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Parameter Optimization of VLSI Placement
Through Deep Reinforcement Learning
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Abstract—Critical to achieving power–performance–area
goals, a human engineer typically spends a considerable amount
of time tuning the multiple settings of a commercial placer. This
article proposes a deep reinforcement learning (RL) framework
to optimize the placement parameters of a commercial electronic
design automation (EDA) tool. We build an autonomous agent
that learns to tune parameters without human intervention and
domain knowledge, trained solely by RL from self-search. To
generalize to unseen netlists, we use a mixture of handcrafted
features from graph topology theory and graph embeddings
generated using unsupervised graph neural networks. Our RL
algorithms are chosen to overcome the sparsity of data and
latency of placement runs. As a result, our trained RL agent
achieves up to 11% and 2.5% wire length improvements on
unseen netlists compared with a human engineer and a state-of-
the-art tool auto-tuner in just one placement iteration (20× and
50× fewer iterations). In addition, the success of the RL agent is
measured using a statistical test with theoretical guarantees and
an optimized sample size.

Index Terms—Deep learning, physical design, very-large-scale
integration (VLSI) placement.

I. INTRODUCTION

IN RECENT years, the combination of deep learning techniques
with reinforcement learning (RL) principles has resulted in self-

learning agents achieving superhuman performance in the game of
Go, Shogi, and Chess [1]. Deep RL is also used with immense success
in real-world applications, such as robotics, finance, and self-driving
cars.

The quality of very-large-scale integration (VLSI) placement is
essential for the subsequent steps of physical design, with significant
repercussions on design quality and design closure. However, recent
studies [2] show that existing placers cannot produce near-optimal
solutions. The goal of a placement engine is to assign locations for
the cells inside the chip’s area. The most common target of modern
placers is to minimize the total interconnect length, i.e., the estimated
half-perimeter wire length (HPWL) from the placed cells’ locations.

The algorithms implemented inside the electronic design automa-
tion (EDA) tools have parameter settings that users can modify to
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achieve the desired power–performance–area (PPA). In the authors’
experience, more time is spent tuning and running a commercial
placer than creating a first version of the design. Tools and flows have
increased in complexity, with the modern place and route tools offer-
ing more than 10 000 parameter settings. Expert users are required,
particularly for the latest technology nodes, with increased cost and
risk. Indeed, as the design space of the parameters is too large and
complex to be explored by a human engineer alone, one usually relies
on expertise and domain knowledge when tuning. However, the cor-
relations between the different parameters and the resulting PPA may
be complex or nonintuitive. Placement engines may exhibit nonde-
terministic behaviors as they heavily rely on handcrafted rules and
metaheuristics. Moreover, the advertised goal of a parameter may not
directly translate onto the targeted metric.

A state-of-the-art tool auto-tuner [3] widely used in EDA leverages
a multiarmed bandit (MAB) to organize a set of classical optimization
techniques and efficiently explore the design space. However, these
techniques rely on heuristics that are too general and do not consider
the specificities of each netlist. Therefore, each new netlist requires
to start over parameter exploration. We overcome this limitation in
our RL agent by first encoding the netlist information using a mix-
ture of graph handcrafted features and graph neural network (GNN)
embeddings. This helps generalize the tuning process from netlist to
netlist, saving lengthy and costly placement iterations.

Our RL framework aims to learn an optimization process that finds
placement parameters minimizing wire length after placement. The
main contributions of this article are as follows.

1) We reduce the significant time expense of VLSI develop-
ment by applying deep RL to preset the placement parameters
of a commercial EDA tool. This is the first work on RL
applied to placement parameters optimization to the best of
our knowledge.

2) We use a mixture of features relative to topological graph
characteristics and graph embeddings generated by a GNN to
train an RL agent capable of generalizing its tuning process to
unseen netlists.

3) Our RL algorithm overcomes the sparsity of data, and the
latency of the design tool runs using multiple environments
collecting experiences in parallel. Moreover, this fulfills a mul-
titask learning objective where graph features of a given netlist
effectively represent it as a separate task.

4) We build an autonomous agent that iteratively learns to tune
parameter settings to optimize the placement without super-
vised samples. We achieve better wire lengths on unseen
netlists than a state-of-the-art auto-tuner, without additional
training, and in just one placement iteration.

5) We introduce an existing statistical methodology called the
sequential probability ratio test (SPRT), which we use to
test a set of specifically tailored hypotheses to measure and
benchmark the superiority of our trained RL agent.
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II. RELATED WORK

We review the relevant previous works, presenting two approaches
to optimize the parameters of an EDA engine, categorized into works
on 1) classical hyperparameter/black-box optimization that has exten-
sive study in the literature and 2) a method that views optimization
through the lens of learning, which is recent and largely unused in
EDA applications.

A. Classical Tuning Methods

Optimizing the parameters of a singular step or the full EDA
flow can be seen as an instance of hyperparameter tuning, which
has been researched exhaustively in machine learning (ML) due to
its extreme importance in the success of neural networks. A met-
ric function f is optimized through parameter search guided by an
internal model. Bandit methods minimize the cumulative regret, i.e.,
the deviation from the optimal value E[

∑T
t=1(f (x�)−f (xt))], through

a sequence of online function queries. For instance, Ustun et al. [4]
proposed a multistage FPGA autotuning system by augmenting a
bandit framework [3] with a timing regression model to select the
future configurations to evaluate. In Bayesian optimization [5], f is
assumed to be drawn from a distribution, often a Gaussian process.
The posterior built on noisy evaluations of f helps pick the new
point to select through optimizing an acquisition function. For exam-
ple, Ziegler et al. [6] used Bayesian learning to build a scalable
industrial flow tuning for logic synthesis and physical design, while
Kapre et al. [7] utilized this strategy to generate good quality FPGA
CAD tool parameter sets. Some works, including [6], use precol-
lected offline data to complement these generic optimization methods
and improve sampling efficiency. In [8], an XGBoost model is built
to learn parameter importance from already synthesized designs.
Kwon et al. [9] built an online recommender system based on a
QoR prediction model trained on archived design data obtained via
iterative tuning.

B. Learning to Optimize

On the other side, learning to optimize (L2O) is a metamorpho-
sis of traditional optimization methods, which, with ML, builds new
optimizers whose behaviors do not follow a fixed algorithm but are
trained on sample data. Therefore, they can achieve faster conver-
gence speeds than classical methods. In this paradigm, the searching
point is updated iteratively by xt+1 = xt − g(zt, θ), where g(·, θ) is
the update rule represented by an ML model and zt is the state of the
optimization process at time t, an ensemble built from previous iter-
ates zt ∝ f (xi≤t). The weighted sum of the objective function over
a timespan is optimized

∑T
t=1 wtf (xt) to improve the convergence

speed. In most cases, wt = 1{t=T}(t).
State-of-the-art methods, mathematical foundations, and critical

challenges for L2O research are well summarized in [10]. The
best models rely on a recurrent network trained with policy gra-
dient, whose recurrent nature helps mimic the update rule of a
sequential gradient-based optimizer. This emerging approach, sup-
plemented with a multitask learning methodology, forms the basis of
our work.

