
Performance-driven Global Placement via Adaptive Network Characterization

Mongkol Ekpanyapong and Sung Kyu Lim
School of Electrical and Computer Engineering,

Georgia Institute of Technology
{pop,limsk}@ece.gatech.edu

Abstract - Delay minimization continues to be an important
objective in the design of high-performance computing system.
In this paper, we present an effective methodology to guide the
delay optimization process of the mincut-based global
placement via adaptive sequential network characterization.
The contribution of this work is the development of a fully
automated approach to determine critical parameters related to
performance-driven multi-level partitioning-based global
placement with retiming. We validate our approach by
incorporating this adaptive method into a state-of-the-art global
placer GEO. Our A-GEO, the adaptive version of GEO,
achieves 67% maximum and 22% average delay improvement
over GEO.

1. INTRODUCTION

With tremendously increasing demand in high performance
computing, circuit performance improvement during physical
design becomes indispensable. During physical planning,
gate location is identified and hence can be used to accurately
calculate wire delay. Circuit optimization then can employ
this knowledge and gain superior performance over same
optimizations without such information. One optimization
that can employ this advantage is retiming [9]. Retiming is a
logic optimization technique, which shifts the position of
flip-flops (FFs) for delay minimization or FFs reduction [9].
Recently, retiming has become more attractive in physical
design where wire delay is more essential in the context of
deeper submicron technology [15,6]. Exploiting geometric
information enables us to further enhance retiming
techniques with placement—since location information is
available, wire delay calculation becomes more accurate.
Retiming based placement can be classified into two
approaches: iterative approach and simultaneous approach.
The iterative approach [16,10,11] first performs placement or
floorplanning, followed by retiming. The alternative
approach [4,14,5] simultaneously performs placement or
floorplanning with retiming by incorporating retiming
information during placement. In [13,4,5], the authors
suggest that the latter approach is better than the former with
respect to retiming delay improvement.

In [4], a state-of-the-art approach for mincut-based
placement with retiming, so called GEO, was proposed. The
concepts of Sequential Arrival Time (SAT) [13] and
Sequential Required Time (SRT) were adopted here. Then
the sequential slack value, which is used to identify critical
gates/clusters after retiming, is computed as the difference
between SRT and SAT. Cong et al. [5] extended [4] by
generalizing the model to handle the gates/clusters with
multiple outputs. There are two parameters in delay weight
based algorithms such as [4,5] that play a critical role: ε

determines the size of the sub-network so called ε-network
that contains timing critical nodes, whereas α determines the
amount of additional weights added to the nets in ε-network.
Both [4] and [5] fix ε and α during the entire pass of their
algorithm. In [15,8], the authors propose a way to identify
critical edges using criticality distribution. However with
their method, one has to iteratively search until they find a
proper ε-network and net weight constant α. This is time
consuming, and for some circuits, it is hard to achieve.

In this paper, we show that while weighted cutsize
highly correlates with retiming delay, there is no guarantee
that it will result in the best retiming delay among all runs.
Then we propose a methodology to automatically update ε
and α for more efficient delay optimization. In addition, we
study the impact of clustering on delay optimization. We note
that we lose accuracy of circuit retiming information since it
is calculated based on each gate location. To alleviate this
problem, we propose a way to adaptively decide when to
perform clustering based on circuit information. The
organization of this paper is as follows. Section 2 describes
problem formulation. Our observations are discussed in
section 3. Section 4 is devoted to our methodology. Section 5
presents our experimental results and final section presents
our conclusion and future work.

