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Abstract - Delay minimization continues to be an important 
objective in the design of high-performance computing system. 
In this paper, we present an effective methodology to guide the 
delay optimization process of the mincut-based global 
placement via adaptive sequential network characterization. 
The contribution of this work is the development of a fully 
automated approach to determine critical parameters related to 
performance-driven multi-level partitioning-based global 
placement with retiming. We validate our approach by 
incorporating this adaptive method into a state-of-the-art global 
placer GEO. Our A-GEO, the adaptive version of GEO, 
achieves 67% maximum and 22% average delay improvement 
over GEO. 
 

1. INTRODUCTION 
 
With tremendously increasing demand in high performance 
computing, circuit performance improvement during physical 
design becomes indispensable. During physical planning, 
gate location is identified and hence can be used to accurately 
calculate wire delay. Circuit optimization then can employ 
this knowledge and gain superior performance over same 
optimizations without such information. One optimization 
that can employ this advantage is retiming [9]. Retiming is a 
logic optimization technique, which shifts the position of 
flip-flops (FFs) for delay minimization or FFs reduction [9]. 
Recently, retiming has become more attractive in physical 
design where wire delay is more essential in the context of 
deeper submicron technology [15,6]. Exploiting geometric 
information enables us to further enhance retiming 
techniques with placement—since location information is 
available, wire delay calculation becomes more accurate. 
Retiming based placement can be classified into two 
approaches: iterative approach and simultaneous approach. 
The iterative approach [16,10,11] first performs placement or 
floorplanning, followed by retiming. The alternative 
approach [4,14,5] simultaneously performs placement or 
floorplanning with retiming by incorporating retiming 
information during placement. In [13,4,5], the authors 
suggest that the latter approach is better than the former with 
respect to retiming delay improvement. 

In [4], a state-of-the-art approach for mincut-based 
placement with retiming, so called GEO, was proposed. The 
concepts of Sequential Arrival Time (SAT) [13] and 
Sequential Required Time (SRT) were adopted here. Then 
the sequential slack value, which is used to identify critical 
gates/clusters after retiming, is computed as the difference 
between SRT and SAT. Cong et al. [5] extended [4] by 
generalizing the model to handle the gates/clusters with 
multiple outputs. There are two parameters in delay weight 
based algorithms such as [4,5] that play a critical role: ε 

determines the size of the sub-network so called ε-network 
that contains timing critical nodes, whereas α determines the 
amount of additional weights added to the nets in ε-network. 
Both [4] and [5] fix ε and α during the entire pass of their 
algorithm. In [15,8], the authors propose a way to identify 
critical edges using criticality distribution. However with 
their method, one has to iteratively search until they find a 
proper ε-network and net weight constant α. This is time 
consuming, and for some circuits, it is hard to achieve. 

In this paper, we show that while weighted cutsize 
highly correlates with retiming delay, there is no guarantee 
that it will result in the best retiming delay among all runs. 
Then we propose a methodology to automatically update ε 
and α for more efficient delay optimization. In addition, we 
study the impact of clustering on delay optimization. We note 
that we lose accuracy of circuit retiming information since it 
is calculated based on each gate location. To alleviate this 
problem, we propose a way to adaptively decide when to 
perform clustering based on circuit information. The 
organization of this paper is as follows. Section 2 describes 
problem formulation. Our observations are discussed in 
section 3. Section 4 is devoted to our methodology. Section 5 
presents our experimental results and final section presents 
our conclusion and future work. 

