
VLSI Placement Parameter Optimization using Deep
Reinforcement Learning

Anthony Agnesina, Kyungwook Chang, and Sung Kyu Lim

School of ECE, Georgia Institute of Technology, Atlanta, GA

agnesina@gatech.edu

ABSTRACT
The quality of placement is essential in the physical design flow. To

achieve PPA goals, a human engineer typically spends a consider-

able amount of time tuning the multiple settings of a commercial

placer (e.g. maximum density, congestion effort, etc.). This paper

proposes a deep reinforcement learning (RL) framework to optimize

the placement parameters of a commercial EDA tool. We build an

autonomous agent that learns to tune parameters optimally without

human intervention and domain knowledge, trained solely by RL

from self-search. To generalize to unseen netlists, we use a mixture

of handcrafted features from graph topology theory along with

graph embeddings generated using unsupervised Graph Neural

Networks. Our RL algorithms are chosen to overcome the spar-

sity of data and latency of placement runs. Our trained RL agent

achieves up to 11% and 2.5% wirelength improvements on unseen

netlists compared with a human engineer and a state-of-the-art

tool auto-tuner, in just one placement iteration (20× and 50× less

iterations).

1 INTRODUCTION
In the recent years, the combination of deep learning techniques

with reinforcement learning (RL) principles has resulted in the

creation of self-learning agents achieving superhuman performance

at the game of Go, Shogi and Chess [13]. Deep RL is also used with

large success in real-world applications such as robotics, finance,

self-driving cars, etc.

The quality of VLSI placement is essential for the subsequent

steps of physical design with influential repercussions on design

quality and design closure. Recent studies [10] however show that

existing placers cannot produce near optimal solutions. The goal

of a placement engine is to assign locations for the cells inside the

chip’s area. The most common target of state-of-the-art placers is

to minimize the total interconnect length, i.e. the estimated half-

perimeter wire length (HPWL) from the placed cells locations.

This material is based upon work supported by the National Science Foundation

under Grant No. CNS 16-24731 and the industry members of the Center for Advanced

Electronics in Machine Learning.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00

https://doi.org/10.1145/3400302.3415690

The algorithms implemented inside the EDA tools have param-

eter settings that users can modify to achieve the desired power-

performance-area (PPA). In the authors’ experience, more time is

spent on tuning and running a commercial placer than on creating

a first version of the design. Tools and flows have steadily increased

in complexity, with modern place and route tools offering more

than 10,000 parameter settings. Expert users are required in partic-

ular for the latest technology nodes, with increased cost and risk.

Indeed, as the design space of the parameters is too big and complex

to be explored by a human engineer alone, one usually relies on

expertise and domain knowledge when tuning. However, the corre-

lations between the different parameters and the resulting PPA may

be complex or nonintuitive. Placement engines may exhibit nonde-

terministic behaviors as they heavily rely on handcrafted rules and

metaheurisitics. Moreover, the advertised goal of a parameter may

not always directly translate onto the targeted metric.

A state-of-the-art tool auto-tuner [1] is used in EDA such as in

[18] and [19] to optimize Quality of Results (QoR) in the FPGA and

high-level synthesis (HLS) compilation flows. It leverages Multi-

Armed Bandit (MAB) to organize a set of classical optimization

techniques and efficiently explore the design space. However, these

techniques rely on heuristics that are too general and do not con-

sider the specificities of each netlist. Therefore, each new netlist

requires to start over parameter exploration. We overcome this

limitation in our RL agent by first encoding the netlist information

using a mixture of graph handcrafted features and graph neural

network embeddings. This helps generalize the tuning process from

netlist to netlist, saving long and costly placement iterations.

The goal of our RL framework is to learn an optimization pro-

cess that finds placement parameters minimizing wirelength after

placement. The main contributions of this paper are:

• We reduce the significant time expense of VLSI development by

application of deep RL to pre-set the placement parameters of a

commercial EDA tool. To the best of our knowledge, this is the

first work on RL applied to placement parameters optimization.

• Our RL algorithm overcomes the sparsity of data and the la-

tency of design tool runs using multiple environments collecting

experiences in parallel.

• We use a mixture of features relative to graph topological char-

acteristics along with graph embedding generated by a graph

neural network to train an RL agent capable of generalizing its

tuning process to unseen netlists.

• We build an autonomous agent that iteratively learns to tune

parameter settings to optimize placement, without supervised

samples. We achieve better wirelengths on unseen netlists than a

state-of-the-art auto-tuner, without any additional training and

in just one placement iteration.

https://doi.org/10.1145/3400302.3415690

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Anthony Agnesina, Kyungwook Chang, and Sung Kyu Lim

2 RL ENVIRONMENT
2.1 Overview
We build an RL agent that tunes the parameter settings of the

placement tool autonomously, with the objective of minimizing

wirelength. Our RL problem consists of the following four key

elements:

• States: the set of all netlists in theworld and all possible parameter

settings combinations (P) from the placement tool (e.g. Cadence
Innovus or Synopsys ICC2). A single state 𝑠 consists of a unique

netlist and a current parameter set.

• Actions: set of actions that the agent can use to modify the cur-

rent parameters. An action 𝑎 changes the setting of a subset of

parameters.

• State transition: given a state (𝑠𝑡) and an action, the next state

(𝑠𝑡+1) is the same netlist with updated parameters.

• Reward: minus the HPWL output from the commercial EDA

placement tool. The reward increases if the action improved the

parameter settings in terms of minimizing wirelength.

