Multi-way Partitioning Using Bi-partition Heuristics

Maogang Wang Sung Kyu Lim
ECE Department
Northwestern University
Evanston, IL, US
mgwang@ece.nwu.edu

CS Department
UCLA
Los Angels, CA, US
limsk@cs.ucla.edu

Abstract— The multi-way partition problem is very
important in various applications. In this paper, we
use analytical and experimental results to study the
k-way partition problem. We introduce the concept of
embedding graph for the the k-way partition problem.
Based on this concept, we explain different scenar-
ios of using a bi-partition heuristic to solve the k-way
partition problem. If C' denote the optimal cut cost
for the k-way partition problem and the bi-partition
heuristics we use are J-approzimation heuristics (de-
fined in Section 2), we prove that the cut cost from
the hierarchical approach has an approximate upper
bound of §C-log k while the cut cost from the all-way bi-
partition, or flat approach, has an upper bound of §Ck.
This is contrary to some claims made in recent litera-
ture (and CAD tools designed based on it). Experi-
mental results strongly support our theoretical analy-
sis. Our results show that for large target graph, the
hierarchical approach is about 77% better than the
single-pass all-way bi-partition approach. The all-way
bi-partition approach will perform better in a multi-
pass set-up. However, the hierarchical approach is still
on average 7.1% better in quality and 144 times faster
than the multi-partition all-way bi-partition approach.
The main conclusion of this paper is, contradicted to
what has been suggested in literature, hierarchical bi-
partitioning is a more effective multi-way partitioning
scheme.

I. INTRODUCTION

Graph partitioning is an important problem and has
extensive application to many areas in VLSI design [3].
The problem is to partition the vertices of a graph in &
into roughly equal parts, such that the number of edges
connecting vertices in different parts is minimized. In this
paper, to simply the presentation, we use a graph model.
All analysis is extensible to a hypergraph model. For-
mally, a graph G = (V, E) is defined as a set of vertices V
and a set of edges E. Most existing researches are focused
on the bi-partition problem. A high quality graph parti-
tioning algorithm greatly affects the feasibility, quality,
and cost of the resulting system.

The graph partition problem is NP-complete. Recently,

Jason Cong Majid Sarrafzadeh
ECE Department
Northwestern University
Evanston, IL, US
majid@ece.nwu.edu

CS Department
UCLA
Los Angels, CA, US
cong@cs.ucla.edu

a number of researchers have investigated a class of algo-
rithms that can give a reasonably good solution for the
bi-partition problem [14, 9, 4, 10, 12, 13]. However, al-
gorithm designers are more and more interested in the
general k-way partition problem where k is greater than
two.

(b) The bi-partition result.

Fig. 1. An example of the k-way partition problem.

Figure 1a shows a sample graph to be partitioned. We
call this a target graph. We call all the vertices in the
target graph nodes, and edges in the target graph links.
When k = 2, the bi-partition result is shown in Figure 1b.
The cut cost for bi-partition shown is 2. Figure 2a shows
a 3-way partition result where the cut cost is 4. We can
also perform a 4-way partitioning on this graph. Figure
2b shows the result with the cost being 5.

When £ is greater than 2, there are three typical meth-
ods to solve the k-way partition problem.

Method A is a direct extension of 2-way FM-like algo-
rithms. In the 2-way FM-like algorithms, each node can
be moved to only one definite destination partition. A
gain will be associated to this move. In the k-way par-
tition problem, each node has k& — 1 possible destination
partitions. Thus method A is based on the 2-way FM
algorithm while allowing moving any node to any of the
k — 1 partitions. Method B is a all-way bi-partition im-
provement. It starts with an initial (and arbitrary) k-way

(b) The 4-partition result.

Fig. 2. An example of the k-way partition problem.

partition. It picks two partitions from the total k£ parti-
tions at a time and perform bi-partitioning to improve the
all-way cut-cost between these two partitions. Method C
is a hierarchical approach. It will recursively bi-partition
the target graph until we have k partitions.