 
2. PROBLEM FORMULATION 

 
Given a sequential gate-level netlist NL(C, N), where C is the 
set of cells representing gates and flip-flops, and N is the set 
of nets connecting the cells, the purpose of the Physical 
Planning with Retiming (PPR) problem is to assign cells in 
NL to a given m x n (=K) slots by preserving area constraints. 
Given a PPR solution C→ B, let ω(B) and φ(B) respectively 
denote the wirelength (= half-perimeter of the net bounding 
box) and retiming delay (to be defined later). The formal 
definitions of PPR problem is as follows: 

 
PPR Problem The Physical Planning with Retiming problem 
has a solution P: C→ B, when each cell in C is assigned to a 
unique block. B = {B1(x1,y1), B2(x2,y2),..., BK(xK,yK)}, where B 
denotes the set of blocks, and (xi,yi) represents the geometric 
locations of Bi, and area constraints A(L,U), for 1 ≤ i ≤ K. 
PPR solution has to satisfy the following condition: 1) Bi ⊂ C 
and L ≤ |Bi| ≤ U. 2) B1 ∪ B2 ∪ … ∪ Bk =C 3) Bi ∩ Bj =∅. The 
primary objective of PPR is to minimize φ(B) and secondary 
objective is to minimize ω(B). 

 
For the delay objective, we model NL using a directed graph 
G = (V, E) where the vertex set V represents cells, and the 



directed edge set E represents the signal direction in NL. In 
the geometric delay model, each vertex v has delay d(v) and 
each edge e=(u,v) has delay d(e). Let s(e) denote the cut-state 
of e: s(e)=1 if e is cut, and s(e)=0 otherwise. In this paper, we 
assume )()()( esemed ⋅= , where m(e) = |xu-xv|+|yu-yv|. The 
delay of a path p, denoted d(p), is the sum of the delay of 
gates and edges along p. Then, the normal delay δ(B) of 
global placement solution B is computed as 
maxp∈G{d(p(u,v))|u∈PI or FF & v∈PO or FF}.  

By employing the concept of a retiming graph [9], we 
model NL using a directed graph R = (V, ER), where the edge 
weight w(e) of e=(u,v) denotes the number of flip-flops 
between gate u and v. The path weight can be calculated by 
w(p)=∑e∈p w(e). Let wr(e) denote edge weight after retiming 
r, i.e. number of flip-flops on the edge after retiming. Then, 
wr(p)=∑e∈p wr(e). A circuit is retimed to a delay φ by a 
retiming r if the following conditions are satisfies; (i) wr(e) ≥ 
0 for each e, (ii) wr(p) ≥ 1 for each path p such that d(p) > φ. 
We define the edge length of e=(u,v) as l(e)=-φ⋅w(e)+d(v)+d(e), 
and the path length of p as l(p)= ∑e∈p l(e). The sequential 
arrival time of vertex v, denoted l(v), is the maximum path 
length from PIs or FFs to v. If the sequential arrival time of 
all POs or FFs are less than or equal to φ, the target delay φ is 
called feasible. Let q(e)=φ⋅w(e)-d(u)-d(e), is the required edge 
length of e. The required path length q(p)= ∑e∈p q(e). The 
sequential required time of vertex v, denote q(v) is the 
minimum required path length from v to POs or FFs, when 
q(PO) or q(FF) = φ. Then slack of v is given by q(v)-l(v). Let 
Dg=max{d(v)|v∈V}. Then, the retiming delay φ(B) of a 
placement solution B is the minimum feasible φ + Dg. 
 

 
 

3. OBSERVATIONS 
 
In this section we provide our observation on retiming based 
on timing analysis (RTA) [9]. In addition, we utilize such 
information to dynamically guide the mincut-based global 

placement for performance improvement. We perform this 
study on benchmark circuits from ISCAS89 [18] and ITC99 
[17] suites. Throughout the paper, our studies are based on 
8×8 global placement with 5 runs, α = 20, T filter, and ε = 
top 5% nodes with small slacks unless explicitly specified 
(all to be explained later). 
 
