance

drv length driving (output) net length
drv load sum of driving capacitance (net + cell)
drv res sum of driving resistance

fanin cap average capacitance of fan-ins
sibling cap sum of capacitance of siblings

B. Instance Selection

Selecting feasible instances that can possibly improve de-
sign TNS is essential to the success of RL-Sizer. Algorithm 1
presents our instance selection process. Given a routed design
G = (V,E), where V denotes the design instances and E
denotes the connections, our algorithm identifies the target
instances V ′ ∈ V that will further be sized sequentially by
RL-Sizer in (netlist) topological order.

Note that as shown in the algorithm, selected instances
in V ′ do not share “overlapping” local-graphs, which means
instances in a sizing iteration do not overlap in their local 3-
hop neighborhood. This is to minimize the sizing impact be-
tween each other, since in our settings (as shown in Figure 2),
instances in a common iteration are sized simultaneously (i.e.,
an STA update is performed once per iteration). Ideally, one
can perform an STA update per sizing move of an instance
to completely address the issue of interference. However, this
approach is impractical due to the computation expense of
STA on VLSI designs. In our experiments, we find that with
the proposed technique of “non-overlapping local-graphs”,
RL-Sizer can effectively determine the feasible size for each
selected instance that optimizes TNS.

C. Encoding RL State using GNNs

1) Initial Node Features: Prior to the local-graph encoding
using GNNs, we compute the initial node-specific features for
each design instance as shown in Table I. These features are
carefully chosen based on domain expertise and are expected
to characterize an instance’s sizing impact to design timing.
However, these features are not sufficient for RL-Sizer to
determine the gate sizes that optimize design performance,

GNN encoded

features

technology

features

size by actions

(STA update)
RL state

policy

network

value

network

DDPG

update

RL action

(gate type)

RL reward

(delta TNS)

RL-Sizer
after all instances

are assinged

local-graph

aggregation

...

t=0

t=1

t=T

selected

instances

Fig. 2: Overview of our RL-Sizer framework. Given the selected instances from Algorithm 1, for each instance (e.g. red), we take its encoded
local-graph features along with the technology information as the RL state st, and leverage RL-Sizer to determine the RL action at assigned.
An STA update is performed when all selected instances are assigned new gate sizes. Finally, we take the “local-graph TNS change” as the
RL reward of each action taken. Rewards across time steps (instances) are leveraged to update RL-Sizer through the DDPG algorithm [4].

because the final gate size of a target instance not only depends
on these features, but also the information from its neighboring
nodes. Therefore, we use GNNs as a local-graph encoder
to obtain better representations in graph-level. Note that the
initial features are not normalized instance-wise, since for each
sizing iteration, we select a new set of instances to be sized.

2) Local-Graph Encoding: Based on the initial node fea-
tures defined in Table I, we leverage GraphSAGE [2], a variant
of GNNs, to encode local-graph features for each selected
instance. Given a local-graph sG of a target instance v, for
each node v′ ∈ sG, we first transform the initial node features
h0v′ into embeddings at level k = K as:

hk−1N(v′) = mean pool
(
{Wagg

k hk−1u , ∀u ∈ N(v′)}
)
,

hkv′ = sigmoid
(
Wproj

k · concat
[
hk−1v′ , hk−1N(v′)

])
,

(2)

where N(v′) denotes the neighbors of node v′, W agg and
W proj denote the aggregation and projection matrices that
are achieved by neural networks (neurons). At the end of the
transformation (level K), we take the mean pooling of hk=Kv′

across every node v′ ∈ sG to obtain the final local-graph
feature vector st of the target instance v at time step t as:

st = concat
[
mean pool

({
hk=Kv′

})
, tech(v)

]
, (3)

where tech(v) denotes the technology features (from library
files) of instance v in terms of driving strength, capacitance,
and slew constraints of the current gate size. This vector
st, which characterizes the local-graph and the underlying
instance, is taken as the input of the RL-Sizer agent to
determine the new gate size that helps improve the design
performance. Note that the dimension of the GNN-encoded
vector hv′ is subject to the number of neurons in the last
layer of the GNN module, which is 64 in our implementation.

