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ABSTRACT
In this paper, we present the first Power, Performance, and Area
(PPA)-directed, end-to-end placement optimization framework that
provides cell clustering constraints as placement guidance to ad-
vance commercial placers. Specifically, we formulate PPA metrics
as Machine Learning (ML) loss functions, and use graph clustering
techniques to optimize them by improving clustering assignments.
Experimental results on 5 GPU/CPU designs in a 5𝑛𝑚 technology
not only show that our framework immediately improves the PPA
metrics at the placement stage, but also demonstrate that the im-
provements last firmly to the post-route stage, where we observe
improvements of 89% in total negative slack (TNS), 26% in effective
frequency, 2.4% in wirelength, and 1.4% in clock power.
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1 INTRODUCTION
Driven by the Moore’s Law, modern VLSI designs easily consist
of millions of instances that are required to be placed and routed.
However, existing commercial placers leverage various heuristics or
analytical methods that do not scale globally, which often leads to
sub-optimal optimization results in advanced technologies. To im-
prove placement quality, several Machine Learning (ML) techniques
have been proposed to predict placement metrics using supervised
learning [1–3]. However, these supervised models require a huge
amount of data for training and are limited to the technologies that
are trained upon, which often leads to undesirable generalizability.

In this work, to develop a robust ML framework that can gener-
alize across different designs and technologies, we adopt unsuper-
vised learning to improve commercial placers. Previous works [8, 9]
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Figure 1: Proposed PPA-directed unsupervised placement
optimization framework in an industrial PD flow.
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Figure 2: Difference between prior works [8, 9] and ours.

have shown that unsupervised ML algorithms can provide cell clus-
tering constraints as placement guidance to improve optimization
quality, where popular approaches involve first building graph neu-
ral network (GNN) models to construct node embeddings, and then
applying a spatial clustering algorithm (e.g., K-means) to determine
cell clusters. However, this “two-step” approach often leads to sub-
optimal Power, Performance, and Area (PPA) results because the
GNN embedding process is not “goal-directed” (i.e., not guided by
any design metric) as the representation learning and the clustering
steps are not end-to-end differentiable.

To overcome the above issues, in this paper, we develop an end-
to-end, PPA-directed placement optimization framework as shown
in Figure 1, where the key difference between ourwork and previous
works [8, 9] is shown in Figure 2. Given an initial placement, our
framework learns to discover the cell clusters that are critical for
post-route PPA improvements by directly optimizing PPA metrics
as ML loss functions, which are formulated unsupervisedly from the
timing, power, and congestion analysis of the underlying placement.
During placement optimization, the obtained clustering results
are taken as soft constraints, where cells belonging to the same
cluster will be grouped closer to each other with extra effort. Note
that the entire learning process is unsupervised and end-to-end
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Figure 3: Our PPA-directed unsupervised deep graph clustering framework. Given a netlist graph, initial node features, and
PPA tool analysis (congestion, timing, power), our framework directly optimizes PPA metrics as ML loss functions by jointly
improving the node embeddings and the clustering assignments in an end-to-end manner.

differentiable, which means our framework can be applied to any
design or technology as a standalone optimization algorithm.

The goal of this work is to present a generalizable placement
optimization framework that can improve post-route PPA metrics
with little runtime overhead. Undoubtedly, the ultimate goal of
every PD implementation is tomeet end-of-flowPPA target closures,
and we believe the best way to achieve this is to start from a better
placement. Our key contributions are summarized as follows:

• To the best of our knowledge, we are the first work that directly
formulates PPA metrics as ML loss functions and optimizes them
to improve the placement quality of commercial tools that are
widely used across the entire semiconductor industry.
• To the best of our knowledge, we are the first work that develops
an end-to-end unsupervised clustering framework in the realm
of EDA where the representation learning and the clustering
assignments are jointly updated in a goal-directed manner.
• We validate the proposed framework in an industrial PD flow
using a commercial 5𝑛𝑚 technology and benchmarks with mil-
lions of cells. We not only show that our framework immediately
improves the PPAmetrics at the placement stage, but also demon-
strate that the improvements last firmly to the post-route stage.