3.1. Correlation between Weighted Cutsize and Retiming 
Most simultaneous placement or floorplanning with retiming 
[4,5] algorithms employ weighted cutsize during partitioning, 
where a retiming based timing analysis is performed for net 
weight computation. For example, in GEO [4], Net Weight = 
Cutsize Weight + α⋅Delay Weight is used. The α parameter 
determines how important delay weight is compared to 
cutsize. We studied the correlation between weighted cutsize 
and retiming delay and discovered that the correlation factor 
is about 0.9 on the average. This implies that weighted 
cutsize is highly related to retiming delay. In Figure 3.1 we 
plotted the retiming delay versus weighted cutsize for circuit 
s1238. When the first bipartition has a weighted cutsize of 
about 800, the variation on retiming delay is from 36 to 47. 
The cutsize of the next partition is between 1200 and 2,200, 
and the retiming delay varies from 62 to 75. This implies that 
using weighted cutsize alone might not be enough to achieve 
a high reduction in retiming delay even though the weighted 
cutsize is highly correlated with retiming delay. 
 

 
3.2. Delay Weight (α Parameter) 
As shown in Figure 3.1, the highest impact partition based on 
mincut-based approach is the first partition. As we perform 
more partitions, the retiming delay improvement becomes 
less visible. Hence we assign higher α value and then reduce 
it as we perform more partitioning. First we find the best α as 
shown in Figure 3.2. The results are normalized to the case 
where α = 1. Among several fixed α values we tried, we 
found that α = 20 provides the best retiming delay on 
average. However, our new scheme, where we gradually 
decrease α value from 20 to 0 as we perform more partitions, 
outperforms other cases where we use fixed α value as 
evident from Figure 3.2. 
 

Figure 3.2 Impact on different α value 
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Figure 3.1 Correlations between retiming 
delay and weighted cutsize on circuit s1238.
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3.3. Number of Runs 
During each run in an iterative improvement based 
partitioning, we start from a random solution and perform 
refinement steps. After we finish all the runs, we pick the 
best run for the current partitioning. We observed that there 
exists more room for retiming delay improvement during 
early partitioning. Therefore, in our adaptive scheme we 
change the number of runs dynamically, where we perform 
more runs during the early partitioning and gradually 
decrease it as we perform more partitioning. For example, 
consider 8×8 global placement. Instead of using fixed 5 runs 
throughout the program, we use 20 runs in the first 3 levels 
(first 7 partitioning) and 3 runs for the rest. Hence we have 
7×20+3×56, which is smaller than 63×5. The obvious 
advantage is on runtime saving. However, we also noted 
from Figure 3.3 that our adaptive scheme generated a slightly 
but consistently better retiming delay results. This is due to 
the fact that we now afford more number of runs for the early 
cuts in our adaptive scheme compared to the conventional 
scheme where the number of runs is fixed during the entire 
top-down partitioning process. 
 

 
 
3.4. Nets Filtering and Cells Selection (ε Parameter) 
During circuit partitioning, a hypergraph model is employed 
to represent the netlist. In [4], the net weight is assigned 
based on criticality among cells/clusters. The equation used 
in [4] to assign net weight is as follows:   

}|)(max{
}|)(min{1)(

NLwwslack
nvvslackndwgt

∈
∈

−=  

However we note from the above equation that non-critical 
cells might be included in the weight computation as 
illustrated in Figure 3.4. Suppose cells a through e are on the 

critical path. By selecting nets that contain critical cells, we 
include other cells such as f,g,h,i,j, and k that are not timing 
critical. To remedy this problem, [5] employs PATH [8] 
weight function. However it is expensive since PATH 
requires the computation of exponential function. Here we 
propose two net filtering methods. The first one is T filter. In 
T filter, a net gets new delay weight only when there are at 
least two critical cells/clusters in it. This scheme now solves 
the problem illustrated in Figure 3.4. The second filter is A 
filter, where a net gets new delay weight only when all 
cells/clusters in the net are critical.  