As depicted in Figure 1, in RL an agent learns from interacting

with its environment over a number of discrete time steps. At each

time step 𝑡 the agent receives a state 𝑠𝑡 , and selects an action 𝑎𝑡
from a set of possible actions A according to its policy 𝜋 , where 𝜋

maps states to actions. In return, the agent receives a reward signal

𝑅𝑡 and transitions to the next state 𝑠𝑡+1. This process continues
until the agent reaches a terminal state after which the process

restarts. The goal of the agent is to maximize its long-term return:

𝐺𝑡 =

∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 (1)

where 𝛾 is a factor discounting future rewards.

An optimal policy is one that maximizes the expected returns

or values. The value function 𝑣𝜋 (𝑠𝑡) is the expected return starting

from state 𝑠𝑡 when following policy 𝜋 :

𝑣𝜋 (𝑠𝑡) = E𝜋 [𝐺𝑡 |𝑠𝑡] = E𝜋
[∞∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 |𝑠𝑡
]
. (2)

2.2 Our RL Settings
We formulate the placement parameters optimization task led by

an RL agent as follows:

RL Placement Parameter Optimization Problem

Goal Given a netlist, find argmin𝑝∈P 𝐻𝑃𝑊𝐿(𝑝) where P
is the set of all parameter combinations and 𝐻𝑃𝑊𝐿 is

given by the tool.

How?
(1) Define Environment as placement tool black-box.

(2) Define state 𝑠 ≈ current set of parameters 𝑝𝑐𝑢𝑟𝑟 ∈ P
and target netlist.

(3) Define actions to modify 𝑝𝑐𝑢𝑟𝑟 .

(4) Define a reward 𝑅 ∝ −𝐻𝑃𝑊𝐿 so that the agent’s

goal is to decrease wirelength.

(5) Select a discount factor 𝛾 < 1 to force the agent

reduce wirelength in as few steps as possible.

current state s
t

netlist new param.

new state s
t+1

netlist param.

placement
engine

environment
agent

action a
t

reward

R
t
= -HPWL

u
p

d
a

te
 c

u
re

n
t
s
ta

te

Figure 1: Reinforcement learning agent-environment interaction in
the proposed methodology.

This is a combinatorial optimization problem where P is very

large and exhaustive search is infeasible. For an agent to correctly

select an action, we must first define a good representation of its

environment. In our case, the representation of the environment is

given by a human expert as presented.

2.3 Our States
We define our state as the joint values of 12 placement parameters

from Cadence Innovus used to perform the current placement (Table

1), along with information metrics on the netlist being placed. The

netlist information consists of a mixture of metadata knowledge

(number of cells, floorplan area, etc.) with graph topological fea-

tures (Table 2) along with unsupervised features extracted using

a graph neural network. Netlist characteristics are important to

transfer the knowledge accross very different netlists so that our

agent generalizes its tuning process to unseen netlists. Indeed, the

optimal policy is likely to be related to the particularities of each

netlist. Our state can be written as a concatenation of one-hot en-

coded categorical parameters (Booleans or enumerates), integer

parameters and integer and float netlist features.

2.3.1 Topological Graph Features. In order to learn rich graph rep-

resentations that uniquely classify each graph, we borrow concepts

from graph theory. We use Boost and BLAS optimized C++ libraries

to extract efficiently our features on large graphs (all collected in less

than 1hr for the larger netlists). Let𝐺 = (𝑉 , 𝐸) be the directed cyclic
graph representing the netlist, obtained using a fully-connected

clique model. Global signals such as reset, clock or VDD/VSS are

not considered when building the graph. Multiple connections be-

tween two vertices in the graph are merged into one and self-loops

are eliminated. We consider the following graph features to capture

complex topology characteristics (e.g. connections and spectral)

from the netlist:

• Strongly Connected Components (SCC): A strong component of

𝐺 is a subgraph 𝑆 of 𝐺 if for any pair of vertices 𝑢, 𝑣 ∈ 𝑆 there

is a directed cycle in 𝑆 containing 𝑢 and 𝑣 . We compute them in

linear time using directed depth-first search with an algorithm

due to Tarjan [14].

• Clique: Given an integer𝑚, does 𝐺 contains 𝐾𝑚 (the complete

graph on𝑚 vertices) as a subgraph? We use the Bron–Kerbosch

algorithm [3] to find the maximal cliques.

• k-Colorability: Given an integer 𝑘 , is there a coloring of 𝐺 with

𝑘 or fewer colors? A coloring is a map 𝜒 : 𝑉 → 𝐶 such as

VLSI Placement Parameter Optimization using Deep Reinforcement Learning ICCAD ’20, November 2–5, 2020, Virtual Event, USA

Table 1: 12 placement parameters we are targeting. The solution space is 6x109.

Name Objective Type Groups # val

eco max distance maximum distance allowed during placement legalization integer detail [0, 100]

legalization gap minimum sites gap between instances integer detail [0, 100]

max density controls the maximum density of local bins integer global [0, 100]

eco priority instance priority for refine place enum detail 3

activity power driven level of effort for activity power driven placer enum detail + effort 3

wire length opt optimizes wirelength by swapping cells enum detail + effort 3

blockage channel creates placement blockages in narrow channels between macros enum global 3

timing effort level of effort for timing driven placer enum global + effort 2

clock power driven level of effort for clock power driven placer enum global + effort 3

congestion effort the effort level for relieving congestion enum global + effort 3

clock gate aware specifies that placement is aware of clock gate cells in the design bool global 2

uniform density enables even cell distribution bool global 2

Table 2: Our 20 handcrafted netlist features.