Suaris and Kedem used method A on a 4-way parti-
tion problem [18, 19]. For k greater than 4, this method
A is rarely used since it needs a lot of memory and is
slow. In [7], Cong and Lim show that method A pro-
duces almost 500% worse than method C, the hierarchi-
cal approach, in large graph. Given the fact that there
are a number of high-quality bi-partition heuristics/codes
[1, 6, 8, 12] and that multi-way partition method A is
not satisfactory, we should find a method of solving the
k-way partition problem using a bi-partition heuristic. In
practice, the all-way bi-partition approach (Method B)
and the hierarchical approach (Method C) are often used.
The question is that which one is a better way to solve
the k-way partition problem. In the original Kernighan-
Lin’s paper [14], the author argues that the hierarchical
approach is a very greedy method. Intuitively, the hier-
archical approach can not recover the possible mistakes
made by the previous cuts. Thus it will easily get stuck
into a local minimum. They also argue that given enough
time, the all-way bi-partition method should be able to
explore most part of the solution space. Thus it has a
better chance to get a good result. In [7], Cong and Lim
experimentally show that an all-way bi-partition approach
can produce about 10% better than the hierarchical ap-
proach. However, their all-way bi-partition algorithm uses
the partition result from a hierarchical algorithm as the
input partition. Obviously, this is not an comparison be-
tween the hierarchical and the all-way approach. We will
compare these two approaches here. More work on k-way
partition can be found in [16, 5, 20, 2, 15, 17].

In this paper, we use analytical and experimental re-
sults to study the k-way partition problem. We introduce
the concept of embedding graph for the k-way partition
problem. Based on this concept, we explain different sce-
narios of using a bi-partition heuristic to solve the k-way

partition problem. Theoretical analysis is done on the all-
way bi-partition approach and the hierarchical approach
assuming we use a d-approximation bi-partition heuristic.
If the optimal cut cost for a k-way partition problem is C,
we prove that the cut cost from the hierarchical approach
has an upper bound of §C - log k while the cut cost from
the all-way bi-partition approach has an upper bound of
dCk where k is the number of partitions. In [17], Simon
and Teng proved that the hierarchical approach has an
upper bound of §Cy - log k where Cy is the optimal cut
cost for a perfectly balanced k-way partition. Our exper-
imental results support the analysis and reveals that the
hierarchical approach is indeed a better way to solve the
k-way partition problem than the all-way bi-partition ap-
proach. Specifically, on average, the hierarchical approach
produces cut cost 7% better and is 144 times faster than
the all-way bi-partition approach. In the experimental
section, we also study the effect of the balancing criterion
between partitions on the final partition result.

This paper is organized as follows: In Section 2 we for-
malize the k-way partition problem and introduce the con-
cept of embedding graph for the k-way partition problem.
In Section 3 we give theoretical upper bounds on various
k-way partitioning algorithms. In Section 4 we show the
experimental results to support our claim followed by the
conclusion in Section 5.

We removed all the theoretical proofs in Section 3 due
to the page limit. All proofs can be found in the original
techical report.

II. USING BI-PARTITION HEURISTICS TO SOLVE THE
k-WAY PARTITION PROBLEM

The bi-partition problem is a well-studied problem.
There are a number of good algorithms out there to solve
this problem. Alpert-Kahng and Hauck-Borriello gave a
very detailed overview and comparison on various algo-
rithms [3, 11]. Most of these algorithms are based on
the KL-FM algorithm. The KL (Kernighan-Lin) algo-
rithm uses a pair-swap move structure [14]. During each
pass, every node is moved exactly once between the two
partitions. At the beginning of the pass, all nodes are
“unlocked”, i.e., free to be swapped. After the selected
nodes are swapped, they become “locked” and the algo-
rithm updates both the cost of the new partition and the
gains of the remaining unlocked nodes. After all nodes
are locked, the lowest-cost partition encountered over the
entire pass is restored and returned. Further passes are
executed, each using the result from the previous pass
as its starting point, until no improvement results are ob-
tained. Computing gains in the KL heuristic is expensive;
O(n?) swaps are evaluated before every move, resulting in
a complexity per pass of O(n?logn) (assuming a sorted
list of costs). The FM (Fiduccia-Mattheyses) algorithm
reduces the time per pass to linear in the size of the graph
(i-e., O(t), where t is the number of hyperedge end points

or terminals) by adopting a single-node move structure,
and a gain bucket data structure that allows constant-time
selection of the highest-gain node and fast gain updates
after each move.