III. RL ENVIRONMENT

A. Placement Problem

The purpose of this work is to indirectly solve the classical VLSI
placement problem, which we formulate as follows.

Placement is one of the most critical steps in VLSI design because
it determines the landscape of a silicon chip and heavily influences
the subsequent circuit optimizations [11]. However, solving a place-
ment problem instance efficiently as a pure combinational task is
difficult per se, owing to its NP-completeness. Furthermore, the
close interrelation between the many sequential steps of the physical
design flow makes obtaining a good placement quality increasingly
difficult [12]. For example, placing engines must simultaneously
optimize conflicting cost metrics of silicon area, circuit performance,
and power without violating on-chip overlap rules. Modern placing
engines approach this conundrum using an analytical formulation to
co-optimize the wire length subject to density constraints in a single
quadratic or nonlinear cost function.

Formally, given a hypergraph representation of the netlist, G =
(V,E), where the vertices V = {v1, . . . , vn} represent the cells and
the hyperedges E = {e1, . . . , em} represent the nets, an analytical
placer targets the minimization problem

min
x,y

{
∑

e∈E

HPWL(e; x, y)+ λD(x, y)

}

(1)

where

HPWL(e; x, y) = max
vi,vj∈e

|xi − xj| + max
vi,vj∈e

|yi − yj| (2)

is the HPWL, (x, y) are the 2-D cell locations, and the density func-
tion D ensures no overlaps among cells through the progressive
increase of the Lagrange multiplier λ.

In this work, we do not propose a new placer. Instead, appre-
ciating the high-quality placements offered by commercial engines,
we propose leveraging them while taking advantage of their sizeable
parametrizable space and its opportunity for PPA gains. Traditionally,
experienced designers expend significant time searching manually in
a wide range of candidate parameters through iterative trial and error
to find tool parameter settings that satisfy their PPA goals. However,
owing to the vast design space and cost of PPA evaluations from
hours to days, only a tiny portion of the possible parameter sets can
be explored, resulting in suboptimal designs. Furthermore, due to
the latency, complexity, and unpredictability of tool outcomes, tradi-
tional black-box optimization methods, such as Simulated Annealing
and Genetic Algorithms (GAs), are insufficient to obtain high-quality
design implementations. Thus, we propose using RL to automatize
the time-consuming tuning of placement parameters and exploit deep
ML techniques to generalize the tuning process to unseen netlists.

B. Overview

We build an RL agent that tunes the parameter settings of the
placement tool autonomously, intending to minimize wire length. Our
RL problem consists of the following four key elements.

1) States: The set of all netlists in the world (N) and all possible
parameter settings combinations (P) from the placement tool
(e.g., Cadence Innovus or Synopsys ICC2). A single state s
consists of a unique netlist and a current parameter set.

2) Actions: The set of actions that the agent can use to modify
the current parameters. An action a changes the setting of a
subset of parameters.
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Fig. 1. RL agent–environment interaction in the proposed methodology.

3) State Transition: Given a state (st) and an action, the next state
(st+1) is the same netlist with updated parameters.

4) Reward: Minus the HPWL output from the commercial EDA
placement tool. The reward increases if the action improves
the parameter settings in terms of minimizing wire length.

As depicted in Fig. 1, in RL, an agent learns from interacting with
its environment over a number of discrete time steps. At each time
step t, the agent receives a state st and selects an action at from a
set of possible actions A according to its policy π , where π maps
states to actions. In return, the agent receives a reward signal Rt and
transitions to the next state st+1. This process continues until the
agent reaches a terminal state, after which the process restarts. The
goal of the agent is to maximize its long-term return

Gt =
∞∑

k=0

γ kRt+k+1 (3)

where γ is a factor discounting future rewards.
An optimal policy is one that maximizes the expected returns or

values. The value function vπ (st) is the expected return starting from
state st when following policy π , of the form:

vπ (st) = Eπ [Gt|st] = Eπ

⎡

⎣
∞∑

k=0

γ kRt+k+1|st

⎤

⎦. (4)

C. Our RL Settings

We formulate the placement parameters optimization task led by
an RL agent as follows.

This is a combinatorial optimization problem where P is very
large and exhaustive search is infeasible.

We now present a more formal definition of the problem at hand
and our proposed approach. Given a netlist n, we wish to find

p∗ = arg maxp∈P PPAtool(n, p), where P is the space of all param-
eter sets, and PPAtool is the EDA tool output. In this work, the latter
corresponds to − HPWL but could be any metric of interest in all
generality. The black-box function PPAtool is not directly available to
the learner and can only be evaluated at a query point (n, p). These
queries are expensive in terms of runtime and computing resources.

To find p∗, we first define st = (n, pt) as the state at timestep
t (≡ query). An action at turns pt into pt+1. The environment is
then queried by running the commercial tool with parameters pt+1
for netlist n. The reward is returned as Rt, a stochastic evaluation
of PPAtool(n, pt+1). The new state is now st+1 = (n, pt+1). After L
evaluations, we output our best guess pGuess = p(L), which could be
different from pL.

We posit that this modified problem can be reduced to learning a
sequential optimizer represented as an optimal policy π∗ prescribing
the optimal action to take in a specific state. The optimizer should
learn the optimization process for all possible netlists N. Given a
new netlist n′, an optimal parameter set is obtained as

p∗(n′) = aL
(
aL−1(· · · a0(p0) . . .)

)
(5)

where ai = π∗(n′, pi). In that context, a policy π is considered
optimal if it maximizes the expectation

En∼N
[
PPAtool(n, pGuess)

]
(6)

where pGuess is found on the trajectory following π .
For an agent to correctly select an action, we must first define a

good representation of its environment. In our case, the representation
of the environment is given by a human expert as presented.

D. Our States

We define our state as the joint values of 12 placement param-
eters from Cadence Innovus used to perform the current placement
(Table I) and information metrics on the netlist being placed. The
netlist information consists of a mixture of metadata knowledge (e.g.,
number of cells and floorplan area) with topological graph features
(Table II) and unsupervised features extracted using a GNN. Netlist
characteristics are essential to transfer the knowledge across very
different netlists so that our agent generalizes its tuning process to
unseen netlists. Indeed, the optimal policy is likely related to each
netlist’s particularities. Thus, our state can be written as a con-
catenation of one-hot encoded categorical parameters (Booleans or
enumerates), integer parameters, and integer and float netlist features.

We carefully selected the placement parameters among the 60
available ones in the software. We pruned the ones not relevant to our
study; we do not, for example, consider structured data paths, fillers,
scan chains, shifters, and IR drops. Our goal is a proof of concept and
to show RL methods’ applicability to the design space exploration of
commercial VLSI tools knobs. Thus, we picked the 12 most common
parameters understood even by inexperienced designers. Moreover,
the small number of these makes action definition simpler, while a
large number of these would result in a much larger space and an
impractical definition of actions for our proof-of-concept purpose.