D. Policy and Value Networks

We use DDPG [4], a variant of actor-critic algorithms, to
build RL-Sizer. All actor-critic algorithms have two compo-
nents that learn jointly: actor and critic. In deep RL (RL
powered by neural networks), actor refers to the policy net-
work which learns a parameterized policy π(s) that maps a
state vector s to an action a. Next, critic refers to the value

Algorithm 2 RL-Sizer training methodology.
Input: Initial Policy Network parameters θπ , Initial Q Network pa-

rameters θQ, Target networks update ratio ρ, Netlist G = (V,E)
Output: Policy Network parameters θπ; Q Network parameters θQ

1: Initialize target networks (policy-, Q-) parameters {φ} as φπ ←
θπ , φQ ← θQ, Replay Buffer B ← {}

2: while design TNS does not converge do
3: {V ′} ← instance selection(G) . Algorithm 1
4: {s} ← local-graph encoding(V ′) . Equation 2, 3
5: T ← |s| . # of states (instances)
6: for t = 0; t < T ; t++ do . Assign actions for all cells
7: at ← π(st|θπ)
8: Perform actions {a} and STA update to get rewards {r}
9: Store all (st, at, rt, st+1) pairs in the replay buffer B

10: Sample a batch of T buffers {(st, at, rt, st+1)} from B
11: for t = 0; t < T ; t++ do . Compute update targets y
12: yt ← rt + γ ∗QφQ (st+1, π (st+1|φπ))
13: Update Q Network ∇θQ

∑
t(QθQ(st, at)− yt)

2

14: Update Policy Network ∇θπ
∑
tQθQ(st, π(st|θπ))

15: φπ ← ρφπ + (1− ρ)θπ
16: φQ ← ρφQ + (1− ρ)θQ . Temporal difference update

network which learns a value function Q(s, a) that evaluates
the (discounted) reward of taking an action a on a state s.

Algorithm 2 presents the training process of RL-Sizer based
on the DDPG [4] loss function update. In DDPG, the learning
update of the Q-function Q is based on the Bellman equation,
which suggests the Q-value Q(s, a) at current state s to be
computed in a dynamic programming manner as

Q(st, at) = E
[
rt + γ ∗max

at+1

Q(st+1, at+1)

]
. (4)

In DDPG, the goal of the policy network π is to generate
the action at subject to the state st that maximizes the Q-value
Q(st, at). The idea is that the higher the Q-value Q(s, a) is,
the better the action a is. The objective of the policy network
π can thus be formulated as

max
θπ

E [Q(st, π(st|θπ))] , (5)

where π(st|θπ)) is the action output by the policy network π
based on the encoded state vector st.

As shown in the algorithm, both the value and policy
networks are trained by a technique named temporal difference

action

̟(s)

value

Q(s,a)

policy network

value network

g
n

n
 e

m
b

e
d

d
in

g
 1

shared layers
g

n
n

 e
m

b
e

d
d

in
g

 2

s
h

a
re

d
 F

C
 l
a

y
e

r

R
e

L
U

R
e

L
U

lin
e

a
r

R
e

L
U

R
e

L
U

lin
e

a
r

local-graph

Fig. 3: Our RL agent architecture that consists of value and policy
networks. Table II provides the dimension information.

TABLE II: Dimension of RL-Sizer layers.

component input hidden output
shared layers local-graph G=(V,E) (64, 64) (GNN) 64 (FC)

policy network 64 (shared) (64, 32) (ReLU) 1 (action)
value network 65 (shared + action) (64, 32) (ReLU) 1 (value)

update, where for each network, we maintain a “target net-
work” (with parameter φ) whose update is a trajectory slower
than that of the main network (with parameter θ). For example,
if the main network is updated in τi, then the the target network
is updated in τi+1. By using a replay buffer B that contains old
experiences from previous trajectories, the temporal difference
update is expected to stabilize the training process. Finally,
when the training completes, we obtain an actor, the policy
network π, that performs the gate sizing moves to improve
design performance. Figure 3 further shows the architecture
of our RL agent that utilizes the value and policy networks.

E. Implementation Details: Challenges of ML in EDA

Our framework, RL-Sizer, is implemented in the source
code of Synopsys IC-Compiler II (ICC2). Due to the fact that
EDA tools are generally implemented in C++, while machine
learning frameworks are mainly supported in Python, one of
our main challenges is to communicate between these two
language interfaces, since the communication introduces costly
runtime overhead. Ideally, at each time step t of a sizing
iteration, we can perform an action at on an instance and
calculate the reward rt immediately, so that instances in a
common iteration will not interfere with each other. However,
in our implementation, this ideal approach is not feasible
considering the sizes of VLSI netlists. Even with the proposed
technique of local-graph approximation, the runtime will still
explode due to the communication overhead between C++ and
Python. Therefore, to make the proposed framework practical,
we only perform a full-chip STA update (i.e., switching from
Python to C++) when all selected instances in a common
iteration are assigned actions by the policy network (Lines
6–7 in Algorithm 2). After calculating all the rewards {r} in
the commercial tool, we again switch from C++ to Python and
leverage gradient descent to update the network parameters.