2 OVERVIEW AND MOTIVATION
Figure 3 shows an high-level overview of the proposed placement
optimization framework, which leverages unsupervised deep em-
bedded clustering [15] equipped with GNN representation learning
to identify the cell clustering assignments that can be leveraged to
improve the underlying placement. The inputs to our framework
are a netlist graph 𝐺 = (𝑉 , 𝐸), initial node features 𝑌 0 ∈ 𝑅 |𝑉 |x |𝐹 | ,
and tool-based PPA analysis of the underlying placement, which
includes congestion scores 𝐻 ∈ 𝑅 |𝑉 | , maximum switching activ-
ities 𝑆 ∈ 𝑅 |𝑉 | , and the adjacency matrix of critical timing paths
𝐴𝑑 𝑗 ′. The key output of our framework is the probability matrix
𝑄 ∈ 𝑅 |𝑉 |x |𝐶 | where each element 𝑄𝑖 𝑗 represents the probability
of a cell 𝑖 belonging to a cluster 𝑗 . During the learning process,
our framework will jointly refine the node embeddings and the
clustering assignments by minimizing the proposed PPA-inspired
ML loss functions using a gradient descent optimizer.
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Figure 4: Proposed netlist transformation.

The main motivation of our framework is that if we know a
path is timing critical, or if we know a net has a high switching
activity, thenwewould like to shorten the path or the net bymoving
cells closer to each other in order to reduce the resistances and
capacitances involved. In addition, if we know an area is highly
congested, then we would want to spread out the cells within to
reduce the congestion as it directly impacts the subsequent routing
stage and hence the end-of-flow PPAmetrics. To summarize, during
placement optimization, wewant to improve the cell locations based
on the underlying PPA evaluations. In this work, we aim to unleash
the power of ML to achieve this goal in a systematic and global
manner by directly formulating PPA metrics as ML loss functions
and optimizing them in consideration of every cell in the design.

3 ALGORITHMS
3.1 Timing-Aware Netlist Transformation
Recently, [14] shows that encoding functionality accurately is crit-
ical to the success of GNN representation learning on netlists.
Nonetheless, previous GNN-based placement optimizationworks [1,
8, 9] all adopted the clique-based model for netlist transformation.
This approach does not consider netlist functionality and suffers
from the fact that the number of edges in the transformed graph
grows quadratically to the number of nodes in the original netlist,
which causes memory issues on large designs and weakens the
expressiveness of node representation learning as it GNNs will
struggle to identify important connections with excessive edges.

To overcome these issues, we propose a new transformation
method as shown in Figure 4. The proposed method brings two
timing-related improvements upon the clique-based technique.
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Table 1: Our initial node features for deep graph clustering.
𝑀 denotes the number of memory macros.

type # dim. description
name embeddings 16 hierarchical name encoded by S-BERT [11]
memory affinity 𝑀 shortest logic distance to each memory
wst output slack 1 worst slack value at output pin
wst output slew 1 maximum transition at output pin
wst input slew 1 maximum transition among input pin(s)
largest activity 1 largest switching activity value among nets

locations 2 (x,y) location of initial placement

First, for every net in the original netlist, we only introduce the
driver-to-load connection(s) in the transformed graph instead of
forcing every cell on the same net to share connections with each
other. Second, given that the receptive field of a GNN model is
limited by its number of layers, we introduce “skip-connections”
(denoted in red) to link start points and end points of timing paths,
which enables GNNs to more easily capture timing-related at-
tributes. In our transformation, the number of edges in the trans-
formed graph grows pseudo-linearly to the number of nodes in the
original netlist, which is fully applicable to large-scale designs.