Metadata (10) Topological (10)
Name Type Name Type

cells integer average degree float

nets integer average fanout float

cell pins integer largest SCC integer

IO integer max. clique integer

nets w. fanout ∈]5, 10[integer chromatic nb. integer

nets w. fanout ≥ 10 integer max. logic level integer

FFs integer RCC float

total cell area (𝑢𝑚2
) integer 𝐶𝐶 float

hardmacros integer Fiedler value float

macro area (𝑢𝑚2
) integer spectral radius float

two adjacent vertices have the same color; i.e., if (𝑢, 𝑣) ∈ 𝐸 then

𝜒 (𝑢) ≠ 𝜒 (𝑣). Minimum 𝑘 (the chromatic number) is computed

using a technique proposed in [5].

• Logic Levels: What is the maximum distance (# gates traversed)

between two flip-flops? 𝐿𝐿 = max

𝑎,𝑏∈𝐹𝐹𝑠
𝑑 (𝑎, 𝑏).

• Rich Club Coefficient: How well do high degree (rich) nodes know

each other? Let 𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘) be the filtered graph of 𝐺 with

only nodes of degree > 𝑘 , then 𝑅𝐶𝐶𝑘 =
2 |𝐸𝑘 |

|𝑉𝑘 | (|𝑉𝑘 |−1) [4].
• Clustering coefficient: A measure of the cliquishness of nodes

neighborhoods [17]:

𝐶𝐶 =
1

|𝑉 |
∑
𝑖∈𝑉

|𝑒 𝑗𝑘 : 𝑣 𝑗 , 𝑣𝑘 ∈ Neighbors(𝑖), 𝑒 𝑗𝑘 ∈ 𝐸 |
deg(𝑖) (deg(𝑖) − 1) . (3)

• Spectral characteristics: Using the implicitly restarted Arnoldi

method [8], we extract from the Laplacian matrix of𝐺 the Fiedler

value (second smallest eigenvalue) deeply related to the con-

nectivity properties of 𝐺 , as well as the spectral radius (largest

eigenvalue) relative to the regularity of 𝐺 .

These features give important information about the netlist. For

example, connectivity features such as SCC, maximal clique and

RCC are important to capture congestion considerations (consid-

ered during placement refinement) while logic levels translate in-

directly the difficulty of meeting timing by extracting the longest

logic path.

1

2

3
5

4

G = (V, E) ENC(G)ENC(v, v V)

Graph
SAGE

ENC(3)
ENC(5)

ENC(1)

ENC(2)
ENC(4) mean

aggregator

Figure 2: Graph embedding using a graph neural network pack-
age GraphSAGE. In our experiments, we first extract 32 features
for each node in the graph. Next, we calculate the mean among all
nodes for each feature. In the end, we obtain 32 features for the en-
tire graph.

GNN + handcrafted features

400

200

-200

-400 0-200 200

tate

ldpc leon

pcidma

vga
nova

openpiton
netcard

aes

b19

rocket ecg

jpeg

des

Figure 3: t-SNE visualization of our 20 handcrafted plus 32 GNN
features combined. Points representative of each netlist are well
separated, proving graph features capture the differences between
netlists well.

2.3.2 Features from Graph Neural Network (GNN). Starting from
simple node features including degree, fanout, area and encoded

gate type, we generate node embeddings (enc(𝑣)) using unsuper-
vised GraphSAGE [7] with convolutional aggregation, dropout, and

output size of 32. The GNN algorithm iteratively propagates in-

formation from a node to its neighbors. The GNN is trained on

each graph individually. Then the graph embedding (enc(𝐺)) is
obtained from the node embeddings with a permutation invariant

aggregator as shown in Figure 2:

enc(𝐺) = mean

(
enc(𝑣) |𝑣 ∈ 𝑉

)
. (4)

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Anthony Agnesina, Kyungwook Chang, and Sung Kyu Lim

Table 3: Our 11 actions.

1. FLIP Booleans

2. UP Integers

3. DOWN Integers

4. UP Efforts

5. DOWN Efforts

6. UP Detailed

7. DOWN Detailed

8. UP Global (does not touch the bool)

9. DOWN Global (does not touch the bool)

10. INVERT-MIX timing vs. congestion vs. WL efforts

11. DO NOTHING

The t-SNE projection in two dimensions [15] of the vector of

graph features is displayed in Figure 3. We see that all netlists points

are far apart, indicating that the combination of our handcrafted

and learned graph features distinguish well the particularities of

each netlist.

2.4 Our Actions
We define our own deterministic actions to change the setting

of a subset of parameters. They render the state markovian, i.e.

given state-action pair (𝑠𝑡 , 𝑎𝑡), the resulting state 𝑠𝑡+1 is unique. An
advantage of fully-observed determinism is that it allows planning.
Starting from state 𝑠0 and following a satisfactory policy 𝜋 , the

trajectory

𝑠0
𝜋 (𝑠0)−−−−→ 𝑠1

𝜋 (𝑠1)−−−−→ ...
𝜋 (𝑠𝑛−1)−−−−−−→ 𝑠𝑛 (5)

leads to a parameter set 𝑠𝑛 of good quality. If 𝜋 has been learned,

𝑠𝑛 can be computed directly in O(1) time without performing any

placement.