The FM algorithm can be easily extended to solve the
k-way partition problem. A direct extension of the bi-
partition FM algorithm is to allow each node move to
any of the other k — 1 partitions, where the gain of each
node should be the maximum gain among all these possi-
ble £ — 1 moves. When updating the gain for a node, all
these possible ¥ — 1 moves need to be revisited. Thus the
gain updates need k—1 more time than in the bi-partition
FM algorithm. Approximately, this method is computa-
tionally k£ — 1 times more expensive than the original bi-
partition FM algorithm. Due to this fact, this method is
rarely used when £k is larger than four. In a VLSI circuit
design problem, a target graph can easily have as many
as a couple of hundred thousand nodes and up to several
millions of nodes. The direct extension of the FM algo-
rithm is too slow for such problems. We need a heuristic
which is faster than this direct FM extension to solve the
k-way partition problem.

In the graph partitioning problem, edge-cut is the ob-
jective to minimize. This objective can also be viewed as
an embedding cost. Figure 3 demonstrates this fact. Fig-
ure 3a shows a 4-way partitioning scheme. We label these
four partitions as a, b, ¢ and d, respectively. According to
the defination of edge-cut objective, an edge which con-
nects vertices in two different partitions will have a cost of
1. We can embed this cost into a complete graph shown
in Figure 3b. The cost for an edge which connects ver-
tices in two partitions is the distance of the shorest path
between these two partitions. For a complete graph, the
distance between any two vertices is always 1. Therefore
an embedding cost for a complete graph is identical to the
edge-cut cost in the corresponding k-way partition prob-
lem. Figure 3¢ shows an example of embedding the target
graph in Figure 2b into the embedding graph. Nodes 1,
2 and 3 are embedded in the partition/embedding vertex
a, nodes 4, 7 are in the embedding vertex b, nodes 5, 6
are in the embedding vertex ¢ and nodes 8, 9 are in the
embedding vertex d. There are a link between the em-
bedding vertex a and b, a and ¢, ¢ and d, b and ¢, b and
d, shown as the dotted line between partitions in Figure
3c. The total cut cost is 5.

Sometimes a k-way partition algorithm works only on
a sub-graph of the original embedding graph. In this case
the edge-cut cost will be the embedding cost for this sub-
graph. We say that this algorithm is “looking at” n. edges
at this particular time, where n, is the number of embed-
ding edges of the sub-embedding-graph. For example, the
direct FM extension looks at all k(k — 1)/2 embedding
edges. The all-way bi-partition algorithm looks at only
one embedding edge at a time.

In the original Kernighan-Lin’s paper, the authors have
a low opinion of the hierarchical algorithms: “Obviously

e

PR

T e

® .
o od

Embed the target graph
into the embedding graph

A 4-way partitioning complete graph
scheme = edge-cut cost

@ (b) ©

Fig. 3. Edge-cut cost is an embedding cost.

this (the first cut in the hierarchical approach) may con-
flict directly with the next stage, which is to try to divide
each subset further. Carried to several levels, it can lead
to a relatively poor overall solution.” We have also asked
a number of researchers in this area. They all think the
same. We will theoretically analyze the hierarchical and
the all-way algorithm in the Section 3 and provide exper-
imental results in Section 4.

III. THEORETICAL ANALYSIS

In this section we will give a theoretical analysis of dif-
ferent algorithms for solving the k-way partition problem
using a bi-partitioning heuristic.