Figure 3.5 shows the impact of different filtering 
methods, where O represents the original GEO, T represents 
T filter method, and A represents A filter method. The results 
are normalized relative to GEO with no cut threshold (i.e. ε = 
100%), whereas the rest use cut threshold ε = 5% of 
cells/clusters (i.e. top 5% minimum slack value as critical 
cells/clusters). Results show that on average, the T filter 
method is better than GEO and A filter by about 11% and 9% 
respectively. However, if we look at big circuits such as 
s9234, s13207, and s15850, the A filter yields better result. 
This is because it is harder to group large critical 
cells/clusters into the same partition when the number of 
cells/clusters is large. The A filter then can be used to 
consider only “highly” critical nets and hence reduce the 
number of cells/clusters. In our adaptive scheme, we use the 
A filter when the number of cells in current partitioned 
circuits is higher than 5,000 cells (based on results from 
Figure 3.5). 
 

 
 
Next we study a way to dynamically update ε based on 

circuit characteristic. The ε parameter is used to decide how 
many cells are critical, for example first top 5% cells having 
minimum slack value. In [4,1,3,5], it is assigned as a fixed 
value. In our adaptive scheme, however, we first classify the 
cumulative slack values into three groups: slow start, medium 
start, and fast start based on the number of cells/clusters 
falling into top minimum slack value as shown in Figure 3.6. 
Here we plot slack distribution using initial clock cycle so 
that minimum slack will not have zero value. The boundary 
lines we use here are 15% for medium and 35% for fast start. 
From our observation, most circuits’ initial partitions fall into 

Figure 3.3 impact of adaptive number of run
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Figure 3.4 Example of net filtering 
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the slow start category. We found that for slow start 
distribution, choosing the best ε value is difficult; especially 
where randomness is involved.  

 

 
 
The result in Figure 3.7 shows that the higher the number 

of runs the lower the variance on different ε values. In Figure 
3.7, 5r and 20r represents 5 and 20 runs respectively, and the 
percentage represents the ε value. The graph is normalized 
relative to GEO with ε=100%. We found that the variance 
reduces from 0.0021 to 0.0008 when the number of runs 
increases from 5 to 20 runs. We also found that when the 
slack distribution of current partition falls into medium start 
category, selecting the first critical slack value is sufficient 
since it already contains a substantial number of cells/clusters 
for consideration. For the fast start distributions, assigning α 
to be zero (i.e. consider only minimizing wire length) is 
adequate, since there are too many critical cells/clusters, and 
it is hard to group these cells/clusters into the same partition 
without violating area constraints. Figure 3.8 shows the 
impact on the medium and the fast start case on bipartition 
with 5 runs on 2×1 slots normalized to a global placement 
with α = 0. The slack distribution of s641 is shown in Figure 
3.6 (b), and that of s35932 is shown in Figure 3.6 (c). For the 
medium start, once ε is higher than starting threshold, the 
retiming delay drops as can be seen when ε = 17%. On the 
other hand, for the fast start case, no matter what value of ε 
is, retiming delay is higher than partitioning targeting cutsize.  

 

 

 
 
3.5. Impact of Clustering 
Circuit clustering is important for cutsize reduction, 
especially when considering a large number of cells. This 
also holds for weighted cutsize. As shown earlier in section 
3.1, weighted cutsize has positive correlation with retiming 
delay. Hence for large circuit without clustering, the delay 
results are usually worse compared to the clustering case. 
However, we may loose accuracy of retiming based timing 
analysis (RTA) [4] if we perform clustering. This is because 
of the fact that the criticality of clusters needs to be computed 
based on the criticality of individual gates in the cluster. In 
fact, it is difficult to assign a single number to represent the 
timing criticality of all nodes in a cluster. In addition, 
clustering requires more runtime and more memory space. 
Therefore, there is a tradeoff in performing clustering in 
terms of solution quality versus runtime. Figure 3.9 shows 
this observation, i.e. when number of cells is large, clustering 
starts to outperform non-clustering approach. Here we 
propose a way to adaptively decide when to perform the 
clustering based on number of cells. We use 7,000 cells 
(based on results from the graph) as threshold to decide 
whether to perform clustering or not in this current partition. 
If the number of cells is higher than threshold, we employ 
clustering to reduce weighted cutsize. 
 