2. PROBLEM FORMULATION

Given a sequential gate-level netlist NL(C, N), where C is the
set of cells representing gates and flip-flops, and N is the set
of nets connecting the cells, the purpose of the Physical
Planning with Retiming (PPR) problem is to assign cells in
NL to a given m x n (=K) slots by preserving area constraints.
Given a PPR solution C→ B, let ω(B) and φ(B) respectively
denote the wirelength (= half-perimeter of the net bounding
box) and retiming delay (to be defined later). The formal
definitions of PPR problem is as follows:

PPR Problem The Physical Planning with Retiming problem
has a solution P: C→ B, when each cell in C is assigned to a
unique block. B = {B1(x1,y1), B2(x2,y2),..., BK(xK,yK)}, where B
denotes the set of blocks, and (xi,yi) represents the geometric
locations of Bi, and area constraints A(L,U), for 1 ≤ i ≤ K.
PPR solution has to satisfy the following condition: 1) Bi ⊂ C
and L ≤ |Bi| ≤ U. 2) B1 ∪ B2 ∪ … ∪ Bk =C 3) Bi ∩ Bj =∅. The
primary objective of PPR is to minimize φ(B) and secondary
objective is to minimize ω(B).

For the delay objective, we model NL using a directed graph
G = (V, E) where the vertex set V represents cells, and the

directed edge set E represents the signal direction in NL. In
the geometric delay model, each vertex v has delay d(v) and
each edge e=(u,v) has delay d(e). Let s(e) denote the cut-state
of e: s(e)=1 if e is cut, and s(e)=0 otherwise. In this paper, we
assume)()()(esemed ⋅= , where m(e) = |xu-xv|+|yu-yv|. The
delay of a path p, denoted d(p), is the sum of the delay of
gates and edges along p. Then, the normal delay δ(B) of
global placement solution B is computed as
maxp∈G{d(p(u,v))|u∈PI or FF & v∈PO or FF}.

By employing the concept of a retiming graph [9], we
model NL using a directed graph R = (V, ER), where the edge
weight w(e) of e=(u,v) denotes the number of flip-flops
between gate u and v. The path weight can be calculated by
w(p)=∑e∈p w(e). Let wr(e) denote edge weight after retiming
r, i.e. number of flip-flops on the edge after retiming. Then,
wr(p)=∑e∈p wr(e). A circuit is retimed to a delay φ by a
retiming r if the following conditions are satisfies; (i) wr(e) ≥
0 for each e, (ii) wr(p) ≥ 1 for each path p such that d(p) > φ.
We define the edge length of e=(u,v) as l(e)=-φ⋅w(e)+d(v)+d(e),
and the path length of p as l(p)= ∑e∈p l(e). The sequential
arrival time of vertex v, denoted l(v), is the maximum path
length from PIs or FFs to v. If the sequential arrival time of
all POs or FFs are less than or equal to φ, the target delay φ is
called feasible. Let q(e)=φ⋅w(e)-d(u)-d(e), is the required edge
length of e. The required path length q(p)= ∑e∈p q(e). The
sequential required time of vertex v, denote q(v) is the
minimum required path length from v to POs or FFs, when
q(PO) or q(FF) = φ. Then slack of v is given by q(v)-l(v). Let
Dg=max{d(v)|v∈V}. Then, the retiming delay φ(B) of a
placement solution B is the minimum feasible φ + Dg.

3. OBSERVATIONS

In this section we provide our observation on retiming based
on timing analysis (RTA) [9]. In addition, we utilize such
information to dynamically guide the mincut-based global

placement for performance improvement. We perform this
study on benchmark circuits from ISCAS89 [18] and ITC99
[17] suites. Throughout the paper, our studies are based on
8×8 global placement with 5 runs, α = 20, T filter, and ε =
top 5% nodes with small slacks unless explicitly specified
(all to be explained later).