In order to make the result more general, the analysis
should not be based on any specific bi-partition heuristic.
Thus, we abstract any bi-partition heuristic to a so called
d-approximation algorithm: that is, the cost of the bi-
partition found by this algorithm is no more than ¢ times
the cost of the optimal bi-partition result.

In [17], Simon and Teng theoretically studied the hi-
erarchical bi-partition approach in the k-way partition
problem. The results showed that if the number of ver-
tices in each partition is required to be exactly n/k (a
perfectly balanced k-way partition), the hierarchical ap-
proach may get very bad results. However, if the balance
condition is relaxed so that the number of vertices in each
partition is bounded by 2n/k, the hierarchical bi-partition
approach will find an approximately balanced k-way par-
tition whose cost is within an O(log k) factor of the cost
of the optimal perfectly balanced k-way partition.

In practical applications, usually a perfectly balanced k-
way partition is not necessary. A k-way partition heuristic
is intend to find the optimal result for an approximately
balanced k-way partition. Simon and Teng’s upper bound
for the hierarchical approach is a factor of the optimal re-
sult of a perfectly balanced k-way partition. In this paper,
we will show upper bounds for both hierarchical and all-
way approach which is related to the optimal result of a
relaxed k-way partition.

As the first result, we will show that the cost of the
k-way partition found by the hierarchical approach is no
more than O(dlogk) times the optimal cost for this k-

way partition problem if each cut in the hierarchy is a
1/3-balanced cut.

Lemma 1 In the hierarchical approach, the cost of the
first cut is no more than § times the optimal cost for the
k-way partition problem.

Lemma 2 In the hierarchical approach, the total cost of
the second level cuts is no more than & times the optimal
cost for the k-way partition problem.

Lemma 3 In the hierarchical approach, the total cost of
cuts at any level is no more than & times the optimal cost
for the k-way partition problem.

Theorem II1.1 The cost of the k-way partition found by
the hierarchical approach is no more than O(dlogk) times
the optimal cost of the k-way partition problem.

(All proofs are omitted here due to the page limit.
Please contact the authors for a complete manuscript.)

This is an upper bound for the hierarchical approach.
The next result we will provide is a similar upper bound
for the all-way bi-partition approach.

Theorem II1.2 The cost of the k-way partition found by
the all-way bi-partition approach is no more than O(5(k—
1)) times the optimal cost for the k-way partition problem.

As we stated before, this is an upper bound. It is possi-
ble to improve upper bounds for both approaches. How-
ever it is interesting to notice the difference between the
two upper bounds (log k vs.(k—1)) both using the “same”
analysis method. This difference suggests that the hierar-
chical approach is a better way to do the k-way partition
problem.

IV. EXPERIMENTAL RESULTS

We experimentally evaluated the two methods we an-
alyzed in the previous section, the hierarchical approach
and the all-way bi-partition approach. We use ten MCNC
standard-cell benchmark circuits. We choose the value of
k to be 16 in this set of experiments.

Since hMetis [12, 13] is currently the best parti-
tioner, we pick hMetis [12] as our basic bi-partition
tool. However, the same results should hold for
any other bi-partition algorithms, e.g., [9, 1, 6] (since
our proofs/analyisis/claims are independent of the bi-
partition heuristic).

In the all-way bi-partition approach, we can have dif-
ferent ways to pick two partitions at a time to perform
the bi-partition. The following four ways are discussed in

[7]:
1. Random: randomly pick two partitions at a time.