 
 

4. METHODOLOGY 
 
We modify GEO [4] algorithm and call it A-GEO, the  
adaptive GEO. An overview of A-GEO algorithm is shown 
in Figure 4.1. Any part that is updated from GEO is Figure 3.7 Impact on different ε value 
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Figure 3.9 Impact on clustering 
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underlined. Note that our adaptive scheme can not only be 
used for GEO but also any timing-driven mincut-based 
global placement. A-GEO produces a global placement 
solution for the PPR problem. Based on mincut-based global 
placement, we recursively bipartition the netlist NL until m×n 
tiles are generated. After all bipartitionings are finished for 
the current level, then we perform multiway refinement [19] 
on the entire netlist. Initially, the partitioning tree T has only 
root node R. Then all cells in NL are inserted into R. The 
FIFO queue Q is used to support the recursive breadth-first 
cut sequence.  
 

 

A-GEO-2way first generates a sub-netlist from the given 
partition tree node and performs multi-level clustering on it. 
ESC clustering algorithm [3] is used for this purpose. Then 
we obtain a random initial partitioning B among the clusters 
at the top level of the hierarchy. The subsequent top-down 
multi-level refinement is used to improve B in terms of delay. 
For timing driven global placement, RTA [9] is performed to 
identify timing critical cells/clusters. Then we compute the 
delay weights for the nets in the sub-netlist for delay 
optimization. The subsequent iterative improvement through 
a cluster move tries to minimize the weighted cutsize. Finally 
the current solution is projected to the next level coarser 
netlist for multi-level optimization. At the end of A-GEO-
2way, two new children nodes are inserted into T based on B.  

 

 
We summarize the modifications made on GEO as 

follows. First, we know that selecting from best weighted 
cutsize does not guarantee the best retiming delay among all 
runs. Instead of returning B as the best weighted cutsize 
among all runs, we choose B based on real retiming results as 
shown in line 26. Second, we consider adaptive α in line 20, 
where we begin with α=20 and gradually decrease it. Third, 
we adapt the number of run in line 16 by starting with a high 
number of runs during earlier partitions and decreasing it 
gradually as described in Section 3.3. Here we use 20 runs 
for the first 3 levels and 3 runs for the rest. Fourth, we 
employ adaptive filtering based on number of cells in the 
current partition as in lines 35,36,40 and 42. Fifth, we 
consider the ε characteristic while selecting the ε value. If 
circuit characteristic is in slow start mode, we use ε = 5%. On 
the other hand, If the circuit characteristic is in medium start 
mode, we use the first value in the medium range as ε. If it 
falls in the fast start mode, we set α = 0 and consider only 

A-GEO(NL,K,run) 
1. insert all cells in NL to root node R in T (= part tree) 
2. insert R into Q (= FIFO queue) 
3. while (leaf nodes in T < K) 
4.     N = remove front element in Q 
5.     GEO-2way(N,run) (= bipartitioning on N) 
6.     split cells in N into N1 and N2 
7.    insert N1 and N2 into Q and T 
8.    refine  
9. return T 
------------------------------------------------- 
 A-GEO-2way(N,run) 
10. NL’ = sub-netlist containing cells in N 
11  if  #cells > Threshold T1 
12.     ESC(NL’) (= multi-level clustering on NL’)       
13. h = height of the cluster hierarchy 
14. B = random partitioning among clusters at level h 
15. for (i = h downto 0) 
16.     compute adaptive #run 
17.     NL’(i) = coarsened NL’ at level I 
18.     for (j=1 to run) 
19.      while (gain) 
20. if not (bottommost level & node id > K/2) 
21.          DELAY-WEIGHT(NL’(i)) 
22.          total net weight = 1 + α delay weight 
23.              while (gain) 
24.                move cells in NL’(i) to min. weighted cutsize
25.               retrieve max gain moves and update B 
26.     project best retiming B to level i-1 
27. return B 
------------------------------------------------- 
 DELAY-WEIGHT(NL’) 
28. set delay of edges in R (= retiming G) 
29. perform RTA(R) (= timing analysis) 
30. compute sequential slack for nodes in R 
31. for each cluster C in NL’ 
32.   C(R) = all cells in R grouped into C 
33.   slack(C) = min among cells in C(R)   
34.   X = top x% small slack if |X| ≤ 25% 
35.   if #cells < threshold T2 use T filter 
36.   else A filter 
37. for each net N in NL’ 
38.   if original GEO filter   
39.      compute delay-weight(N) using Eqn1 
40.   elif (T filter and at least two cells in N are in X) 
41.       compute delay-weight(N) using Eqn1  
42.   elif (A filter and all clusters in N are in X) 
43.      compute delay-weight(N) using Eqn1 
 