3.1. Correlation between Weighted Cutsize and Retiming
Most simultaneous placement or floorplanning with retiming
[4,5] algorithms employ weighted cutsize during partitioning,
where a retiming based timing analysis is performed for net
weight computation. For example, in GEO [4], Net Weight =
Cutsize Weight + α⋅Delay Weight is used. The α parameter
determines how important delay weight is compared to
cutsize. We studied the correlation between weighted cutsize
and retiming delay and discovered that the correlation factor
is about 0.9 on the average. This implies that weighted
cutsize is highly related to retiming delay. In Figure 3.1 we
plotted the retiming delay versus weighted cutsize for circuit
s1238. When the first bipartition has a weighted cutsize of
about 800, the variation on retiming delay is from 36 to 47.
The cutsize of the next partition is between 1200 and 2,200,
and the retiming delay varies from 62 to 75. This implies that
using weighted cutsize alone might not be enough to achieve
a high reduction in retiming delay even though the weighted
cutsize is highly correlated with retiming delay.

3.2. Delay Weight (α Parameter)
As shown in Figure 3.1, the highest impact partition based on
mincut-based approach is the first partition. As we perform
more partitions, the retiming delay improvement becomes
less visible. Hence we assign higher α value and then reduce
it as we perform more partitioning. First we find the best α as
shown in Figure 3.2. The results are normalized to the case
where α = 1. Among several fixed α values we tried, we
found that α = 20 provides the best retiming delay on
average. However, our new scheme, where we gradually
decrease α value from 20 to 0 as we perform more partitions,
outperforms other cases where we use fixed α value as
evident from Figure 3.2.

Figure 3.2 Impact on different α value

0.60

0.70

0.80

0.90

1.00

1.10

1.20

s64
1

s82
0

s11
96

s12
38

s14
94

s53
78

s92
34

s13
20

7

s15
85

0

av
era

ge

5 10 20 30 Adapt
rdly

Figure 3.1 Correlations between retiming
delay and weighted cutsize on circuit s1238.

First cut

Second cut

3.3. Number of Runs
During each run in an iterative improvement based
partitioning, we start from a random solution and perform
refinement steps. After we finish all the runs, we pick the
best run for the current partitioning. We observed that there
exists more room for retiming delay improvement during
early partitioning. Therefore, in our adaptive scheme we
change the number of runs dynamically, where we perform
more runs during the early partitioning and gradually
decrease it as we perform more partitioning. For example,
consider 8×8 global placement. Instead of using fixed 5 runs
throughout the program, we use 20 runs in the first 3 levels
(first 7 partitioning) and 3 runs for the rest. Hence we have
7×20+3×56, which is smaller than 63×5. The obvious
advantage is on runtime saving. However, we also noted
from Figure 3.3 that our adaptive scheme generated a slightly
but consistently better retiming delay results. This is due to
the fact that we now afford more number of runs for the early
cuts in our adaptive scheme compared to the conventional
scheme where the number of runs is fixed during the entire
top-down partitioning process.

3.4. Nets Filtering and Cells Selection (ε Parameter)
During circuit partitioning, a hypergraph model is employed
to represent the netlist. In [4], the net weight is assigned
based on criticality among cells/clusters. The equation used
in [4] to assign net weight is as follows:

}|)(max{
}|)(min{1)(

NLwwslack
nvvslackndwgt

∈
∈

−=

However we note from the above equation that non-critical
cells might be included in the weight computation as
illustrated in Figure 3.4. Suppose cells a through e are on the

critical path. By selecting nets that contain critical cells, we
include other cells such as f,g,h,i,j, and k that are not timing
critical. To remedy this problem, [5] employs PATH [8]
weight function. However it is expensive since PATH
requires the computation of exponential function. Here we
propose two net filtering methods. The first one is T filter. In
T filter, a net gets new delay weight only when there are at
least two critical cells/clusters in it. This scheme now solves
the problem illustrated in Figure 3.4. The second filter is A
filter, where a net gets new delay weight only when all
cells/clusters in the net are critical.