3.2 Node Representation Learning
Prior to the graph learning process, we collect initial node-specific
features for each design instance (i.e., cell) as shown in Table 1,
which include an instance’s physical information and its timing
and power related attributes. However, these initial node features
are not sufficient to identify the essential cell clusters for placement
optimization because they do not reflect connectivity among cells.
To obtain better representations for each instance, we leverage
GNNs to perform node representation learning on the transformed
netlist graph as aforementioned. Considering the runtime and mem-
ory benefits of graph inductive learning, in this work, we leverage
GraphSAGE [4] to perform the node representation learning as:

𝑦𝑘−1
𝑁 (𝑣) =𝑚𝑒𝑎𝑛_𝑝𝑜𝑜𝑙

(
{W𝑎𝑔𝑔

𝑘
𝑦𝑘−1𝑢 , ∀𝑢 ∈ 𝑁 (𝑣)}

)
,

𝑦𝑘𝑣 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑

(
W𝑝𝑟𝑜 𝑗

𝑘
· concat

[
𝑦𝑘−1𝑣 , 𝑦𝑘−1

𝑁 (𝑣)

] )
,

(1)

where 𝑁 (𝑣) denotes the neighbors of node 𝑣 , 𝑊 𝑎𝑔𝑔

𝑘
and 𝑊 𝑝𝑟𝑜 𝑗

𝑘
denote the aggregation and projection matrices at the 𝑘-th layer
of the GNN module. After the transformation through Equation 1,
the initial node features of each cell 𝑦0𝑣 will be transformed into
𝑦𝐾𝑣 , where 𝐾 denotes the total number of layers. The dimensions
of 𝑦𝐾𝑣 is subject to the number of neurons at the last layer. In the
implementation, we set 𝐾 = 6 and 𝑑𝑖𝑚(𝑦𝐾𝑣 ) = 32.

3.2.1 Similarity Loss 𝐿𝑠𝑖𝑚 . We now introduce the first objective
of our framework which is termed as “similarity loss” and is directly
calculated from the above GNN learned embeddings {𝑦𝐾 }. The key
idea behind is to encourage cells on the same net to have higher
probabilities of being assigned into the same cluster, while making
nodes that are logically distant to have lower probabilities, which
therefore minimizes the chances of creating long nets. The loss

function 𝐿𝑠𝑖𝑚 is designed as:

𝐿𝑠𝑖𝑚 =
∑︁
𝑣

©­«−
∑︁

𝑢∈𝑁 (𝑣)
log

(
𝜎 (𝑦⊤𝑣 𝑦𝑢 )

)
−

∑︁
𝑘∼𝑟𝑎𝑛𝑑

log
(
𝜎 (−𝑦⊤𝑣 𝑦𝑘 )

)ª®¬ ,
(2)

where 𝑦𝑣 denotes the learned embeddings of node 𝑣 , 𝜎 denotes the
sigmoid function, and 𝑟𝑎𝑛𝑑 denotes the random sampling operation
over the full netlist graph. By minimizing Equation 2, neighboring
nodes will be encouraged to have similar embeddings 𝑦, which
increases the probability of them being assigned to the same cluster
and hence prevents creating long pin-to-pin connections.

3.3 PPA-Directed Deep Graph Clustering
Unlike previous works [8, 9] that rely on the weighted K-means
clustering to heuristically determine cell clusters, in this work, we
propose a PPA-directed clustering technique that identifies the
essential cell clusters by optimizing PPA as ML loss functions.

3.3.1 Unsupervised Clustering Loss 𝐿𝑐𝑙 . One of the main chal-
lenges of the clustering task is the non-existence of label guidance.
To overcome this challenge, we devise a self-reinforcing method
that iteratively converts “distances” of trained GNN node embed-
dings {𝑦} into “probabilities” of clustering assignments. Particularly,
we leverage the Student’s t-distribution [13] as a kernel to perform
the distance-to-probability conversion as:

𝑄𝑖𝑐 =

(
1 + ∥𝑦𝑖 − 𝜇𝑐 ∥2

)−1∑
𝑘

(
1 + ∥𝑦𝑖 − 𝜇𝑘 ∥2

)−1 , (3)

where 𝑄𝑖𝑐 denotes the probability of node i belonging to cluster
𝑐 , 𝑦𝑖 denotes the learned GNN node embeddings of node 𝑖 , and 𝜇𝑐
denotes the embeddings of centroid 𝑐 which is a trainable vector
that is improved in every iteration, and ∥·∥2 denotes the Euclidean
distance. To optimize the clustering assignments (i.e., matrix 𝑄) in
a self-reinforcing manner, we further construct a target matrix 𝑃
by strengthening the assignments of 𝑄 as:

𝑃𝑖𝑐 =
𝑄2
𝑖𝑐
/∑𝑖 𝑄𝑖𝑐∑

𝑘 𝑄
2
𝑖𝑘
/∑𝑖 𝑄𝑖𝑘 . (4)

The rationale behind Equation 4 is that since𝑄 is a stochastic matrix
which means 0 ≤ 𝑄𝑖𝑐 ≤ 1, raising and then normalizing by the
second power will make the probability distribution of each row
(i.e., assignment distribution of a cell) skew towards to the largest
value. Hence, the assignments are strengthened. Now, with the
target matrix 𝑃 and the approximate matrix 𝑄 , we can define the
clustering loss 𝐿𝑐𝑙 as:

𝐿𝑐𝑙 = 𝐾𝐿(𝑃 | |𝑄), (5)

where 𝐾𝐿 denotes the Kullback-Leibler divergence [6]. Minimizing
Equation 5 will encourage the matrix 𝑄 to approximate the matrix
𝑃 . To this end, we have bridged the gap between node represen-
tation learning and cell clustering by converting the GNN node
embeddings into cell clustering probabilities. With the probability
matrix 𝑄 that represents clustering assignments, we can further
quantify its “expected” impact on important PPA metrics. In this
work, we specifically focus on formulating the congestion, power,
and timing objectives as ML loss functions to improve placement.
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Figure 5: Illustration of congestion loss and power loss formu-
lations that rely on entropy maximization and minimization.
Note that both distributions are normalized as probabilities.

3.3.2 Congestion Loss 𝐿𝑐𝑜𝑛𝑔 . To reduce congestion, we adopt
the concept of cell spreading, where the key idea is to spread out
cells in congested regions by adjusting their clustering assignments.
To formulate this objective into an ML loss function, we leverage
Shannon entropy [12] to quantify the “randomness” of probability
distributions and define the congestion loss 𝐿𝑐𝑜𝑛𝑔 as:

max 𝑒𝑛𝑡𝑟𝑜𝑝𝑦
(
𝑄⊤𝐻

)
→ 𝐿𝑐𝑜𝑛𝑔 = −𝑒𝑛𝑡𝑟𝑜𝑝𝑦

(
𝑄⊤𝐻

)
, (6)

where𝐻 ∈ 𝑅 |𝑉 | is a vector that denotes the congestion score of each
cell, 𝑄⊤𝐻 ∈ 𝑅 |𝐶 | thus represents the expected congestion score of
each cluster, and finally 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (·) denotes the function mapping
that first normalizes each element by the sum of all elements, and
then calculates the Shannon entropy of the normalized probability
vector.With Equation 6, the probabilitymatrix𝑄 will be encouraged
to spread out cells in the congested regions as themaximum entropy
is achieved by having an equal amount of congestion (i.e.,

∑
𝑣 𝐻𝑣

|𝐶 | )
in each cluster. Figure 5 shows the illustration of congestion loss.