Defining only two actions per placement parameter would result

in 24 different actions, which is too many for the agent to learn well.

Thus, we decide to first group tuning variables per type (Boolean,

Enumerate, Numeric) and per placement “focus” (Global, Detailed,

Effort). On each of these groups, we define simple yet expressive

actions such as flip (for booleans), up, down, etc. For integers, we

define prepared ranges where up ≡ “put in upper range”, while for

enumerates down ≡ “pass from high to medium” for example. We

also add one arm that does not modify the current set of parameters.

It serves as a trigger to reset the environment, in case it gets picked

multiple times in a row. This leads to the 11 different actions A
presented in Table 3. Our action space is designed to be as simple as

possible in order to help neural network training, but also expressive

enough so that any parameter settings can be reached by such

transformations.

2.5 Our Reward Structure
In order to learn with a single RL agent across various netlists with

different wirelengths, we cannot define a reward directly linear with

HPWL. Thus, to help convergence, we adopt a normalized reward

function which renders the magnitude of the value approximations

similar among netlists:

𝑅𝑡 :=
𝐻𝑃𝑊𝐿

Human Baseline
− 𝐻𝑃𝑊𝐿𝑡

𝐻𝑃𝑊𝐿
Human Baseline

. (6)

While defining rewards in this manner necessitates knowing

𝐻𝑃𝑊𝐿
Human Baseline

, an expected baseline wirelength per design,

this only requires one placement to be completed by an engineer.

2.6 Extensions in Physical Design Flow
The environment description and in particular the action definition

can be applied to Parameter Optimization of any stage in the phys-

ical design flow, such as routing, clock tree synthesis, etc. As our

actions act on abstracted representations of tool parameters, we

can perform rapid design space exploration. The reward function

can be easily adjusted to target PPA such as routed wirelength or

congestion, in order to optimize the design for different trade-offs.

For example, a reward function combining various attributes into a

single numerical value can be:

𝑅 = exp

(∑
𝑘

𝛼𝑘QoR𝑘

)
− 1. (7)

3 RL PLACEMENT AGENT
3.1 Overview
Using the definition of the environment presented in the previous

section, we train an agent to autonomously tune the parameters of

the placement tool. Here is our approach:

• The agent learns the optimal action for a given state. This action

is chosen based on its policy network probability outputs.

• To train the policy network effectively, we adopt an actor-critic
framework which brings the benefits of value-based and policy-

based optimization algorithms together.

• To solve the well-known shortcomings of RL in EDA that are

latency and sparsity, we implement multiple environments col-

lecting different experiences in parallel.

• To enable the learning of a recursive optimization process with

complex dependencies, our agent architecture utilizes a deep neu-

ral network comprising a recurrent layer with attention mecha-

nism.

3.2 Goal of Learning
From the many ways of learning how to behave in an environment,

we choose to use what is called policy-based reinforcement learning.

We state the formal definition of this problem as follows:

Policy Based RL Problem

Goal Learn the optimal policy 𝜋∗ (𝑎 |𝑠)
How?

(1) Approximate a policy by parameterized 𝜋𝜽 (𝑎 |𝑠).
(2) Define objective 𝐽 (𝜽) = E𝜋𝜽 [𝑣𝜋𝜽 (𝑠)].
(3) Find argmax𝜽 𝐽 (𝜽) with Stochastic Gradient.

The goal of this optimization problem is to learn directly which

action 𝑎 to take in a specific state 𝑠 . We represent the parametrized

policy 𝜋𝜽 by a deep neural network. The main reasons for choosing

this framework are as follows:

• It is model-free which is important as the placer tool environment

is very complex and may be hard to model.

• Our intuition is that the optimal policy may be simple to learn

and represent (e.g. keep increasing the effort) while the value of

VLSI Placement Parameter Optimization using Deep Reinforcement Learning ICCAD ’20, November 2–5, 2020, Virtual Event, USA

current state s
t

netlist new param.

new state s
t+1

netlist param.

placement
engine

environment

agent

action a
t

reward

R
t
=-HPWL

u
p

d
a

te
 c

u
r.
 s

ta
te

TD err.

critic

value
policy

actor

Figure 4: Actor-critic framework. The critic learns about and cri-
tiques the policy currently being followed by the actor.

a parameter setting may not be trivial or change significantly

based on observation.

• Policy optimization often shows good convergence properties.

3.3 How to Learn: the Actor-Critic Framework
In our chosen architecture we learn a policy that optimizes the value

while learning the value simultaneously. For learning, it is often

beneficial to use as much knowledge observed from the environ-

ment as possible and hang off other predictions, rather than solely

predicting the policy. This type of framework called actor-critic is
shown in Figure 4. The policy is known as the actor, because it is

used to select actions, and the estimated value function is known

as the critic, because it criticizes the actions made by the actor.