We transform the synthesized netlists into graphs using the model
shown in Fig. 2. The resulting abstract graph G = (V,E) is as fol-
lows. For each net e in the netlist with driving cell se and load cells
{t0, . . . , tn}e, we create a directed edge in G per pair (se, ti). This
edge-based representation versus hyperedge-based makes applying
standard graph algorithms to the netlist easy. The directed nature of
the graph represents the natural flow of electrical signals of the nets
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TABLE I
12 TARGETED PLACEMENT PARAMETERS. THE SOLUTION SPACE IS 1013 · 36 · 23 = 6 x 109

TABLE II
OUR 20 HANDCRAFTED NETLIST FEATURES

Fig. 2. Our netlist to graph transformation.

from source to sinks. The directed nature of the graph is necessary for
the correct definition of graph characteristics proposed, such as the
logic levels. However, this representation is switched to undirected
when needed by other graph algorithms.

We propose two ways to extract meaningful features from this
graph representation.

1) Topological Graph Features: We borrow concepts from graph
theory to learn rich graph representations that uniquely classify each
graph. We use Boost and BLAS optimized C++ libraries to extract
our features efficiently on large graphs—collected in less than 1 h
for the larger netlists. Let G = (V,E) be the directed cyclic graph
representing the netlist obtained using the above model. Global sig-
nals, such as reset, clock, or VDD/VSS, are not considered when
building the graph. Multiple connections between two vertices in the
graph are merged, and self-loops are eliminated. We consider the
following graph features to capture the netlist’s complex topology
characteristics (e.g., connections and spectral).

1) Strongly Connected Components (SCCs): A strong component
of G is a subgraph S of G if for any pair of vertices u, v ∈ S
there is a directed cycle in S containing u and v. We compute

them in linear time using directed a depth-first search with an
algorithm due to Tarjan [13].

2) Clique: Given an integer m, does G contains Km (the complete
graph on m vertices) as a subgraph? We use the Bron–Kerbosch
algorithm [14] to find the maximal cliques.

3) k-Colorability: Given an integer k, is there a coloring of G with
k or fewer colors? A coloring is a map χ : V → C such as two
adjacent vertices have the same color; i.e., if (u, v) ∈ E, then
χ(u) �= χ(v). Minimum k (the chromatic number) is computed
using a technique proposed in [15].

4) Logic Levels: What is the maximum distance (# gates tra-
versed) between two flip-flops? LL = maxa,b∈FFs d(a, b).

5) Rich Club Coefficient: How well do high-degree (rich) nodes
know each other? Let Gk = (Vk,Ek) be the filtered graph
of G with only nodes of degree > k, then RCCk =
([2|Ek|]/[|Vk|(|Vk| − 1)]) [16].

6) Clustering Coefficient: A measure of the cliquishness of nodes
neighborhoods [17] of the form

CC = 1

|V|
∑

i∈V

|ejk : vj, vk ∈ Neighbors(i), ejk ∈ E|
deg(i)(deg(i)− 1)

. (7)

7) Spectral Characteristics: Using the implicitly restarted Arnoldi
method [18], we extract from the Laplacian matrix of G the
Fiedler value (second smallest eigenvalue) deeply related to
the connectivity properties of G, as well as the spectral radius
(largest eigenvalue) relative to the regularity of G.

These features give crucial information about the netlist. For exam-
ple, connectivity features, such as SCC, maximal clique, and RCC,
are essential to capture congestion considerations (considered dur-
ing placement refinement), while logic levels indirectly translate the
difficulty of meeting timing by extracting the longest logic path.

2) Features From Graph Neural Network: Starting from sim-
ple node features, including degree, fanout, area, and encoded gate
type, we generate node embeddings (ENC(v)) using unsupervised
GraphSAGE [19] with convolutional aggregation, dropout, and out-
put size of 32. The GNN algorithm iteratively propagates information
from a node to its neighbors. The GNN is trained on each graph indi-
vidually. Then, the graph embedding (ENC(G)) is obtained from the
node embeddings with a permutation invariant aggregator, as shown
in Fig. 3

ENC(G) = MEAN(ENC(v)|v ∈ V) (8)
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Fig. 3. Graph embedding using a GNN package GraphSAGE [19]. We first
extract 32 features for each node in the graph. Next, we calculate the mean
among all nodes for each feature, resulting in 32 features for the entire graph.

Fig. 4. t-SNE visualization [20] of our 20 handcrafted plus 32 GNN features
combined. Points representative of each netlist are well separated, proving
graph features capture the differences between netlists well.

where the individual node embeddings are obtained after K recurrent
updates

⎧
⎪⎨

⎪⎩

x(0)v = (degree(v), fanout(v), area(v), type(v), . . . , )

x(k+1)
v = �(x(k)v , ρ({x(k)u :e = (v, u) ∈ E}))

ENC(v) = x(K)v .

(9)

Function ρ aggregates features of neighboring nodes, and function
� concatenates the node’s current representation with the aggre-
gated neighborhood information, which it then nonlinearizes and
normalizes.

The t-SNE projection in two dimensions [20] of the vector of graph
features is displayed in Fig. 4. We see that all netlists’ points are far
apart, indicating that the combination of our handcrafted and learned
graph features distinguishes well the particularities of each netlist.

E. Our Actions

The state-of-the-art parameter auto-tuner presented in [3] uses a
MAB whose arms are classical search techniques, such as Simulated
Annealing and GAs. Each technique modifies parameter sets differ-
ently, while the MAB algorithm tries to determine the arm with the
highest expected reward quickly. Parameter search is done by select-
ing a search technique one at a time, where the selection is based on
a credit assignment score that mixes exploration and exploitation.

We considered the possibility of using these search arms as actions
in our RL framework. The problem with this option is that a fun-
damental assumption in RL tasks is that the Markov property of
memorylessness holds; i.e., the optimal action should depend on the
last state alone. This assumption is not valid for arms such as GA
or any technique with population-based improvements which have a
current state depending on all prior states. Instead, they memorize a
population of one, usually the best, or multiple parameter settings to
create a new candidate setting. In principle, this representation can

TABLE III
OUR 11 ACTIONS

be made Markovian by aggregating all parameters evaluated into one
state. However, this aggregation can produce a state representation
impractically too large.

We thus choose to define our own deterministic actions to change
the setting of a subset of parameters. They render the state Markovian,
i.e., given state–action pair (st, at), the resulting state st+1 is unique.
An advantage of fully observed determinism is that it allows plan-
ning. Starting from state s0 and following a satisfactory policy π , the
trajectory

s0
π(s0)−−−→ s1

π(s1)−−−→ · · · π(sn−1)−−−−−→ sn (10)

leads to a parameter set sn of good quality. If π has been learned,
sn can be computed directly in O(1) time without performing any
placement.