3.3.3 Power Loss 𝐿𝑝𝑜𝑤𝑒𝑟 . Our key idea to improve power is to
shorten the nets with high-switching activities by aggregating re-
lated cells closer to each other, which effectively reduces the switch-
ing capacitance involved. To achieve this, we again leverage the
concept of entropy and formulate the power objective 𝐿𝑝𝑜𝑤𝑒𝑟 as:

min 𝑒𝑛𝑡𝑟𝑜𝑝𝑦
(
𝑄⊤𝑆

)
→ 𝐿𝑝𝑜𝑤𝑒𝑟 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

(
𝑄⊤𝑆

)
, (7)

where 𝑆 ∈ 𝑅 |𝑉 | denotes the largest switching activity of the net that
a cell is connecting to. The idea behind power loss is similar to that
of the congestion loss as shown in the bottom-part of Figure 5. The
difference is that we are now minimizing rather than maximizing
the entropy to aggregate the cells instead of spreading them.

3.3.4 Timing Loss 𝐿𝑡𝑖𝑚𝑖𝑛𝑔 . Our key idea to improve timing is
to let cells on timing critical paths have higher chances of being
clustered into the same group. To achieve this, as in [10], we for-
mulate the “cut-size” of timing critical paths as an ML loss function,
which is resulted from the current clustering assignments 𝑄 . Fig-
ure 6 shows an illustration of our cut-size loss formulation. Note
that although a two-way partitioning example is shown in the fig-
ure, this formulation can be easily extended to handle multi-way
partitioning through matrix factorization. For |𝐶 |-way partition-
ing, we formulate the cut-size as timing loss 𝐿𝑡𝑖𝑚𝑖𝑛𝑔 based on the

a
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d

e

f

 [Pb1,Pb2]  [Pd1,Pd2]

 [Pf1,Pf2]

 [Pc1,Pc2]  [Pe1,Pe2]

expected cut-size of an edge:

 E[ eab ] = Pa1 * Pb2 + Pa2 * Pb1

expected cut-size of whole graph:

 E[ cut ] = ∑ E[ ei j ] 

notation:

 Pa1: probability of “a” in cluster-1

i,j

*example is a two-way partition, but can easily be extended to multi-way

[Pa1,Pa2]

linearity of
expectation

Figure 6: Illustration of “cut-size” loss formulation.

Algorithm 1 End-to-End Unsupervised Training Methodology.
We use default values of 𝑠𝑖𝑚_𝑒𝑝𝑜𝑐ℎ = 10, 𝑓 𝑢𝑙𝑙_𝑒𝑝𝑜𝑐ℎ = 50, 𝛼 =

0.001, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜆1 = 1, 𝜆2 = 10, 𝜆3 = 1, 𝜆4 = 0.5.

Input: 𝐺 = (𝑉 , 𝐸): transformed graph. {𝑦0}: initial node features.
𝐻 ∈ 𝑅 |𝑉 | : congestion scores. 𝐴𝑐𝑟𝑖𝑡𝑖𝑐 : critical path adjacency
matrix. 𝑆 ∈ 𝑅 |𝑉 | : maximum switching activities. {𝑊 }: weights
of GNN. 𝑠𝑖𝑚_𝑒𝑝𝑜𝑐ℎ: number of epochs for similarity-only learn-
ing. 𝑓 𝑢𝑙𝑙_𝑒𝑝𝑜𝑐ℎ: number of epochs for full-objective learning.
{𝛽1, 𝛽2}: Adam params. 𝛼 : learning rate. {𝜆}: objective weights.