Actor-critic algorithms combine value-based and policy-based
methods. Value-based algorithms learn to approximate values 𝑣w (𝑠) ≈
𝑣𝜋 (𝑠) by exploiting the the Bellman equation:

𝑣𝜋 (𝑠) = E[𝑅𝑡+1 + 𝛾𝑣𝜋 (𝑠𝑡+1) |𝑠𝑡 = 𝑠] (8)

which is used in temporal difference (TD):

Δw𝑡 = (𝑅𝑡+1 + 𝛾𝑣w (𝑠𝑡+1) − 𝑣w (𝑠𝑡))∇w𝑣w (𝑠𝑡) . (9)

On the other hand, policy-based algorithms update a parameterized

policy 𝜋𝜽 (𝑎𝑡 |𝑠𝑡) directly through stochastic gradient ascent in the

direction of the value:

Δ𝜽𝑡 = 𝐺𝑡∇𝜽 log𝜋𝜽 (𝑎𝑡 |𝑠𝑡) . (10)

In actor-critic, the policy updates are computed from incomplete

episodes by using truncated returns that bootstrap on the value

estimate at state 𝑠𝑡+𝑛 according to 𝑣w:

𝐺
(𝑛)
𝑡 =

𝑛−1∑
𝑘=0

𝛾𝑘𝑅𝑡+𝑘+1 + 𝛾𝑛𝑣w (𝑠𝑡+𝑛) . (11)

This reduces the variance of the updates and propagates rewards

faster. The variance can be further reduced using state-values as a

baseline in policy updates, as in advantage actor-critic updates:

Δ𝜽𝑡 = (𝐺 (𝑛)
𝑡 − 𝑣w (𝑠𝑡))∇𝜽 log𝜋𝜽 (𝑎𝑡 |𝑠𝑡). (12)

The critic updates parameters w of 𝑣w by 𝑛-step TD (Eq. 9) and

the actor updates parameters 𝜽 of 𝜋𝜽 in direction suggested by

critic by policy gradient (Eq. 12). In this work we use the advantage
actor-critic method, called A2C [12], which was shown to produce

actor
actor

actor

actoractor

actor

observation
action

learner
net

s
te

p
model

Figure 5: Synchronous parallel learner. The global network sends
actions to the actors through the step model. Each actor gathers ex-
periences from their own environment.

excellent results on diverse environments. As shown in Equation

12, an advantage function formed as the difference between returns

and baseline state-action estimate is used instead of raw returns.

The advantage can be thought of as a measure of how good a given

action is compared to some average.

3.4 Synchronous Actor/Critic Implementation
The main issues plaguing the use of RL in EDA are the latency

of tool runs (it takes minutes to hours to perform one placement)

as well as the sparsity of data (there is no database of millions

of netlists, placed designs or layouts). To solve both issues, we

implement a parallel version of A2C, as depicted in Figure 5. In this

implementation, an agent learns from experiences of multipleActors
interacting in parallel with their own copy of the environment. This

configuration increases the throughput of acting and learning and

helps decorrelate samples during training for data efficiency [6].

In parallel training setups, the learning updates may be applied

synchronously or asynchronously. We use a synchronous version,

i.e. a deterministic implementation that waits for each Actor to

finish its segment of experience (according to the current policy

provided by the stepmodel) before performing a single batch update

to the weights of the network. One advantage is that it provides

larger batch sizes, which is more effectively used by computing

resources.

The parallel training setup does not modify the equations pre-

sented before. The gradients are just accumulated among all the

environments’ batches.

3.5 A Two-Head Network Architecture
The actor-critic framework uses both policy and value models. The

full agent network can be represented as a deep neural network

(𝜋𝜽 , 𝑣w) = 𝑓 (𝑠). This neural network takes the state 𝑠 = (𝑝 ◦ 𝑛)
made of parameter values 𝑝 and netlist features 𝑛 and outputs a

vector of action probabilities with components𝜋𝜽 (𝑎) for each action
𝑎, and a scalar value 𝑣w (𝑠) estimating the expected cumulative

reward 𝐺 from state 𝑠 .

The policy tells how to modify a placement parameter setting
and the value network tells us how good this current setting is. We

share the body of the network to allow value and policy predictions

to inform one another. The parameters are adjusted by gradient

ascent on a loss function that sums over the losses of the policy

and the value plus a regularization term, whose gradient is defined

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Anthony Agnesina, Kyungwook Chang, and Sung Kyu Lim

softmax

p
o

lic
y
 n

e
tw

o
rk

v
a

lu
e

 n
e

tw
o

rk

attention

LSTM

linear

tanh

tanh

one-hothandGNN

bool/enum

param.

netlist graph

int

param.

placement
parameters

tanh

tanh

tanh

linear

tanh

action prob.
= place. param.∆

value
=-cumulated WL

1

2

3

4 5

Figure 6: Overall network architecture of our agent. The combina-
tion of an LSTMwith an Attentionmechanism enables the learning
of a complex recurrent optimization process. Table 4 provides the
details of the sub-networks used here.

as follows as in [16]:

(𝐺 (𝑛)
𝑡 − 𝑣w (𝑠𝑡))∇𝜽 log𝜋𝜽 (𝑎𝑡 |𝑠𝑡)︸ ︷︷ ︸

policy gradient

+

𝛽 (𝐺 (𝑛)
𝑡 − 𝑣w (𝑠𝑡))∇w𝑣w (𝑠𝑡)︸ ︷︷ ︸
value estimation gradient

+

𝜂
∑
𝑎

𝜋𝜽 (𝑎 |𝑠𝑡) log𝜋𝜽 (𝑎 |𝑠𝑡)︸ ︷︷ ︸
entropy regularisation

.

(13)

The entropy regularization pushes entropy up to encourage explo-

ration, and 𝛽 and 𝜂 are hyper-parameters that balance the impor-

tance of the loss components.