Defining only two actions per placement parameter would result
in 24 different actions, too many for the agent to learn well. Thus,
we first decided to group variables per type (Boolean, Enumerate,
Numeric) and per placement “focus” (Global, Detailed, Effort). Then,
for each group, we define expressive yet straightforward actions such
as FLIP for Booleans. For enumerates, DOWN ≡ “pass from high to
medium,” for example. For an integral parameter value x defined in a
range [a, b], the updated value of actions UP/DOWN is obtained with
the simple transformation x′ = min(max(x±(b−a)	x0, a), b), where
	x0 is a fixed delta ∈ [0, 1] defined per parameter. In the exper-
iments, 	{eco max distance} = 0.10, 	{legalization gap} = 0.10,
and 	{max density} = 0.03. The smaller delta for max density
accounts for its larger effect, observed empirically, on the HPWL.

We also add one arm that does not modify the current set of param-
eters. Instead, it triggers an environment’s reset if it gets picked
multiple times in a row. This leads to the 11 different actions A
presented in Table III. Our action space is designed to be as simple
as possible to help neural network training but also expressive enough
so that such transformations can reach any parameter settings.

F. Our Reward Structure

To learn with a single RL agent across various netlists with dif-
ferent wire lengths, we cannot define a reward directly linear with
HPWL. Thus, to help convergence, we adopt a normalized reward
function that renders the magnitude of the value approximations
similar among netlists, of the form

Rt := HPWLHuman Baseline − HPWLt

HPWLHuman Baseline
. (11)

While defining rewards in this manner necessitates knowing
HPWLHuman Baseline, an expected baseline wire length per design,
this only requires one placement to be completed by an engineer.
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IV. RL PLACEMENT AGENT

A. Overview

Using the definition of the environment presented in the previous
section, we train an agent to tune the parameters of the placement
tool autonomously. Here is our approach.

1) The agent learns the optimal action for a given state. This
action is chosen based on its policy network probability
outputs.

2) We adopt an actor–critic framework to train the policy network
effectively, which brings the benefits of value-based and policy-
based optimization algorithms together.

3) To solve the well-known shortcomings of RL in EDA of
latency and sparsity, we implement multiple environments
collecting different experiences in parallel.

4) Our agent architecture utilizes a deep neural network com-
prising a recurrent layer with an attention mechanism to
enable learning a recursive optimization process with complex
dependencies.

B. Goal of Learning

We choose to use policy-based RL from the many ways of learning
how to behave in an environment. We state the formal definition of
this problem as follows.

This optimization problem aims to learn which action a to take in
a specific state s. We represent the parametrized policy πθ by a deep
neural network. The main reasons for choosing this framework are
as follows.

1) It is model-free, which is essential as the placer tool environ-
ment is complex and challenging to model.

2) Our intuition is that the optimal policy may be simple to learn
and represent (e.g., keep increasing the effort), while the value
of a parameter setting may not be trivial or change significantly
based on observation.

3) Policy optimization often shows good convergence properties.
4) A tabular version storing every state–action pair (st, at) and

reward Rt would be too large to store in memory and too slow
to learn the value of each state individually.

5) A neural network is a universal approximator that has been
shown to generalize well when the experience is not inde-
pendent and identically distributed (i.i.d.) and nonstationary
(successive states are correlated).

C. How to Learn: The Actor–Critic Framework

In our chosen architecture, we learn a policy that optimizes the
value while learning the value simultaneously. For learning, it is
often beneficial to use as much knowledge observed from the envi-
ronment as possible and hang off other predictions rather than solely
predicting the policy. This type of framework, called actor–critic, is
shown in Fig. 5. The policy is known as the actor because it is used
to select actions, and the estimated value function is known as the
critic because it criticizes the actions made by the actor.

Fig. 5. Actor–critic framework. The critic learns about and critiques the
actor’s current policy.

Actor–critic algorithms combine value-based and policy-based
methods. Value-based algorithms learn to approximate values
vw(s) ≈ vπ (s) by exploiting the Bellman equation

vπ (s) = E
[
Rt+1 + γ vπ (st+1)|st = s

]
(12)

which is used in temporal difference (TD)

	wt = (Rt+1 + γ vw(st+1)− vw(st)
)∇wvw(st). (13)

On the other hand, policy-based algorithms update a parameterized
policy πθ (at|st) directly through stochastic gradient ascent in the
direction of the value with

	θ t = Gt∇θ logπθ (at|st). (14)

In actor–critic, the policy updates are computed from incomplete
episodes by using truncated returns that bootstrap on the value
estimate at state st+n according to vw, given by

G(n)t =
n−1∑

k=0

γ kRt+k+1 + γ nvw(st+n). (15)

This reduces the variance of the updates and propagates rewards
faster. The variance can be further reduced using state-values as a
baseline in policy updates, as in advantage actor–critic updates of
the form

	θ t =
(

G(n)t − vw(st)
)
∇θ logπθ (at|st). (16)

The critic updates parameters w of vw by n-step TD following (13),
and the actor updates parameters θ of πθ in the direction suggested by
the critic by policy gradient with (16). In this work, we use the advan-
tage actor–critic method, A2C [21], which produced excellent results
in diverse environments. As shown in (16), an advantage function
formed as the difference between returns and baseline state–action
estimate is used instead of raw returns. The advantage can be con-
sidered a measure of how good a given action is compared to some
average.

D. Synchronous Actor/Critic Implementation

The main issues plaguing the use of RL in EDA are the latency
of tool runs (it takes minutes to hours to perform one placement)
and the sparsity of data (there is no database of millions of netlists
placed designs or layouts). We implement a parallel version of A2C
to solve both issues, as depicted in Fig. 6. In this implementation,
an agent learns from the experiences of multiple Actors interacting
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Fig. 6. Synchronous parallel learner. The global network sends actions to
the actors through the step model. Each actor gathers experiences from their
own environment.

in parallel with their copy of the environment. This configuration
increases the throughput of acting and learning and helps decorrelate
samples during training for data efficiency [22].

The learning updates may be applied synchronously or asyn-
chronously in parallel training setups. We use a synchronous version,
i.e., a deterministic implementation that waits for each Actor to finish
its segment of experience (according to the current policy provided
by the step model) before performing a single batch update to the
network weights. One advantage is that it provides larger batch sizes,
which are more effectively used by computing resources.

The parallel training setup does not modify the equations presented
before. Instead, the gradients are just accumulated among all the
environments’ batches.

E. Two-Head Network Architecture

The actor–critic framework uses both policy and value models.
The full agent network can be represented as a deep neural network
(πθ , vw) = f (s). This neural network takes the state s = (p◦n) made
of parameter values p and netlist features n and outputs a vector of
action probabilities with components πθ (a) for each action a, and a
scalar value vw(s) estimating the expected cumulative reward G from
state s.

The policy tells us how to modify a placement parameter setting,
and the value network tells us how good this current setting is. We
share the body of the network to allow value and policy predictions to
inform one another. The parameters are adjusted by gradient ascent
on a loss function that sums over the losses of the policy and the
value plus a regularization term, whose gradient is defined as in [23]

(
G(n)t − vw(st)

)
∇θ logπθ (at|st)

︸ ︷︷ ︸
policy gradient

+

β
(

G(n)t − vw(st)
)
∇wvw(st)

︸ ︷︷ ︸
value estimation gradient

+

η
∑

a
πθ (a|st) logπθ (a|st)

︸ ︷︷ ︸
entropy regularization

.