2. Ezhaustive: Use a specific sequence to exhaustively
pick all possible pairs of partitions.

one-pass exhaust. hierarchical
circuit | net-cut | time(s) | net-cut | time(s) | % imp.
fract 74 5.2 56 1.21 | 24.3%
struct 996 24.5 128 574 | 87.1%
pl 398 32.8 150 517 | 62.3%
p2 1469 26.2 450 12.5 | 69.4%
biomed 2423 31.3 213 | 13.18 | 91.2%
inl 978 24.7 175 9.68 | 82.1%
in2 5257 72.1 898 449 | 82.9%
in3 10705 104 2070 80.1 | 80.7%
avqgs 9578 75.8 532 42.6 | 94.4%
avql 10594 85.3 543 478 | 94.9%
avg. 76.9%
TABLE I

SINGLE-PASS ALL-WAY ALGORITHM VS. THE HIERARCHICAL
ALGORITHM (CONCLUSION: THE HIERARCHICAL APPROACH IS MORE
EFFECTIVE THAN THE ONE-PASS ALL-WAY APPROACH).

3. Cut-based: Pick a pair of two most tightly or loosely
connected partitions, measure in terms of cutsize.

4. Gain-based: Pick a pair of two partitions between
which the cutsize reduction is maximum or minimum
during last pass.

In the all-way bi-partition scenrio, we can always take
an iterative approach which is to perform all-way bi-
partitioning multiple passes. A pass is done when we fin-
ish looking at all the embedding edges or vertices in the
embedding graph. The iterative procedure stops when the
net-cut cost cannot be improved. However, the theoreti-
cal analysis we performed in Section 3 is truely based on
looking at one embedding edge only once. This is equiv-
alent to a single-pass all-way algorithm. We know that
a multi-pass algorithm would definitely improve the re-
sults over the single-pass algorithm. Therefore, in order
to justify the claims we made in Section 3, we compare
the partition results of a single-pass all-way bi-partition
algorithm to the results of a hierarchical algorithm. Since
the gain-based all-way approach needs information from
the previous pass, it cannot be used as a single-pass al-
gorithm. Among the remaining three methods, we em-
pirically found that the exhaustive method performs the
best. Table I shows the partition results from a exhaus-
tive single-pass all-way approach and from a hierarchical
approach.

For all circuits, the hierarchical approach is remarkably
better than the single-pass all-way approach. The average
improvement of the hierarchical approach over the all-way
bi-partition approach is about 77%. This experiments
supports the claim we made in Section 3.

Cong and Lim reported that the multi-pass gain-based
iterative all-way bi-partition is the best among all four

multi-pass exhaus gain-based [7] best of allway hierarchical hie. vs. all-way
circuit | net-cut | time(s) | net-cut | time(s) | %imp. || circuit | netcut | time(s) | netcut | time(s) | %imp. | spdup
fract 64 23.5 75 20.8 | 14.7% || fract 64 23.5 56 1.21 | 12.5% 194
struct 138 614.7 133 627.6 | -3.8% || struct 133 627.6 128 5.74 3.8% 109
pl 145 411.7 146 448.3 0.7% || pl 145 411.7 150 517 | -3.4% 79.6
p2 461 1816 455 1979 | -1.3 % || p2 455 1979 450 12.5 1.1% 158
biomed 305 1995 351 1833 | 13.1% || biomed 305 1995 213 13.18 | 30.2% 151
inl 210 2052 203 1259 | -3.4% || inl 203 1249 175 9.68 | 13.8% 129
in2 979 5006 1001 4969 2.2% || in2 979 5006 898 44.9 8.3% 111
in3 2224 3625 2210 5512 | -0.6% || in3 2210 5512 2070 80.1 6.3% 68.8
avqgs 532 4485 585 21375 9.1% || avgs 532 4485 532 42.6 0% 105
avql 539 3796 532 24315 | -1.3% || avql 532 24315 543 47.8 | -2.1% 509
avg. 2.9% || avg. 7.1% 144

TABLE 11 TABLE 11T

MULTI-PASS EXHAUSTIVE ALL-WAY ALGORITHM VS. GAIN-BASED
ALL-WAY ALGORITHM (CONCLUSION: THE TWO ALL-WAY
APPROACHES ARE COMPARABLE IN QUALITY)A

approaches described above [7]. However, they use par-
tition results from a hierarchical algorithm as the input
of the all-way bi-partition algorithm. When using ran-
dom partitions as the input, experiments show that the
gain-based all-way approach is actually worse than the ex-
haustive all-way approach. Table IT shows this fact. The
column of multi-pass erhaustive shows the results from a
multi-pass exhaustive all-way algorithm. The column of
gain-based shows the results from a multi-pass gain-based
all-way algorithm which is implemented according to [7].
Table IT shows that the multi-pass exhaustive algorithm
performs slightly better than the gain-based algorithm.