The complete architecture of our deep neural network is shown

in Figure 6. To compute value and policy, the concatenation of

placement parameters with graph extracted features are first passed

through two feed-forward fully-connected (FC) layers with 𝑡𝑎𝑛ℎ

activations, followed by a FC linear layer. This is followed by a Long

Short-Term Memory (LSTM) module with layer normalization and

with 16 hidden standard units with forget gate. The feed-forward FC

layers have nomemory. Introducing an LSTM in the network, which

is a recurrent layer, the model can base its actions on previous states.

This is motivated by the fact that traditional optimization methods

are based on recurrent approaches. Moreover, we add a sequence-to-

one global attention mechanism [9] inspired from state-of-the-art

Table 4: Neural network parameters used in our RL agent architec-
ture in Figure 6. The number of inputs of the first FC layer is as
follows: 32 from GNN, 20 from Table 2, 24 one-hot encoding for the
enum/bool types from Table 1, and 3 integer types from Table 1.

Part Input Hidden Output

1. Shared Body 79 (64, 32) (tanh) 16 (linear)

2. LSTM (6 unroll) 16 16 16 × 6

3. Attention 16 × 6 𝑾𝒂,𝑾𝒄 16

4. Policy 16 (32, 32) (tanh) 11 (softmax)

5. Value 16 (32, 16) (tanh) 1 (linear)

Natural Language Processing architectures, to help the Recurrent

Layer (RNN) focus on important parts of the recursion. Let 𝒉𝑡 be
the hidden state of the RNN. Then the attention alignment weights

𝒂𝑡 with each source hidden state 𝒉𝑠 are defined as:

𝒂𝑡 (𝑠) =
exp

(
score(𝒉𝑡 ,𝒉𝑠)

)∑
𝑠′ exp

(
score(𝒉𝑡 ,𝒉𝑠′)

) (14)

where the alignment score function is:

score(𝒉𝑡 ,𝒉𝑠) = 𝒉⊤𝑡 𝑾𝒂𝒉𝑠 . (15)

The global context vector:

𝒄𝑡 =
∑
𝑠

𝒂𝑡 (𝑠)𝒉𝑠 (16)

is combined with the hidden state to produce an attentional hidden

state as follows:

�̃�𝑡 = tanh

(
𝑾𝒄 [𝒄𝑡 ◦ 𝒉𝑡]

)
. (17)

This hidden state is then fed to the two heads of the network,

both composed of two FC layers with an output softmax layer for

the policy and an output linear layer for the value. The parameters

of our network are summarized in Table 4.

3.6 Our Self-Play Strategy
Inspired from AlphaZero [13], our model learns without any su-

pervised samples. We do not use expert knowledge to pre-train the

network using good known parameter sets or actions. While the

agent makes random moves at first, the idea is that by relying on

zero human bias, the agent may learn counter-intuitive moves and

achieve superhuman tuning capabilities.

4 EXPERIMENTAL RESULTS
To train and test our agent, we select 15 benchmarks designs from

OpenCores, ISPD 2012 contest and two RISC-V single cores, pre-

sented in Table 5. We use the first eleven for training and last four

for testing. We synthesize the RTL netlists using Synopsys Design
Compiler. We use TSMC 28nm technology node. The placements

are done with Cadence Innovus 17.1. Aspect ratio of the floorplans

is fixed to 1 and appropriate fixed clock frequencies are selected.

Memory macros of RocketTile and OpenPiton Core benchmarks

are pre-placed by hand. For successful placements, a lower bound

of total cell area divided by floorplan area is set on parameter max
density. IO pins are placed automatically by the tool between metals

4 and 6.

VLSI Placement Parameter Optimization using Deep Reinforcement Learning ICCAD ’20, November 2–5, 2020, Virtual Event, USA

Table 5: Benchmark statistics based on a commercial 28nm technol-
ogy. RCC is the Rich Club Coefficient (𝑒−4), LL is themaximum logic
level and Sp. R. denotes the Spectral Radius. RT is the average place-
ment runtime using Innovus (in minutes).

Name #cells #nets #IO 𝑅𝐶𝐶3 LL Sp. R. RT

training set
PCI 1.2K 1.4K 361 510 17 25.6 0.5

DMA 10K 11K 959 65 25 26.4 1

B19 33K 34K 47 19 86 36.1 2

DES 47K 48K 370 14 16 25.6 2

VGA 52K 52K 184 15 25 26.5 3

ECG 83K 84K 1.7K 7.5 23 26.8 4

Rocket 92K 95K 377 8.1 42 514.0 6

AES 112K 112K 390 5.8 14 102.0 6

Nova 153K 155K 174 4.6 57 11,298 9

Tate 187K 188K 1.9K 3.2 21 25.9 10

JPEG 239K 267K 67 2.8 30 287.0 12

test set (unseen netlist)
LDPC 39K 41K 4.1K 18 19 328.0 2

OpenPiton 188K 196K 1.6K 3.9 76 3940 19

Netcard 300K 301K 1.8K 2.9 32 27.3 24

Leon3 326K 327K 333 2.4 44 29.5 26

Figure 7: Training our agent for 150 iterations (= 14,400 placements).
The reward is an aggregate reward from all training netlists. Train-
ing time is within 100 hours. Human baseline: reward = 0.

4.1 RL Network Training Setting
We define our environment using OpenAI Gym interface [2] and

implement our RL agent network in Tensorflow. We use 16 parallel

environments (16 threads) in our synchronous A2C framework.

We perform tuning of the hyperparameters of our network using

Bayesian Optimization, which results in stronger agents. The learn-

ing curve of our A2C agent in our custom Innovus environment

is shown in Figure 7. We observe that the mean reward accross

all netlists converges asymptotically to a value of 6.8%, meaning

wirelength is reduced in average by 6.8%.