(17)

The entropy regularization pushes entropy up to encourage explo-
ration, and β and η are hyperparameters that balance the importance
of the loss components.

The complete architecture of our deep neural network is shown
in Fig. 7. For value and policy predictions, the concatenation of
placement parameters with graph extracted features is first passed
through two feedforward fully connected (FC) layers with tanh acti-
vations, followed by an FC linear layer. This is followed by a long

Fig. 7. Overall network architecture of our agent. Combining an LSTM with
an attention mechanism enables learning a complex recurrent optimization
process. Table IV provides the details of the subnetworks.

short-term memory (LSTM) module with layer normalization and 16
hidden standard units with Forget gate. The feedforward FC layers
have no memory. The model can base its actions on previous states
by introducing an LSTM in the network, which is a recurrent layer.
This is motivated by the fact that traditional optimization methods are
based on recurrent approaches. Moreover, we add a sequence-to-one
global attention mechanism [24] inspired by state-of-the-art natural
language processing architectures to help the recurrent layer (RNN)
focus on essential parts of the recursion. Let ht be the hidden state of
the RNN. Then, the attention alignment weights at with each source
hidden state hs are defined as

at(s) =
exp
(

score(ht, hs)
)

∑
s′ exp
(

score(ht, hs′)
) (18)

where the alignment score function is

score(ht, hs) = h�
t Wahs. (19)

The global context vector

ct =
∑

s
at(s)hs (20)

is combined with the hidden state to produce an attentional hidden
state, yielding

h̃t = tanh(Wc[ct ◦ ht]). (21)

This hidden state is then fed to the two heads of the network,
composed of two FC layers with an output softmax layer for the
policy and a linear output layer for the value. The parameters of our
network are summarized in Table IV.
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TABLE IV
NEURAL NETWORK PARAMETERS USED IN OUR RL AGENT

ARCHITECTURE IN FIG. 7. THE NUMBER OF INPUTS OF THE

FIRST FC LAYER IS AS FOLLOWS: 32 FROM GNN, 20 FROM

TABLE II, 24 ONE-HOT ENCODING FOR THE ENUM/BOOL TYPES

FROM TABLE I, AND 3 INTEGER TYPES FROM TABLE I

F. Our Self-Play Strategy

Inspired by AlphaZero [1], our model learns without supervised
samples. We do not use expert knowledge to pretrain the network
using well-known parameter sets or actions. While the agent makes
random moves at first, the idea is that by relying on zero human bias,
the agent may learn counter-intuitive moves and achieve superhuman
tuning capabilities.

G. Multitask Learning

We adopt a multitask learning framework during training to build
an agent that can perform well on multiple netlists. We posit that
each netlist corresponds to a different task to follow this paradigm.
In principle, different VLSI netlists share the same overall structure
(≈ directed cyclic graph with small-degree nodes), making multi-
task learning more efficient and learning all the tasks more quickly
or proficiently than learning them independently. This principle will
also allow generalization to unseen netlists, whose structures are sim-
ilar to the trained ones. While there are various multitask learning
methodologies [25], we use one of the most direct approaches: aggre-
gate the data across tasks and learn a single model. Thus, our vanilla
multitask learning objective is

min
θ

T∑

t=1

Lt(θ ,Dt) (22)

where each loss Lt is computed with (17), and the task t (= netlist
n) is specified as an extra set of features in the state definition
s = (n, p). Dt corresponds to the data obtained for task t. This
concatenation-based conditioning is standard but expressive enough
to dilute the netlist information inside the network. The reward func-
tion also depends on the task R = R(n), as highlighted by the HPWL
baseline defined per netlist in (11). Finally, we solve the reduced
single-task learning problem with our parallel A2C: scattering the T
netlists over the different actors will help optimize the above global
loss.

V. EXPERIMENTAL RESULTS

To train and test our agent, we selected 15 benchmarks designs
from OpenCores, ISPD 2012 contest, and two RISC-V single cores,
presented in Table V. We use the first 11 designs for training, then the
following LDPC design is held-out to define a parameter set selection
criterion post-training, and finally, the last three unseen designs are
used for actual testing. We synthesize the RTL netlists using Synopsys
Design Compiler. We use TSMC 28-nm technology node. The place-
ments are done with Cadence Innovus 17.1. The aspect ratio of the
floorplans is fixed to 1, and appropriate fixed clock frequencies are

TABLE V
BENCHMARK STATISTICS BASED ON A COMMERCIAL 28-NM

TECHNOLOGY. RCC IS THE RICH CLUB COEFFICIENT (e−4),
LL IS THE MAXIMUM LOGIC LEVEL, AND SP. R. DENOTES

THE SPECTRAL RADIUS. RT IS THE AVERAGE PLACEMENT

RUNTIME USING INNOVUS (IN MINUTES)

selected. Memory macros of RocketTile and OpenPiton Core bench-
marks are preplaced by hand. A lower bound of total cell area divided
by floorplan area is set on parameter max density for successful place-
ments. IO pins are placed automatically by the tool between metals
4 and 6.

A. RL Network Training Setting

We define our environment using the OpenAI Gym interface [26]
and implement our RL agent network in Tensorflow. We use 16 par-
allel environments (16 threads) in our synchronous A2C framework.
We use the smallest netlists during training for the following reason.
The synchronous nature of A2C demands all individual episodes to
be completed for all environments before the weight update is pos-
sible, i.e., an entire batch is collected. As netlists are randomly and
uniformly assigned when environments are reset, and the training
spans numerous resets, E[#it. per netlist] is fairly constant across all
netlists. So, the total makespan, here the training runtime, is equal to
the makespan of the longest netlist

E[makespan] = E[#it. per netlist]
︸ ︷︷ ︸

cst.

× max
n∈NE[ RT(n)]. (23)

This equation motivates the use of smaller netlists whose size corre-
lates well with the placement runtime, as shown in the last column
of Table V, to speed up training.

We perform tuning of the hyperparameters of our network using
Bayesian optimization, which results in stronger agents. The learn-
ing curve of our A2C agent in our custom Innovus environment is
shown in Fig. 8. We observe that the mean reward across all netlists
converges asymptotically to a value of 6.8%, meaning wire length is
reduced on average by 6.8%.

Training over 150 updates (×6 iterations = 14 400 placements)
takes about 100 h. Note that 99% of that time is spent on performing
the placements, while updating the neural network weights takes less
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Fig. 8. Training our agent for 150 updates (× 16 × 6 = 14 400 placements).
The reward is an aggregate of all training netlists’ rewards. Training time is
within 100 h. Human baseline: reward = 0.

Fig. 9. Our RL training workflow in each environment.

than 20 min. Without parallelization, training over the same number
of placements would take 16 × 100 h = 27 days.

An explained variance of 0.67 shows that the value function
explains relatively well the observed returns. We use a discount fac-
tor γ = 0.997, coefficient for the value loss β = 0.25, entropy
cost of η = 0.01, and a learning rate of 0.0008. We use a standard
noncentered RMSProp as a gradient ascent optimizer. The weights
are initialized using orthogonal initialization. The learning updates
are batched across rollouts of 6 actor steps for 16 parallel copies of
the environment, totaling a mini-batch size of 96. All experiments
use gradient clipping by norm to avoid exploding gradients (a famil-
iar phenomenon with LSTMs), with a maximum norm of 0.5. Note
that with 14 400 placements, we only explore 10−6% of the total
parameter space.