In Table ITI, we compare the best results among all-way
bi-partition algorithms to the hierarchical algorithm. The
column of % improv shows the percentage improvement
of the hierarchical algorithm vs. the best of the all-way
algorithms. The column of speedup shows the speedup of
the hierarchical algorithm vs. the best of the all-way al-
gorithms. the hierarchical algorithm on average performs
7.1% better in quality and is 144 times faster than the
all-way algorithm. This result suggests that given long
enough time, the multi-pass all-way algorithm could get
similar results as the hierarchical algorithm. Considering
both quality and runtime, the hierarchical approach is
better than the all-way bi-partition approach when using
a random input partition.

The hierarchical approach is good to start with. How-
ever, the drawback of the hierarchical approach is that it
is not effective to be used to improve an existing parti-
tion. The all-way approach can be easily used to improve
an existing partition. In [7], Cong and Lim claimed that
the gain-based all-way approach produces the best results
when used after the hierarchical approach. Here we con-
duct an experiment to compare the exhaustive and the
gain-based all-way approach used after the hierarchical

COMPARING ALL-WAY ALGORITHM VS. THE HIERARCHICAL
ALGORITHM (CONCLUSTION: THE HIERARCHICAL APPROACH IS MORE
EFFECTIVE THAN THE ALL-WAY APPROACH).

approach. We take the partition results produced by the
hierarchical approach (Table. III) as the input partition
for our all-way approach. Table. IV shows the results
of comparison. The results show that both algorithms
can not improve over the hierarchical partitioning results.
Thus if the we use a very good bi-partitioning tool like
hMetis in the hierarchical scheme, the all-way approach
is not useful even used after the hierarchical run.

V. CONCLUSION

In this paper, we introduced the concept of embedding
graph to theoretically analyze different k-way partition
algorithms. We showed that the cut cost upper bound for
the hierarchical bi-partition approach is O(d log k) of the
optimal result and the cut cost upper bound for the all-
way bi-partition approach is O(dk) of the optimal result
assuming that we are using a J-approximation bi-partition
heuristic (defined in Section 3). These two upper bounds
suggests that the hierarchical approach is a better way
to solve the k-way partition problem. Experimental re-
sults strongly support this claim. When the target graph
is large, the hierarchical approach can have a cut cost
which is about 77% better than the single-pass all-way
bi-partition approach. Experimental results also show
that the all-way algorithm can improve given long enough
time. However, the hierarchical approach is still clearly
the winner in quality and runtime. Specifically, the
hierarchical approach produces 7.1% better results and is
144 times faster than the all-way approach.

REFERENCES

[1] C. J. Alpert, J. H. Huang, and A. B. Kahng. “Mul-
tilevel Circuit Partitioning”. In Design Automation

exhaustive after hie. gain-based after hie.
circuit | netcut | %imp.vs.hie. | netcut | %imp.vs.hie.
fract 54 3.6% 54 3.6%
struct 127 0.8% 128 0%
pl 143 4.7% 143 4.7%
p2 433 38% | 447 0.7%
biomed 213 0% 213 0%
inl 175 0% 175 0%
in2 898 0% 898 0%
in3 2070 0% 2070 0%
avqs 532 0% 532 0%
avql 543 0% | 532 2.0%
avg. 1.3% 1.1%

TABLE 1V

MULTI-PASS EXHAUSTIVE ALL-WAY ALGORITHM VS. GAIN-BASED
ALL-WAY ALGORITHM WHEN USED AFTER THE HIERARCHICAL
ALGORITHM (CONCLUSION: IT IS VERY HARD TO FURTHER IMPROVE
THE HIERARCHICAL RESULTS USING THE ALL-WAY ALGORITHM.