IV. EXPERIMENTAL RESULTS

In the experiments, we validate the proposed framework
on 6 commercial designs (renamed due to confidentiality) in

TABLE III: Our commercial benchmarks and their attributes.

Design Tech. Node # Nets # Macros # Instances
block1 5nm 93,370 0 95,636
block2 5nm 145,893 0 151,258
block3 12nm 145,545 0 142,528
block4 12nm 430,141 35 462,755

block5 (SoC) 16nm 36,783 9 6,850
block6 16nm 72,748 0 71,604

advanced technology nodes as shown in Table III, and demon-
strate how RL-Sizer improves the native sizing algorithms in
Synopsys ICC2, an industry-leading commercial tool.

A. Optimization Results

Table IV demonstrates the optimization results on our
benchmarks as shown in Table III, where we observe that
RL-Sizer can outperform or match the optimization results
achieved by the reference commercial tool. Note that this is
a head-to-head comparison, where the objectives of RL-Sizer
and the commercial tool are exactly the same, which is opti-
mizing design TNS through combinational sizing at the post-
route stage. In RL-Sizer, we run Algorithm 2 for each design
from scratch (i.e., the policy and value networks are trained
from the beginning). We terminate the algorithm when design
TNS no longer improves across 10 consecutive iterations.
The results suggest that RL-Sizer is able to generalize across
various designs and technology nodes. It also generalizes for
both macro-heavy and macro-less designs.

Figure 4 further shows the design TNS after each sizing
iteration (RL trajectory) of RL-Sizer on “block2” (5nm).
Although the entire training process takes about 14 hours (250
iterations) to reduce TNS from -101.82ns to -0.81ns, it takes
less then 3 hours (13 iterations) to quickly recover the initial
TNS to -2.18ns. Note that the runtime in the table (and above)
for both commercial tool and RL-Sizer is measured on the
same machine without GPU support, and we do not limit the
runtime of the commercial tool in order to perform thorough
optimization (i.e., the tool stops the sizing optimization when
the timing can no longer be improved). As for RL-Sizer, the
stopping mechanism is aforementioned, and we expect the
runtime to be significantly improved when GPUs are utilized.

B. Discussion of Optimization Results

The fact that RL-Sizer is able to perform commercial-grade
timing optimization results on 6 different designs demonstrates
its generality. However, we observe that RL-Sizer does not
always outperform the commercial tool even though it adopts
a more global approach to perform the optimization. This infe-
riority in fact happens on the designs that both the commercial
tool and RL-Sizer are able to optimize the design TNS to “near
zero”. However, since RL-Sizer lacks rigid heuristics to “close
design timing” as the commercial tool, the optimization results
stagnate when no sizing action leads to positive reward. Ways
to locally improve optimization results so as to completely
close design timing are the areas for our future investigation.

Our further analysis reveal the following regarding the
success of our RL-Sizer compared with the commercial tool:

TABLE IV: TNS optimization results comparison between RL-Sizer and Synopsys ICC2. The unit for timing is ns, and the unit for power
is mW . WNS denotes worst negative slack; TNS denotes total negative slack, and #vio. EPs denotes the number of violating endpoints.
The runtime for the commercial tool and RL-Sizer is measured on the same machine without GPU support.

Design (tech)
Initial (post-route stage) Synopsys ICC2 RL-Sizer (ours)

WNS TNS #vio. total WNS TNS #vio. total run- WNS TNS #vio. total run-
EPs power (goal) EPs power time (goal) EPs power time

block1 (5nm) -0.08 -61.99 2191 68.4 -0.08 -46.68 1728 68.7 30m -0.07 -44.7 1631 68.8 6hr
block2 (5nm) -0.05 -101.82 1305 204.4 -0.05 -1.19 182 205.3 1hr -0.04 -0.81 116 205.7 14hr

block3 (12nm) -0.31 -357.72 7934 44.2 -0.02 -0.07 4 44.9 1hr -0.07 -0.37 39 45.1 15hr
block4 (12nm) -0.22 -523.75 18845 123.6 -0.21 -8.71 348 123.9 1hr -0.20 -8.11 201 124.1 22hr
block5 (16nm) -0.80 -104.74 430 718.2 -0.79 -90.13 383 743.0 10m -0.78 -80.54 379 718.4 5hr
block6 (16nm) -0.15 -46.84 1377 25.2 -0.02 -0.03 5 25.5 24m -0.04 -0.68 74 26.0 6hr

0

-20

-40

-60

-80

-100

0 50 100 150 200 250

of iterations (RL trajectories)

T
N

S
 (

n
s
)

0 2 4 6 8 10 12

-2.18
0

-20

-40

-60

-80

-100

Fig. 4: RL-Sizer sizing iterations on block2 (5nm). It takes 250
iterations (about 14 hours) to improve TNS from -101.82 to -0.81
(ns). However, the TNS quickly converges in the first 13 iterations
(less than 3 hours).