Fig. 9 depicts the RL training workflow in each environment. We
start by selecting a random netlist and a random parameter set for a
given environment. Each environment is reset when a stop condition
is met. Training on K environments in parallel, each performing a
placement on a different netlist, the reward signal is averaged on the
K netlists for the network updates, which decreases the reward vari-
ance and ultimately helps the network generalize to unseen netlists
as prescribed in [27] and the presented multitask methodology.

More formally, we first draw per environment k a random netlist
uniformly from the set of available training netlists nk ∼ U(N).
This netlist is fixed until the environment is reset. We also draw a
random initial parameter setting from all possible parameter settings
p0,k ∼ U(P). Then, while the stopping criterion is not respected,
we draw aj,k ∼ πθ (pj−1,k, nk) and pj,k = aj,k(pj−1,k). The pair

TABLE VI
COMPARISON OF HALF-PERIMETER BOUNDING BOX (HPWL) AFTER

PLACEMENT ON TRAINING NETLISTS AMONG HUMAN DESIGN,
MAB [3], AND OUR RL-BASED METHOD. HPWL IS REPORTED IN m. 	

DENOTES PERCENTAGE NEGATIVE IMPROVEMENT OVER HUMAN DESIGN

(pj,k, nk) is used to perform placement in the EDA tool environment.
The network agent policy network πθ is updated with a sliding history
(rollout) of length J of states {(pj,k, nk)}j∈J,k∈K and corresponding
rewards {Rj,k}j∈J,k∈K of the k ∈ K environments, totaling a batch
size of J × K, using the A2C update formulas. Our reset criterion is
the same for all k environments (calculated independently), so k is
omitted

{Rj−4,Rj−3, ..,Rj} < 0‖
{aj−4, aj−3, .., aj} = NOTHING ‖

j − jlast reset = 16 (16 steps have passed)

=⇒ reset pj ∼U(P). (24)

B. Netlist Training Results

For comparison, we use the state-of-the-art tool auto-tuner
OpenTuner [3] that we adapt for Innovus as a baseline. In this frame-
work, a MAB selects at each iteration a search technique among GA,
Differential Evolution, Simulated Annealing, Torczon hillclimber,
Nelder-Mead, and Particle Swarm Optimization, based on a score that
forces a tradeoff between exploitation (use arm that worked best) and
exploration (use a more rarely used arm). We run the search tech-
niques in parallel, simultaneously evaluating 16 candidate parameter
sets. It is run on the 11 training netlists, and we record the best-
achieved wire length, performing 1300 placements per netlist so that
the total number of placements equals those of the RL agent training.

Table VI shows the best wire lengths the MAB and the RL agent
found during training. The human baseline is set by an experienced
engineer who tunes the parameters for a day. We see that the RL
agent outperforms MAB on most netlists, reducing HPWL by 9.8%
on the Rocket Core benchmark. All in all, both methods improve
pretty well on the human baseline.

C. Unseen Netlist Testing Results

To verify the ability of our agent to generalize, we study its
performance on the LDPC netlist and the three unseen test netlists.
Without additional training (the network weights are fixed), the RL
agent iteratively improves a random initial parameter set by selecting
action a with the highest probability πθ (a), as described in (10)—
but ignoring the action NOTHING to avoid being stuck in the same
parameter state. Because our actions are deterministic, the resulting
parameters are known and directly fed back as input to the network.
We repeat this process until the estimated value predicted by the
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TABLE VII
COMPARISON ON LDPC AND THE THREE TEST NETLISTS OF BEST WIRE

LENGTH FOUND (ONE ITERATION = ONE PLACEMENT PERFORMED).
HPWL IS REPORTED IN m

TABLE VIII
BEST PLACEMENT PARAMETERS FOUND FOR THE

NETCARD BENCHMARK

network decreases for three consecutive updates and backtrack to
the settings with the highest value—this way, a “good” candidate
parameter set is found without performing any placement, i.e., with-
out interacting with the environment. We present the details for the
criterion choice in the following section. We then perform a unique
placement with that parameter set and record the obtained wire length.

In comparison, the MAB needs the reward signal to propose a
new set of parameters and therefore needs actual placements to be
performed by the tool. We track the best wire length found, allotting
50 sequential iterations to the MAB.

The best wire length found by our RL agent and the MAB on the
LDPC netlist and all three test netlists is shown in Table VII. Our
RL agent achieves superior wire lengths consistently, performing only
one placement. Finally, Table VIII shows the best parameter settings
found by the MAB and the RL agent on the Netcard benchmark.
Interestingly, we can see how the two optimizers found separate ways
to minimize HPWL: WL-driven versus congestion-driven.

D. Parameter Selection Criterion and Value Trajectory

We must define a criterion to select a suitable parameter set at
testing time, i.e., decide when to stop the state trajectory of the state
transition diagram (10) without interacting with the environment. This
criterion is fundamentally distinct from the training’s stopping crite-
rion of (24), which directly interacts with the training environments
to reset them by inspecting the actual rewards. Moreover, contrary
to training where the entropy regularization allows exploration, the
network actions are deterministic during testing. Therefore, it is not
evident that the testing criterion can be best defined by simply replac-
ing the reward with the predicted value in the first line of (24).
Indeed, we observed that our trained network did not achieve superior
performance to the MAB if used in this fashion.

Therefore, after first fixing the pretrained weights of the network,
we derive a generic selection criterion on a unique held-out
unseen netlist (LDPC, the smallest test benchmark) by tracking

Fig. 10. Value function trajectories on the Leon3 benchmark for five random
initial parameter sets. Arrows indicate the highest value on a given trajectory.

TABLE IX
PPA COMPARISON AFTER ROUTING ON THE SELECTION CRITERION

DEFINITION (LDPC) AND TEST SETS. THE TARGET FREQUENCIES ARE

1 GHZ, 500 MHZ, 833 MHZ, AND 666 MHZ FROM TOP TO BOTTOM

the trajectories of the network’s predicted value and environment
reward feedback. Empirically, the found criterion yields good HPWL
improvements on all test netlists despite being derived from LDPC
only. In Fig. 10, we show the trajectories of the value function
on benchmark Leon3 for multiple random starting points. The ran-
domness of the starting parameter set does not notably affect the
convergence of the value function.

E. PPA Comparison After Routing

To confirm the improvement in HPWL after placement is trans-
lated into one in the final routed wire length, we perform the routing
of the placed designs. They are all routed with the same settings
where metal layers 1–6 are used. The layouts of OpenPiton Core
are shown in Fig. 11. We verify the target frequency is achieved
and routing succeeded without congestion issues or DRC violations.
The PPA of routed designs is summarized in Table IX. We observe
that the HPWL reduction after placement is conserved after routing
on all test designs, reaching 7.3% and 11% wire length savings on
LDPC and Netcard compared with the human baseline. Footprints are
74 283 µm2 for LDPC, 1 199 934 µm2 for OpenPiton, 728 871 µm2

for Netcard, and 894 115 µm2 for Leon3.