[4]

[5]

[6]

[7]

(8]

Conference, pages 530-533. IEEE/ACM, 1997.

C. J. Alpert and A. B. Kahng. “Geometric Embed-
dings for Faster and Better Multi-Way Netlist Par-
titioning”. In Design Automation Conference, pages
743-748. IEEE/ACM, 1983.

C. J. Alpert and A. B. Kahng. “Recent Directions in
Netlist Partitioning”. Integration, the VLSI Journal,
19:1-81, 1995.

C. K. Cheng and Y. C. A. Wei. “An improved
two-way partitioning algorithm with stable perfor-
mance”. IEEE Transactions on Computer Aided De-
sign, 10(12):1502-1511, 1991.

J. Cong, W. Labio, and N. Shivakumar. “Multi-way
VLSI circuit partitioning based on dual net represen-
tation”. In International Conference on Computer-
Aided Design, pages 5662, November 1994.

J. Cong, H. P. Li, S. K. Lim, T. Shibuya, and D. Xu.
“Large Scale Circuit Partitioning with Loose/Stable
Net Removal and Signal Flow Based Clustering”.

In International Conference on Computer-Aided De-
sign, pages 441-446. IEEE, 1997.

J. Cong and S. K. Lim. “Multiway Partitioning with
Pairwire Movement ”. In International Conference
on Computer-Aided Design, pages 512-516, 1998.

D. Dutt and W. Deng. “VLSI Circuit Partitioning by
Cluster-Removal Using Iterative Improvement Tech-

niques”. In International Conference on Computer-
Aided Design, pages 194-200. IEEE, 1996.

C. M. Fiduccia and R. M. Mattheyes. “A Linear
Time Heuristic for Improving Network Partitions”.

In Design Automation Conference, pages 175-181,
1982.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

L. Hagen and A. B. Kahng. “Fast Spectral Methods
for Ratio Cut Partitioning and Clustering”. In In-
ternational Conference on Computer-Aided Design.
IEEE, 1991.

S. Hauck and G. Boriello. “An Evaluation of Bipar-

titioning Techniques”. In Chapel Hill Conference on
Advanced Research in VLSI, 1995.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
“Multilevel Hypergraph Partitioning: Application in
VLSI Domain”. In Design Automation Conference,
pages 526-529. IEEE/ACM, 1997.

G. Karypis and V. Kumar. “Multilevel k-way Hyper-
graph Partitioning”. In Design Automation Confer-
ence, pages 343-348, 1999.

B.W. Kernighan and S. Lin. “An Efficient Heuris-
tic Procedure for Partitioning Graphs”. Bell System
Technical Journal, 49:291-307, Feburary 1970.

M. Kiwi, D. Spielman, and S. H. Teng. “Min-Max-
Boundary Domain Decomposition”. In Annual Inter-

national Computing and Combinatorics Conference,
1998.

L. A. Sanchis. “Multi-Way Network Partitioning”.
IEEE Transactions on Computers, 38(1):62-81, Jan.
1989.

H. D. Simon and S. H. Teng. “How Good Is Re-
cursive Bisection?”. In SIAM Journal of Scientific
Computing, 1996.

P. R. Suaris and G. Kedem. “Quadrisection: A New
Approach to Standard Cell Layout”. In Design Au-
tomation Conference, pages 474-477. IEEE/ACM,
1987.

P. R. Suaris and G. Kedem. “Standard Cell Place-
ment by Quadrisection”. In International Con-

ference on Computer-Aided Design, pages 612—-615.
IEEE/ACM, 1987.

N. S. Woo and J. Kim. “An Efficient Method of
Partitioning Circuits for Multiple-FPGA Implemen-
tation”. In Design Automation Conference, pages
202-207. IEEE/ACM, 1993.