Figure 4.1. Overview of the A-GEO algorithm

Table 5.1 Comparison among GEO, GEO+200r and A-GEO 
 

GEO GEO + 200r A-GEO ckt 
Dr wire Dr wire Dr wire 

s641 143 409 137 383 97 442 
s820 47 599 42 631 28 582 
s1196 74 1,032 74 1,047 49 1,025 
s1238 77 1,128 70 1,019 50 1,095 
s1494 55 997 51 1,024 41 1,055 
s5378 57 1,453 51 1,371 45 1,907 
s9234 50 1,459 48 1,408 48 2,132 

s13207 86 1,689 72 1,491 69 2,091 
s15850 90 1,824 88 1,708 83 2,025 
s35932 45 2,113 47 1,903 41 2,536 
s38417 41 2,394 39 2,054 41 2,610 
s38584 81 3,184 75 2,371 59 4,450 
b14o 67 3,658 64 3,704 64 4,114 
b15o 79 5,786 72 5,306 79 5,773 
b20o 74 6,087 73 5,990 64 7,158 
b21o 79 6,149 67 5,775 70 6,941 
b22o 80 7,620 63 7,229 63 8,774 
Avg. 1.00 1.00 0.93 0.91 0.82 1.14 
Time 1,517 51,233 14,232 



cutsize instead as shown in line 34. Finally, we decide to 
perform clustering based on the number of cells in line 11. 

Since we project the best retiming delay to the next level, 
it requires calculating retiming delay after each run. 
However, each RTA requires O(nlogn). To be more precise, 
our algorithm requires run×K×nlogn, where run represents 
number of runs, K represents the number of partitions, and n 
represents the number of cells. 

 
5. EXPERIMENTAL RESULTS 

 
Our algorithms are implemented in C++/STL, compiled with 
gcc v2.96 with –O3, and run on Pentium III 746 MHz 
machine. The benchmark set consists of twelve circuits from 
ISCAS89 [18] and five circuits from ITC99 [17] suites. We 
report our result in Table 5.1 on 8×8 tiles. GEO represents a 
state-of-the-art timing driven mincut-based global placement 
proposed in [4] with five runs. A-GEO represents the 
modified GEO algorithm with our adaptive methods with 
about 4.88 runs (using adaptive number of runs). We also 
report GEO+200r with is GEO with 200 runs to be fair since 
our A-GEO has a higher running time than original GEO. 
The average ratio and running time are also reported and 
measured in seconds. Results from Table 5.1 shows that the 
A-GEO is better than the GEO by about 21.9%, and better 
than the GEO+200r by 13.1%. Note that the GEO+200r 
requires more running time that the A-GEO by about four 
times. Hence by increasing number of run alone is not as 
good as using our adaptive method.  
 

6. CONCLUSION AND FUTURE WORK 
 
We propose an adaptive methodology to improve timing 
driven placement using adaptive parameters. Our method can 
improve a state-of-the-art timing driven placement GEO [4] 
by as much as 67% and 22% on average for performance 
improvement. We are working to employ c-timing [12] 
instead of retiming to reduce the running time. 
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