Figure 3.5 shows the impact of different filtering
methods, where O represents the original GEO, T represents
T filter method, and A represents A filter method. The results
are normalized relative to GEO with no cut threshold (i.e. ε =
100%), whereas the rest use cut threshold ε = 5% of
cells/clusters (i.e. top 5% minimum slack value as critical
cells/clusters). Results show that on average, the T filter
method is better than GEO and A filter by about 11% and 9%
respectively. However, if we look at big circuits such as
s9234, s13207, and s15850, the A filter yields better result.
This is because it is harder to group large critical
cells/clusters into the same partition when the number of
cells/clusters is large. The A filter then can be used to
consider only “highly” critical nets and hence reduce the
number of cells/clusters. In our adaptive scheme, we use the
A filter when the number of cells in current partitioned
circuits is higher than 5,000 cells (based on results from
Figure 3.5).

Next we study a way to dynamically update ε based on

circuit characteristic. The ε parameter is used to decide how
many cells are critical, for example first top 5% cells having
minimum slack value. In [4,1,3,5], it is assigned as a fixed
value. In our adaptive scheme, however, we first classify the
cumulative slack values into three groups: slow start, medium
start, and fast start based on the number of cells/clusters
falling into top minimum slack value as shown in Figure 3.6.
Here we plot slack distribution using initial clock cycle so
that minimum slack will not have zero value. The boundary
lines we use here are 15% for medium and 35% for fast start.
From our observation, most circuits’ initial partitions fall into

Figure 3.3 impact of adaptive number of run

0.00

0.20

0.40

0.60

0.80

1.00

1.20

s6
41

s8
20

s1
19

6
s1

23
8

s1
49

4
s5

37
8

s9
23

4

s1
32

07

s1
58

50

adapt adapt run
rdly

Figure 3.4 Example of net filtering

a b c d e

f g h

i j K Figure 3.5 Impact on different net filtering

0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

s6
41

s8
20

s1
19

6
s1

23
8

s1
49

4
s5

37
8

s9
23

4

s1
32

07

s1
58

50

av
era

ge

O T A

rdly

the slow start category. We found that for slow start
distribution, choosing the best ε value is difficult; especially
where randomness is involved.

The result in Figure 3.7 shows that the higher the number

of runs the lower the variance on different ε values. In Figure
3.7, 5r and 20r represents 5 and 20 runs respectively, and the
percentage represents the ε value. The graph is normalized
relative to GEO with ε=100%. We found that the variance
reduces from 0.0021 to 0.0008 when the number of runs
increases from 5 to 20 runs. We also found that when the
slack distribution of current partition falls into medium start
category, selecting the first critical slack value is sufficient
since it already contains a substantial number of cells/clusters
for consideration. For the fast start distributions, assigning α
to be zero (i.e. consider only minimizing wire length) is
adequate, since there are too many critical cells/clusters, and
it is hard to group these cells/clusters into the same partition
without violating area constraints. Figure 3.8 shows the
impact on the medium and the fast start case on bipartition
with 5 runs on 2×1 slots normalized to a global placement
with α = 0. The slack distribution of s641 is shown in Figure
3.6 (b), and that of s35932 is shown in Figure 3.6 (c). For the
medium start, once ε is higher than starting threshold, the
retiming delay drops as can be seen when ε = 17%. On the
other hand, for the fast start case, no matter what value of ε
is, retiming delay is higher than partitioning targeting cutsize.

3.5. Impact of Clustering
Circuit clustering is important for cutsize reduction,
especially when considering a large number of cells. This
also holds for weighted cutsize. As shown earlier in section
3.1, weighted cutsize has positive correlation with retiming
delay. Hence for large circuit without clustering, the delay
results are usually worse compared to the clustering case.
However, we may loose accuracy of retiming based timing
analysis (RTA) [4] if we perform clustering. This is because
of the fact that the criticality of clusters needs to be computed
based on the criticality of individual gates in the cluster. In
fact, it is difficult to assign a single number to represent the
timing criticality of all nodes in a cluster. In addition,
clustering requires more runtime and more memory space.
Therefore, there is a tradeoff in performing clustering in
terms of solution quality versus runtime. Figure 3.9 shows
this observation, i.e. when number of cells is large, clustering
starts to outperform non-clustering approach. Here we
propose a way to adaptively decide when to perform the
clustering based on number of cells. We use 7,000 cells
(based on results from the graph) as threshold to decide
whether to perform clustering or not in this current partition.
If the number of cells is higher than threshold, we employ
clustering to reduce weighted cutsize.