Training over 150 iterations (= 14, 400 placements) takes about

100 hours. Note that 99% of that time is spent to perform the place-

ments while updating the neural network weights takes less than

20min. Without parallelization, training over the same number of

placements would take 16 × 100 hr = 27 days.

Table 6: Comparison of half-perimeter bounding box (HPWL) after
placement on training netlists among human design, Multi-Armed
Bandit (MAB) [1], and our RL-based method. HPWL is reported in
𝑚. Δ denotes percentage negative improvement over human design.

Netlist human MAB [1] (Δ%) RL (Δ%)

PCI 0.010 0.0092 (−8.0%) 0.0092 (−8.0%)
DMA 0.149 0.139 (−6.7%) 0.135 (−9.4%)
B19 0.30 0.28 (−6.7%) 0.28 (−6.7%)
DES 0.42 0.37 (−11.9%) 0.36 (−14.3%)
VGA 1.52 1.40 (−7.9%) 1.41 (−7.2%)
ECG 0.72 0.65 (−9.7%) 0.68 (−5.5%)
Rocket 1.33 1.27 (−4.5%) 1.20 (−9.8%)
AES 1.49 1.44 (−2.7%) 1.40 (−6.0%)

AVC-Nova 1.59 1.49 (−6.3%) 1.46 (−8.2%)
Tate 1.53 1.42 (−7.2%) 1.45 (−5.2%)
JPEG 2.14 1.96 (−8.4%) 1.88 (−12.2%)

An explained variance of 0.67 shows the value function ex-

plains relatively well the observed returns. We use a discount factor

𝛾 = 0.997, coefficient for the value loss 𝛽 = 0.25, entropy cost of

𝜂 = 0.01, and a learning rate of 0.0008. We use a standard non-

centered RMSProp as gradient ascent optimizer. The weights are

initialized using orthogonal initialization. The learning updates are

batched across rollouts of 6 actor steps for 16 parallel copies of

the environment, totalling a mini-batch size of 96. All experiments

use gradient clipping by norm to avoid exploding gradients (phe-

nomenom common with LSTMs), with a maximum norm of 0.5.

Note that with 14, 400 placements, we only explore 10
−6
% of the

total parameter space.

For a given environment, we select a random netlist and we

always start with the corresponding human parameter set to form

an initial state for each episode. Each environment is reset for

episodes of 16 steps. Training on 𝐾 environments in parallel, each

performing a placement on a different netlist, the reward signal is

averaged on the 𝐾 netlist for the network updates, which decreases

the reward variance and ultimately help the network generalize to

unseen netlists as prescribed in [11].

4.2 Netlist Training Results
For comparison, we use the state-of-the-art tool auto-tuner Open-

Tuner [1] that we adapt for Innovus as baseline. In this framework,

a Multi-Armed Bandit (MAB) selects at each iteration a search tech-

nique among Genetic Algorithm, Differential Evolution, Simulated

Annealing, Torczon hillclimber, Nelder-Mead and Particle Swarm

Optimization, based on a score that forces a trade-off between ex-

ploitation (use arm that worked best) and exploration (use a more

rarely used arm). We run the search techniques in parallel, eval-

uating 16 candidate parameter sets at the same time. We run the

tuner on the eleven training netlists and record the best achieved

wirelength, performing 1, 300 placements per netlist so that the

total number of placements equals those of the RL agent training.

Table 6 shows the best wirelengths found by the MAB as well as

RL agent during training. The human baseline is set by an experi-

enced engineer who tuned the parameters for a day. We see that the

RL agent outperforms MAB on most netlists, reducing HPWL by

9.8% on Rocket Core benchmark. All in all, both methods improve

quite well on the human baseline.

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Anthony Agnesina, Kyungwook Chang, and Sung Kyu Lim

(a) human design (took 7hrs) (b) Multi-Armed Bandit (took 16hrs) (c) reinforcement learning (took 20min)

placement

HPWL: 5.26m WL: 6.31m

routing

WL: 6.24mHPWL: 5.11m HPWL: 4.99m WL: 6.10m

Figure 8: 28nm full-chip GDSII layouts of OpenPiton.

Table 7: Comparison on test netlists of best wirelength found (one
iteration = one placement performed). HPWL is reported in𝑚.

Netlist human #iter. MAB [1] #iter. RL #iter.

LDPC 1.14 20 1.04 (−8.8%) 50 1.02 (−10.5%) 1

OpenPt 5.26 20 5.11 (−2.9%) 50 4.99 (−5.1%) 1

Netcard 4.88 20 4.45 (−8.8%) 50 4.34 (−11.1%) 1

Leon3 3.52 20 3.37 (−4.3%) 50 3.29 (−6.5%) 1

Table 8: Best placement parameters found for Netcard benchmark.

Name MAB [1] RL

eco max distance 54 81

legalization gap 1 5

max density 0.92 0.94

eco priority eco fixed

activity power driven none none

wire length opt high none

blockage channel (for macros) none soft

timing effort medium high

clock power driven none none

congestion effort low high

clock gate aware true true

uniform density false false

4.3 Unseen Netlist Testing Results
To verify the ability of our agent to generalize we check its per-

formance on the four unseen test netlists. Without any additional

training (the network parameters are fixed), the RL agent itera-

tively improves a random initial parameter set by selecting action

𝑎 with highest predicted 𝜋𝜽 (𝑎) value, as described in Equation 5.