1) We accept “setback” moves: the goal of RL-Sizer is
to maximize the total reward (i.e., sum of individual
rewards) of a given iteration. Instead of striving to
completely fix the entire slack violation for each selected
instance, at some states, RL-Sizer learns to “setback” to
create more sizing room for future states in order to
achieve a global optima.

2) Our well-defined features: the initial node features in
Table I accurately characterize the sizing behaviour of
each instance. Despite these features are not sufficient to
determine the final gate size of an instance, with the aid
of the graph representation learning, they provide vital
information for policy and value networks to effectively
determine the sizes that optimize design performance.

Finally, we want to emphasize that although the main focus
of this work is timing optimization, our framework can be
extended to jointly optimize other PPA metrics such as power
and area by incorporating them in the reward calculation (e.g.,
r = ∆timing + α ∗∆power + β ∗∆area).

V. CONCLUSION AND FUTURE WORKS

Several prior works have made significant progress to im-
prove VLSI gate sizing. In this paper, we take a new approach
to solve the well-studied gate sizing problem using novel
RL algorithms. We propose RL-Sizer, a GNN-powered policy
gradient-based framework that performs automatic gate sizing
for timing optimization without any human intervention. We

believe the achieved optimization results shall demonstrate the
great potentials of leveraging RL algorithms to solve classic
EDA problems. In the future, we aim to validate the proposed
framework on more designs and in various PD stages so as to
enable transfer learning to accelerate the learning process. We
will also investigate how to improve our local search heuristics
so that RL-Sizer can completely close timing on able-to-close
designs as the commercial EDA tools.

REFERENCES

[1] C.-P. Chen, C. C. Chu, and D. Wong. Fast and exact simultaneous
gate and wire sizing by lagrangian relaxation. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
18(7):1014–1025, 1999.

[2] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning
on large graphs. In Advances in neural information processing systems,
pages 1024–1034, 2017.

[3] H. Liao, W. Zhang, X. Dong, B. Poczos, K. Shimada, and L. Burak Kara.
A deep reinforcement learning approach for global routing. Journal of
Mechanical Design, 142(6), 2020.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

[5] Y.-C. Lu, S. Nath, S. S. K. Pentapati, and S. K. Lim. A fast learning-
driven signoff power optimization framework. In 2020 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD).

[6] Y.-C. Lu, S. S. K. Pentapati, L. Zhu, K. Samadi, and S. K. Lim. Tp-gnn:
A graph neural network framework for tier partitioning in monolithic 3d
ics. In 2020 57th ACM/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2020.

[7] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, S. Bae, et al. Chip placement with
deep reinforcement learning. arXiv preprint arXiv:2004.10746, 2020.

[8] W. Ning. Strongly np-hard discrete gate-sizing problems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 13(8):1045–1051, 1994.

[9] G. Pasandi, S. Nazarian, and M. Pedram. Approximate logic synthesis:
A reinforcement learning-based technology mapping approach. In 20th
International Symposium on Quality Electronic Design (ISQED), pages
26–32. IEEE, 2019.

[10] H. Ren, G. F. Kokai, W. J. Turner, and T.-S. Ku. Paragraph: Layout
parasitics and device parameter prediction using graph neural networks.
In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages
1–6. IEEE, 2020.

[11] S. Roy, D. Liu, J. Um, and D. Z. Pan. Osfa: A new paradigm of gate-
sizing for power/performance optimizations under multiple operating
conditions. In Design Automation Conference, page 129. ACM, 2015.

[12] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[13] H. Wang, K. Wang, J. Yang, N. Sun, H. Lee, and S. Han. Gcn-rl circuit
designer: Transferable transistor sizing with graph neural networks
and reinforcement learning. In ACM/IEEE 57th Design Automation
Conference (DAC), pages 1–6. IEEE, 2020.

[14] Y. Zhang, H. Ren, and B. Khailany. Grannite: Graph neural network
inference for transferable power estimation. In 2020 57th ACM/IEEE
Design Automation Conference (DAC), pages 1–6. IEEE, 2020.