4. METHODOLOGY

We modify GEO [4] algorithm and call it A-GEO, the
adaptive GEO. An overview of A-GEO algorithm is shown
in Figure 4.1. Any part that is updated from GEO is Figure 3.7 Impact on different ε value

0.50

0.60

0.70

0.80

0.90

1.00

1.10

s6
41

s8
20

s1
19

6
s1

23
8

s1
49

4
s5

37
8

s9
23

4

s1
32

07

s1
58

50

5r-3% 5r-5% 5r-7%
20r-3% 20r-5% 20r-7%

rdly

0
20
40
60
80

100

30 230
0

20
40
60
80

100

5 55
0

20
40
60
80

100

0 50 100

a b c
Figure 3.6 slack distribution classifications when x-axis represents
slack value and y-axis represents cumulative frequency percentage
normalized to 100%

Figure 3.9 Impact on clustering

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

s64
1

s82
0

s11
96

s12
38

s14
94

s53
78

s92
34

s13
20

7

s15
85

0

s35
93

2

Adaptive Adaptive + Clustering
rdly

Figure 3.8 Examples of medium and fast start

0.85

0.90

0.95

1.00

1.05

1.10

1% 3% 5% 7% 10% 12% 15% 17% 20% 25%

Epsilon

s641 s35932

underlined. Note that our adaptive scheme can not only be
used for GEO but also any timing-driven mincut-based
global placement. A-GEO produces a global placement
solution for the PPR problem. Based on mincut-based global
placement, we recursively bipartition the netlist NL until m×n
tiles are generated. After all bipartitionings are finished for
the current level, then we perform multiway refinement [19]
on the entire netlist. Initially, the partitioning tree T has only
root node R. Then all cells in NL are inserted into R. The
FIFO queue Q is used to support the recursive breadth-first
cut sequence.

A-GEO-2way first generates a sub-netlist from the given
partition tree node and performs multi-level clustering on it.
ESC clustering algorithm [3] is used for this purpose. Then
we obtain a random initial partitioning B among the clusters
at the top level of the hierarchy. The subsequent top-down
multi-level refinement is used to improve B in terms of delay.
For timing driven global placement, RTA [9] is performed to
identify timing critical cells/clusters. Then we compute the
delay weights for the nets in the sub-netlist for delay
optimization. The subsequent iterative improvement through
a cluster move tries to minimize the weighted cutsize. Finally
the current solution is projected to the next level coarser
netlist for multi-level optimization. At the end of A-GEO-
2way, two new children nodes are inserted into T based on B.

We summarize the modifications made on GEO as

follows. First, we know that selecting from best weighted
cutsize does not guarantee the best retiming delay among all
runs. Instead of returning B as the best weighted cutsize
among all runs, we choose B based on real retiming results as
shown in line 26. Second, we consider adaptive α in line 20,
where we begin with α=20 and gradually decrease it. Third,
we adapt the number of run in line 16 by starting with a high
number of runs during earlier partitions and decreasing it
gradually as described in Section 3.3. Here we use 20 runs
for the first 3 levels and 3 runs for the rest. Fourth, we
employ adaptive filtering based on number of cells in the
current partition as in lines 35,36,40 and 42. Fifth, we
consider the ε characteristic while selecting the ε value. If
circuit characteristic is in slow start mode, we use ε = 5%. On
the other hand, If the circuit characteristic is in medium start
mode, we use the first value in the medium range as ε. If it
falls in the fast start mode, we set α = 0 and consider only