Output: 𝑍 ∈ 𝑅 |𝑉 | : final clustering assignment of each cell
1: for 𝑖 = 0; 𝑖 < 𝑠𝑖𝑚_𝑒𝑝𝑜𝑐ℎ; ++𝑖 do ⊲ Pre-train GNN weights
2: 𝑦 ← GNN(𝐺,𝑦0;𝑊 ) ⊲ GNN embeddings by Equation 1
3: 𝐿𝑠𝑖𝑚 ← 𝑠𝑖𝑚_𝑙𝑜𝑠𝑠 (𝑦) ⊲ similarity loss by Equation 2
4: 𝑊 ← 𝐴𝑑𝑎𝑚 (𝐿𝑠𝑖𝑚, 𝛽1, 𝛽2, 𝛼 ;𝑊 )
5: {𝜇} ← obtain initial centroids from 𝑦 using K-means
6: add {𝜇} to ML computational graph ⊲ make {𝜇} trainable
7: for 𝑖 = 0; 𝑖 < 𝑓 𝑢𝑙𝑙_𝑒𝑝𝑜𝑐ℎ; ++𝑖 do
8: 𝑦 ← GNN(𝐺,𝑦0;𝑊 )
9: 𝐿𝑠𝑖𝑚 ← 𝑠𝑖𝑚_𝑙𝑜𝑠𝑠 (𝑦)
10: 𝑄 ← probability matrix from {𝑦, 𝜇} ⊲ by Equation 3
11: if 𝑖 % 3 == 0 then
12: 𝑃 ← target matrix from 𝑄 ⊲ by Equation 4
13: 𝐿𝑐𝑙 ← clustering loss from {𝑃,𝑄} ⊲ by Equation 5
14: 𝐿𝑐𝑜𝑛𝑔 ← congestion loss from {𝑄,𝐻 } ⊲ by Equation 6
15: 𝐿𝑝𝑜𝑤𝑒𝑟 ← power loss from {𝑄, 𝑆} ⊲ by Equation 7
16: 𝐿𝑡𝑖𝑚𝑖𝑛𝑔 ← timing loss from {𝑄,𝐴𝑐𝑟𝑖𝑡𝑖𝑐 } ⊲ by Equation 8
17: 𝐿 = 𝐿𝑠𝑖𝑚 + 𝜆1𝐿𝑐𝑙 + 𝜆2𝐿𝑐𝑜𝑛𝑔 + 𝜆3𝐿𝑡𝑖𝑚𝑖𝑛𝑔 + 𝜆4𝐿𝑝𝑜𝑤𝑒𝑟
18: 𝑊, 𝜇 ← 𝐴𝑑𝑎𝑚 (𝐿, 𝛽1, 𝛽2, 𝛼 ;𝑊, 𝜇) ⊲ update GNN, centroids
19: 𝑍 ← get argmax of 𝑄 by row ⊲ final clustering assignments

probability matrix 𝑄 ∈ 𝑅 |𝑉 |x |𝐶 | as:
𝐿𝑡𝑖𝑚𝑖𝑛𝑔 = 𝑟𝑒𝑑𝑢𝑐𝑒_𝑠𝑢𝑚

(
𝑄 (1 −𝑄)⊤ ⊙ 𝐴𝑐𝑟𝑖𝑡𝑖𝑐

)
, (8)

where 𝐴𝑐𝑟𝑖𝑡𝑖𝑐 denotes the adjacency matrix of timing critical paths,
𝑟𝑒𝑑𝑢𝑐𝑒_𝑠𝑢𝑚(·) denotes the operation that adds up all the input
elements, and ⊙ denotes the element-wise multiplication.

3.4 End-to-End Unsupervised Training
Now, after describing all the objectives of our framework, we jointly
optimize them using a gradient descent optimizer Adam [5] to
minimize the weighted sum of each objective as:

𝐿 = 𝐿𝑠𝑖𝑚 + 𝜆1𝐿𝑐𝑙 + 𝜆2𝐿𝑐𝑜𝑛𝑔 + 𝜆3𝐿𝑡𝑖𝑚𝑖𝑛𝑔 + 𝜆4𝐿𝑝𝑜𝑤𝑒𝑟 , (9)
where 𝜆𝑖 ≥ 0 controls the contribution of each objective to the
clustering assignment. After the training is complete, we obtain the
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Table 2: Detailed PPA comparison between the default tool flow and the enhanced flow. We normalize wirelength and power
values due to proprietary. All designs have ultra-high frequency targets with total number of cells ranging from 1.3𝑀 − 1.6𝑀 .
The effective frequencies across all benchmarks are improved by up to 26%. The place-to-route runtime takes around 10 days.

design PD default industrial PD flow (no clustering) default + unsupervised clustering (ours)