Because our actions are deterministic, the resulting set of parame-

ters is known, and fed back to the network. We repeat this process

until the estimated value decreases for 3 consecutive updates and

backtrack to the settings with highest value. This way a “good” can-

didate parameter set is found without performing any placement.

We then perform a unique placement with that parameter set and

record the obtained wirelength.

In comparison, the MAB needs the reward signal to propose a

new set of parameters and therefore needs actual placements to be

performed by the tool. We track the best wirelength found, allotting

50 sequential iterations to the MAB.

The best wirelength found by our RL agent and the MAB on

all four test netlists is show in Table 7. We observe our RL agent

achieves superior wirelengths consistently, performing only one

Table 9: PPA comparison after routing on test set. The target fre-
quencies are 1GHz, 500MHz, 833MHz, 666MHz from top to bottom.

ckt metric human MAB [1] RL

LDPC

WL (𝑚) 1.65 1.57 1.53

WNS (𝑛𝑠) −0.005 −0.001 −0.001
Power (𝑚𝑊) 162.10 156.49 153.77

OpenPiton

WL (𝑚) 6.31 6.24 6.10

WNS (𝑛𝑠) −0.003 −0.001 0

Power (𝑚𝑊) 192.08 190.95 189.72

NETCARD

WL (𝑚) 8.01 7.44 7.15

WNS (𝑛𝑠) −0.006 −0.007 −0.004
Power (𝑚𝑊) 174.05 170.51 167.70

LEON3

WL (𝑚) 5.66 5.53 5.41

WNS (𝑛𝑠) −0.005 −0.001 −0.003
Power (𝑚𝑊) 156.83 156.00 155.51

placement. Table 8 shows the best parameter settings found by

MAB and RL agent on Netcard. Interestingly enough, we can see

how the two optimizers found separate ways to minimize HPWL:

WL driven vs. congestion driven.

4.4 PPA Comparison After Routing
To confirm improvement in HPWL after placement is translated

into one in final routed wirelength, we perform routing of placed

designs. They are all routed with same settings where metal lay-

ers 1 to 6 are used. The layouts of OpenPiton Core are shown in

Figure 8. We verify target frequency is achieved and routing suc-

ceeded without congestion issues or DRC violations. PPA of routed

designs is summarized in Table 9. We observe that HPWL reduc-

tion after placement is conserved after routing on all test designs,

reaching 7.3% and 11% wirelength savings on LDPC and Netcard

compared with the human baseline. Footprints are 74,283 𝑢𝑚2
for

LDPC, 1,199,934 𝑢𝑚2
for OpenPiton, 728,871 𝑢𝑚2

for Netcard and

894,115 𝑢𝑚2
for Leon3.

5 CONCLUSIONS
Our placement parameter optimizer based on deep RL provides pre-

set of improved parameter settings without human intervention.

We believe this is an important step to shift from the “CAD”mindset

to the “Design Automation” mindset. We use a novel representation

to formulate states and actions applied to placement optimization.

Our experimental results show our agent generalizes well to un-

seen netlists and consistently reduces wirelength compared with a

state-of-the-art tool auto-tuner, in only one iteration without any

additional training.

VLSI Placement Parameter Optimization using Deep Reinforcement Learning ICCAD ’20, November 2–5, 2020, Virtual Event, USA

REFERENCES
[1] J. Ansel et al. OpenTuner: An Extensible Framework for Program Autotuning.

PACT ’14.

[2] G. Brockman et al. OpenAI Gym, 2016.

[3] C. Bron and J. Kerbosch. Algorithm 457: Finding All Cliques of an Undirected

Graph. Commun. ACM, 1973.

[4] V. Colizza et al. Detecting rich-club ordering in complex networks. Nature
Physics, 2006.

[5] O. Coudert. Exact Coloring Of Real-life Graphs Is Easy. DAC ’97.

[6] L. Espeholt et al. IMPALA: Scalable Distributed Deep-RL with Importance

Weighted Actor-Learner Architectures, 2018.

[7] W. Hamilton et al. Inductive Representation Learning on Large Graphs. NIPS

’17.

[8] R. B. Lehoucq andD. C. Sorensen. Deflation Techniques for an Implicitly Restarted

Arnoldi Iteration. SIAM J. Matrix Analysis Applications, 17:789–821, 1996.
[9] M.-T. Luong et al. Effective Approaches to Attention-based Neural Machine

Translation.

[10] I. L. Markov et al. Progress and Challenges in VLSI Placement Research. ICCAD

’12.

[11] A. Mirhoseini et al. Chip Placement with Deep Reinforcement Learning, 2020.

[12] V. Mnih et al. Asynchronous Methods for Deep Reinforcement Learning, 2016.

[13] D. Silver et al. Mastering Chess and Shogi by Self-Play with a General Reinforce-

ment Learning Algorithm, 2017.

[14] R. E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput.,
1:146–160, 1972.

[15] L. van der Maaten and G. E. Hinton. Visualizing Data using t-SNE. 2008.

[16] O. Vinyals et al. StarCraft II: A New Challenge for Reinforcement Learning, 2017.

[17] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.

Nature, 1998.
[18] C. Xu et al. A Parallel Bandit-Based Approach for Autotuning FPGA Compilation.

FPGA ’17.

[19] C. H. Yu et al. S2FA: An Accelerator Automation Framework for Heterogeneous

Computing in Datacenters. DAC ’18.