A-GEO(NL,K,run)
1. insert all cells in NL to root node R in T (= part tree)
2. insert R into Q (= FIFO queue)
3. while (leaf nodes in T < K)
4. N = remove front element in Q
5. GEO-2way(N,run) (= bipartitioning on N)
6. split cells in N into N1 and N2
7. insert N1 and N2 into Q and T
8. refine
9. return T

 A-GEO-2way(N,run)
10. NL’ = sub-netlist containing cells in N
11 if #cells > Threshold T1
12. ESC(NL’) (= multi-level clustering on NL’)
13. h = height of the cluster hierarchy
14. B = random partitioning among clusters at level h
15. for (i = h downto 0)
16. compute adaptive #run
17. NL’(i) = coarsened NL’ at level I
18. for (j=1 to run)
19. while (gain)
20. if not (bottommost level & node id > K/2)
21. DELAY-WEIGHT(NL’(i))
22. total net weight = 1 + α delay weight
23. while (gain)
24. move cells in NL’(i) to min. weighted cutsize
25. retrieve max gain moves and update B
26. project best retiming B to level i-1
27. return B

 DELAY-WEIGHT(NL’)
28. set delay of edges in R (= retiming G)
29. perform RTA(R) (= timing analysis)
30. compute sequential slack for nodes in R
31. for each cluster C in NL’
32. C(R) = all cells in R grouped into C
33. slack(C) = min among cells in C(R)
34. X = top x% small slack if |X| ≤ 25%
35. if #cells < threshold T2 use T filter
36. else A filter
37. for each net N in NL’
38. if original GEO filter
39. compute delay-weight(N) using Eqn1
40. elif (T filter and at least two cells in N are in X)
41. compute delay-weight(N) using Eqn1
42. elif (A filter and all clusters in N are in X)
43. compute delay-weight(N) using Eqn1

Figure 4.1. Overview of the A-GEO algorithm

Table 5.1 Comparison among GEO, GEO+200r and A-GEO

GEO GEO + 200r A-GEO ckt
Dr wire Dr wire Dr wire

s641 143 409 137 383 97 442
s820 47 599 42 631 28 582
s1196 74 1,032 74 1,047 49 1,025
s1238 77 1,128 70 1,019 50 1,095
s1494 55 997 51 1,024 41 1,055
s5378 57 1,453 51 1,371 45 1,907
s9234 50 1,459 48 1,408 48 2,132

s13207 86 1,689 72 1,491 69 2,091
s15850 90 1,824 88 1,708 83 2,025
s35932 45 2,113 47 1,903 41 2,536
s38417 41 2,394 39 2,054 41 2,610
s38584 81 3,184 75 2,371 59 4,450
b14o 67 3,658 64 3,704 64 4,114
b15o 79 5,786 72 5,306 79 5,773
b20o 74 6,087 73 5,990 64 7,158
b21o 79 6,149 67 5,775 70 6,941
b22o 80 7,620 63 7,229 63 8,774
Avg. 1.00 1.00 0.93 0.91 0.82 1.14
Time 1,517 51,233 14,232

cutsize instead as shown in line 34. Finally, we decide to
perform clustering based on the number of cells in line 11.

Since we project the best retiming delay to the next level,
it requires calculating retiming delay after each run.
However, each RTA requires O(nlogn). To be more precise,
our algorithm requires run×K×nlogn, where run represents
number of runs, K represents the number of partitions, and n
represents the number of cells.