F. Controlled Feature Selection

One might wonder if the proposed handcrafted and GNN graph
features help our RL agent’s superior performance. We resort to
well-established controlled variable selection methods to offer evi-
dence of their importance. The RL agent’s strength is closely
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Fig. 11. 28-nm full-chip GDSII layouts of OpenPiton and Netcard. Top: (a) human design (took 7 h). (b) MAB (took 16 h). (c) RL (took 20 min). Bottom:
(a) human design (took 8 h). (b) MAB (took 20 h). (c) RL (took 25 min).

related to its optimal action prediction and value function estima-
tion. Therefore, we study which explanatory variables serve these
two agent predictions.

We thus store the training tuples (st, at, v(st)) to examine the rela-
tionships between state and corresponding action and value. We only
keep the samples of iterations ≥ 100, resulting in 4800 tuples, which
by Fig. 8 correspond to a network of good quality that has converged.

Let y ∈ {a, v} denote the response of interest, the action, or
value, respectively, which potentially depends on all state variables
X1, . . . ,Xp. To discover the importance of variables, we assume an
(explainable) linear model

y = X · β + z, where zi
i.i.d.∼ N(0, σ 2). (25)

We have n = 4800 observations, p = 64 features, and β is the
unknown vector of coefficients and is supposed to be sparse. We
wish to select a set of features Xj that are likely to be relevant to
the response y, without too many false positives. The most pertinent
way to measure the performance of the discovery method is the false
discovery rate (FDR)

FDR = E

[
# false positives

# of features selected

]

= E

[
|Ŝ ∩ H0|

max(1, |Ŝ|)

]

(26)

where Ŝ is the set of selected features and H0 = “null hypothe-
ses” = {j ∈ �1. . p� : β�j = 0}, where β�j denotes the “true” value
of βj from nature. This is the frame of multiple hypothesis testing,
where rejecting the null hypothesis {βj = 0} indicates Xj is a likely
explanatory variable.

We propose two methods for this large-scale hypothesis testing
problem. Using two methods built on different sets of theoretical
assumptions will allow us to derive reliable conclusions when they
agree.

1) We first run the Benjamini–Hochberg procedure (BHq) [28] on
a linear regression coefficient estimate. The hypotheses are first
ordered and then rejected or accepted based on their p-values
(= P[|t| ≥ |tj| | H0]) obtained from a two-sample student’s
t-test (tj = β̂j/ sd(β̂j)).

2) We also run the Knockoff [29] with the Lasso. This method
manufactures fake variables mimicking the original variables’
correlation structure. These negative controls allow identifying

TABLE X
CONTROLLED FEATURE SELECTION FOR THE VALUE ESTIMATION OF

OUR TRAINED RL AGENT

TABLE XI
CONTROLLED FEATURE SELECTION FOR THE ACTION PREDICTION OF

OUR TRAINED RL AGENT

the significant predictors while controlling the FDR. The test
statistic is Wj = max{λj, λ̃j} ·sign(λj − λ̃j), where λj and λ̃j are
the first time the jth variable and its knockoff enter the Lasso
path, respectively. Then, the variables with Wj over a certain
threshold computed from the target FDR are selected.

Both methods return the set of nonzero βj, on which the null
hypothesis was rejected. We use a traditional target of FDR ≤
q = 0.1. The features selected by the two testing methodologies
are presented in Tables X and XI, listed in decreasing order of
importance.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 01,2023 at 11:49:48 UTC from IEEE Xplore.  Restrictions apply. 



1306 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 4, APRIL 2023

The high values of test statistics |t| and W show strong evi-
dence that the graph features are essential to the RL value network.
Interestingly, the number of IOs is deemed most important. This is
not surprising, as combined with the total cell area, it closely relates
to the famous Rent’s rule, which is empirically seen as a reasonable
estimate of a circuit wire length [30]. Overall, we observe a good bal-
ance of GNN and handcrafted graph features in the value prediction.
In contrast, tool parameters emerge as more critical for the action
prediction, while a few graph features still appear.

VI. STATISTICAL TESTING

The above experiments show that our RL agent outperforms a
human designer and the MAB [3] on some placement parameter tun-
ing task instances. However, we recognize that the various sources
of randomness in these test experiments, such as the starting parame-
ters and our handcrafted stopping and selection rules, may introduce
a selection bias to the results. Hence, we present a formal method to
prove the statistical significance of the superiority of our RL agent
in this section.

A. Goal

In most RL works, the strength of an agent is established by a
win/loss percentage over a human or competing agent. This procedure
applies to tasks that can be simulated quickly and are suited for
benchmarking computer players in games, such as Go, Chess, and
Atari Games. However, the latency associated with EDA tool runs,
sometimes up to hours or even days, makes theoretical testing of such
strength metric prohibitive, as many experimental samples need to be
collected to prove or disprove it with high confidence. In addition,
the intrinsic randomness of EDA algorithms that rely on heuristics
heavily is also a challenge in assuring a particular method works well,
especially when accounting for the diversity of possible netlists.

For this reason, we turn toward sequential testing, where data
is collected and evaluated sequentially, and decisions are made as
soon as guaranteed by a stopping rule with a theoretical basis. This
approach decreases the cost of additional sampling.

B. Problem Definition

Similar to the testing procedure presented in the previous sec-
tion, the RL agent and MAB have already been trained. We then
make them perform against each other where each session follows
the method of Section V-C. Each session, referred to as a game, has
a binary outcome defined from the floating-point value of HPWL as

RL agent wins if HPWLagent < HPWLMAB

RL agent loses otherwise. (27)

The games are repeated one after another. We consider their out-
comes independent as the RL agent starts with a random parameter
set before each game. The netlist is, on the other hand, fixed.

This description naturally fits the Bernoulli distribution
Bernoulli(θ) of the coin-toss random variable by setting

Xi = 1 if RL agent wins game i,

Xi = 0 if RLagent loses game i. (28)

Each game is associated with a random variable Xi encoding the
result of the game i, leading to i.i.d. random variables X1, . . . ,Xn
after n games. Moreover, each Xi follows a distribution Bernoulli(θ)
for θ ∈ [0, 1], where θ corresponds to our RL agent’s probability of
winning a game, namely, P[Xi = 1].

We wish to discover meaningful information on θ , where a value
above 0.5 corresponds to the superiority of our agent. However, the
exact value of θ is only available asymptotically, i.e., as a win/loss
percentage of an infinite amount of games.

Traditional methods offer approximations of θ that are accurate for
large sample sizes only. Namely, consider the maximum-likelihood
estimator (MLE) of θ , of the form

θ̂n = 1

n

n∑

i=1

Xi. (29)

A confidence interval is introduced to include uncertainty in this
estimation, where we know that θ is in the interval with a proba-
bility larger than a certain percentage. Only nonasymptotic coverage
methods, where the coverage properties hold for any value of the
number of games played, are acceptable in our case, as asymptotic
methods would rely on a prohibitive number of games. A standard
tight confidence interval at level 1 − α of the Bernoulli model is
[θ̂n ±√log(2/α)/(2n)], which means the inequality

P

[

θ̂n −
√

log(2/α)

2n
≤ θ ≤ θ̂n +

√
log(2/α)

2n

]

≥ 1 − α (30)

is satisfied. Per this formula, if we were to play 50 games and desire
a 99% (α = 1%) confidence in the value of our estimation, the
uncertainty would be ±0.23, which can be substantial depending on
the value of θ̂n.

Thus, rather than using the estimation presented above, we propose
a statistical experiment with data X and model {Bernoulli(θ) : θ ∈
[0, 1]}. We want to decide between the composite null hypothesis
{H0 : θ ≤ θ0} against the composite alternative {H1 : θ ≥ θ1} where
θ1 > θ0. We decide that H0 means that our RL agent is not better,
while H1 means that our agent is indeed better. The values of θ0 and
θ1 can be chosen to fit the definition of superiority.

When testing hypotheses, two types of errors are considered,
namely, Type-I error and Type-II error, defined as

α = Pθ [ reject H0] when θ ≤ θ0,

β = Pθ [ reject H1] when θ ≥ θ1. (31)

In our problem, the Type I error corresponds to the probability of
our RL agent falsely being evaluated as better. The Type II error
corresponds to the probability of falsely evaluating the agent as infe-
rior. Ideally, we want the Type I and Type II errors to be minor.
In practice, H0 and H1 must be chosen to make the corresponding
Type I error more severe than Type II. This fact motivated our choice
of H0: we stay conservative and emphasize avoiding evaluating our
agent incorrectly as better.

C. Sequential Answer

Wald [31] proposed a general procedure called the SPRT that can
test our two competing hypotheses with a small number of samples.
The procedure evaluates the likelihood ratio between the hypothe-
ses and stops acquiring observations when this ratio crosses some
boundary.

After each game, Wald’s SPRT methodology computes the likeli-
hood ratio Ln of the currently n played games, i.i.d. observations
X1, . . . ,Xn having common density function P ∈ {P0,P1}, the
competing hypotheses

Ln =
n∏

i=1

P1(Xi)/P0(Xi). (32)
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The SPRT stops sampling at stage

N = inf{n ≥ 1 : Ln �∈ (A,B)} (33)

where 0 < A < 1 < B are stopping boundaries, rejecting {H0 : P =
P0}, and accepting {H1 : P = P1} if Ln ≥ B. Until the stopping
boundaries are not crossed, we must play more games. The choice
of A and B is dictated by the Type I and Type II error probabilities
α and β, respectively. Wald has shown that α and β are related to A
and B by the inequalities

α ≤ A−1(1 − β), β ≤ B(1 − α) (34)

which provides approximate determinations (nominal error rates) of
A and B in terms of the error probabilities.

The SPRT has minimal stopping time Eθ [T] at θ = θ0 or θ1, where
T denotes the sample size, but its Eθ [T] for different θ may not be
optimal [32]. Its correctness, however, stands, and to test {H0 : θ ≤
θ0} against {H1 : θ ≥ θ1} with Type I and Type II error probabilities
not exceeding α and β, one can use the SPRT of {J : θ = θ0} versus
{K : θ = θ1} with Type I and Type II error probabilities α and β.

D. SPRT in Our Problem

For simplicity, we present the SPRT stopping conditions by con-
sidering first the exponential family of distributions, G = {gη(x) =
eηx−ψ(η)g0(x), η ∈ A, x ∈ X}, where A and X are subsets of
the real line R1. η is the canonical parameter, and x is the natural
statistic; in many cases, the observed data point. For the exponential
family, it is straightforward to show that Ln ∈ (A,B) is equivalent to

log(A)+ n(ψ(η1)− ψ(η0))

η1 − η0
≤

n∑

i=1

xi

≤ log(B)+ n(ψ(η1)− ψ(η0))

η1 − η0
. (35)

The Bernoulli family, where Pθ [X = x] = θx(1 − θ)1−x, can be
written in exponential form with the correspondences

⎧
⎪⎨

⎪⎩

η = log( θ
1−θ ) (θ = 1

1+e−η )
ψ(η) = − log(1 − θ) (= log(1 + eη))
g0(x) = 1

(36)

yielding for our two hypotheses H0 against H1

η1 − η0 = log

(
θ1(1 − θ0)

θ0(1 − θ1)

)

ψ(η1)− ψ(η0) = log

(
1 − θ0

1 − θ1

)

(37)

which can be directly used in (35), along with n as the current number
of games played and

∑n
i=1 xi as the number of wins accumulated by

our RL agent during these n games.

E. Experiments

1) Conditions: We calculate the stopping boundaries A and B for
a small error rate target of α = β = 1% using (34) to provide a very
accurate decision. Moreover, to be conservative, we pose {H0 : θ ≤
θ0 = 0.5} and {H1 : θ ≥ θ1 = 0.8}. Setting θ1 as high permits a
“higher superiority” level tolerance if our agent is found better by
the statistical procedure.

Fig. 12. SPRT [31] of the opposition of MAB [3] versus our trained RL
agent. The latter is “superior” to the MAB on all four LDPC and unseen test
netlists.

2) Results: We plot in Fig. 12 the results of the games of our
RL agent against the MAB for the LDPC and the three test netlists.
The red lines correspond to the bounds of (35). For all netlists, the
SPRT leads to the acceptance of the hypothesis H1, indicating the
superiority of our RL agent at the parameter tuning task. Noticeably,
the RL agent is considerably stronger on the Leon3 and OpenPiton
benchmarks, as it is declared better much faster than in the LDPC
and Netcard cases.

On the other hand, consider the MLE and its associated nonasymp-
totic coverage in (30). The stopping times of the SPRT procedure in
Fig. 12 would yield the realization of the MLE confidence intervals
at level 99% as [0.47, 1] for OpenPiton (n = 16), [0.49, 1] for
Netcard (n = 34), [0.48, 1] for LDPC (n = 28), and [0.51, 1] for
Leon3 (n = 11). Except for Leon3, these intervals intersect with
[0, θ0 = 0.5], allowing for H0 to be true—which is rather quickly
disproved by the SPRT. Regardless, in all cases, they are never con-
tained in [θ1 = 0.8, 1] and thus can never prove H1. Therefore, the
proposed sequential approach is superior in offering an adequate test-
ing methodology of the placement task’s performance with a smaller
sample size.

VII. CONCLUSION

Our placement parameter optimizer based on deep RL provides
a preset of improved parameter settings without human intervention.
This is crucial to shift from the CAD expert-user mindset to a Design
Automation mindset. We use a novel representation to formulate
states and actions applied to placement optimization. Our experi-
mental results show that our agent generalizes well to unseen netlists
and consistently reduces wire length compared with a state-of-the-
art tool auto-tuner in only one iteration without additional training.
Furthermore, we demonstrate the superiority of our agent using an
SPRT.
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