5. EXPERIMENTAL RESULTS

Our algorithms are implemented in C++/STL, compiled with
gcc v2.96 with –O3, and run on Pentium III 746 MHz
machine. The benchmark set consists of twelve circuits from
ISCAS89 [18] and five circuits from ITC99 [17] suites. We
report our result in Table 5.1 on 8×8 tiles. GEO represents a
state-of-the-art timing driven mincut-based global placement
proposed in [4] with five runs. A-GEO represents the
modified GEO algorithm with our adaptive methods with
about 4.88 runs (using adaptive number of runs). We also
report GEO+200r with is GEO with 200 runs to be fair since
our A-GEO has a higher running time than original GEO.
The average ratio and running time are also reported and
measured in seconds. Results from Table 5.1 shows that the
A-GEO is better than the GEO by about 21.9%, and better
than the GEO+200r by 13.1%. Note that the GEO+200r
requires more running time that the A-GEO by about four
times. Hence by increasing number of run alone is not as
good as using our adaptive method.

6. CONCLUSION AND FUTURE WORK

We propose an adaptive methodology to improve timing
driven placement using adaptive parameters. Our method can
improve a state-of-the-art timing driven placement GEO [4]
by as much as 67% and 22% on average for performance
improvement. We are working to employ c-timing [12]
instead of retiming to reduce the running time.

7. REFERENCES

[1] C. Ababei, N. Selvakkumaran, K. Bazargan, and G.
Karypis, “Multi-objective Circuit Partitioning for Cut size
and Path-Based Delay Minimization,” IEEE International
Conference in Computer Aided Design, page 181-185, 2002.
[2] G. Beraudo and J. Lillis. Timing Optimization of FPGA
Placements by Logic Replication. ACM Design Automation
Conf. page 196-201, 2003.
[3] J. Cong and S. K. Lim, “Edge separability based circuit
clustering with application to circuit partitioning,” to appear
in IEEE Trans on Computer-Aided Design, 2003.
[4] J. Cong and S. K. Lim, “Physical Planning with
Retiming,” IEEE International Conference in Computer
Aided Design, page 2-7, 2000.
[5] J. Cong and X. Yuan. Multilevel Global Placement with
Retiming. ACM Design Automation Conf. page 208-213,
2003.

[6] R. Ho, K. W. Mai and M. A. Horowitz. “The Future of
Wires.“ In Proceedings of IEEE, 2001.
[7] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar,
“Multilevel hypergraph partitioning: Application in VLSI
domain,” ACM Design Automation Conf., page 526-529,
1997.
[8] T. Kong. A novel net weighting algorithm for timing-
driven placement. In Proc. Int. Conf. on Computer Aided
Design, pages 172-176, 2002.
[9] C. E. Leiserson and J. B. Saxe, Retiming synchronous
circuitry. Algorithmica, page 5-35, 1991.
[10] I. Neumann and W. Kunz. Placement driven retiming
with a coupled edge timing model. In Proc. Int. Conf. On
Computer Aided Design, pages 95-102, 2001
[11] I. Neumann and W. Kunz. Tight coupling of timing-
driven placement and retiming. In Proc. IEEE Int. Symp. On
Circuits and Systems, pages 351-354, 2001.
[12] P. Pan. Continuous retiming: Algorithms and
application. In Proc. IEEE Int. Conf. on Computer Design,
pages 116-121, 1997.
[13] P. Pan, A. K. Karandikar, and C. L. Liu, “Optimal clock
period clustering for sequential circuits with retiming,” IEEE
Trans on Computer-Aided Design, pages 489-498,1998.
[14] SIA, National Technology Roadmap for
Semiconductors, 2001.
[15] D. P. Singh and S. D. Brown. Integrated retiming and
placement for field programmable gate arrays. In Proc.
ACM/SIGDA Int. Symp. on Field Programmable Gate
Arrays, pages 67-76, 2002.
[16] T.C. Tien, H. P. Su, and Y.W. Tsay. Integrating logic
retiming and register placement. In Proc. Int. Conf. On
Computer Aided Design, pages 136-139, 1998.
[17] http://www.cad.polito.it/tools/itc99.html
[18] http://www.cbl.ncsu.edu
[19] Jason Cong and Sung Kyu Lim, "Multiway Partitioning
With Pairwise Movement", IEEE International Conference
on Computer Aided Design, p512-516, 1998.