#clusters stage wns TNS # total clock total clock wns TNS # total clock total clock
(ps) (ns) vios WL WL power power (ps) (ns) vios WL WL power power

design1 post-place -48 -41.45 3306 1 - 1 - -39 -14.18 (-66%) 1622 0.999 - 1.000 -
|𝐶 | = 10 post-route -88 -2.89 574 1 1 1 1 -9 -0.32 (-88%) 149 1.000 0.994 1.001 0.994
design2 post-place -13 -0.084 23 1 - 1 - -4 -0.007(-92%) 2 1.000 - 1.001 -
|𝐶 | = 11 post-route -29 -3.82 1440 1 1 1 1 -22 -3.07 (-20%) 1288 0.998 0.999 0.999 0.989
design3 post-place -4 -0.019 10 1 - 1 - -1 -0.001(-95%) 1 0.998 - 0.997 -
|𝐶 | = 11 post-route -20 -2.24 996 1 1 1 1 -15 -1.62 (-28%) 823 0.996 0.978 0.996 0.998
design4 post-place -5 -0.042 16 1 - 1 - -2 -0.007(-83%) 4 0.977 - 0.992 -
|𝐶 | = 10 post-route -22 -2.65 1221 1 1 1 1 -12 -2.16 (-19%) 1103 0.976 0.985 0.991 0.986

Table 3: Optimization results analysis using proposed PPA
losses (Eq 6,7,8). Colored entries denote better evaluations.

design congestion entropy path cut-size power entropy
default ours default ours default ours

design1 1.901 1.902 908.6 905.5 1.940 1.937
design2 2.356 2.360 629.4 603.7 2.142 2.139
design3 2.289 2.291 864.1 835.3 2.106 2.104
design4 2.014 2.015 789.4 784.5 1.995 1.988

final clustering assignment of each cell 𝑣 as:

assignment of node 𝑣 = argmax
𝑐

𝑄𝑣𝑐 . (10)

Algorithm 1 summarizes the training process. In Lines 1–4, we
first pre-train the GNNmodule using the similarity loss (Equation 2).
Then, in Lines 5–6, based on the pre-trained embeddings, we obtain
the initial clustering centers {𝜇} (i.e., centroids) in high dimensions
using the K-means algorithm [7] and make these centroids trainable
by adding them to the ML computational graph. Note that the K-
means algorithm is only conducted once and for all to obtain the
initial clusters. In Lines 7–19, we compute each objective function
as described in the above equations and jointly optimize them
using gradient descent. It is worth to mention that in Lines 11–12,
we update the target matrix 𝑃 once in every three iterations to
stabilize the convergence. Finally, the computed gradients are taken
to update the parameters in the ML computational graph including
the GNN weight matrices {𝑊 } and the center locations {𝜇}.

4 EXPERIMENTAL RESULTS
We validate the proposed framework on 5 industrial GPU/CPU
designs in a commercial 5𝑛𝑚 technology nodewith the total number
of cells ranging from 1.3𝑀 to 1.6𝑀 , number of flops ranging from
95𝑘 to 150𝑘 , and number of macros ranging from 20 to 150. Due to
proprietary we cannot disclose the exact attributes of each design.
The proposed deep graph clustering framework is implemented
with the PyTorch library. The entire training process is conducted
on a single 𝑁𝑉 𝐼𝐷𝐼𝐴 𝑇𝐸𝑆𝐿𝐴 𝑉 100 GPU with 32𝐺𝐵 memory. For
each benchmark, the entire training only takes less than 30 minutes.

Figure 7: Impact on congestion after placement. Our opti-
mization technique reduces the worst congestion by 60.9%.

4.1 Optimization Results on Industrial Flows
Table 2 shows the detailed PPA impact of our framework being
integrated with an industrial design flow. We observe that across
all benchmarks, our framework demonstrates immediate PPA im-
provements at the placement stage, and these improvements last
thoroughly to the post-route stage. The timing improvements are
especially significant. With all the benchmarks operating in ultra-
high frequency (> 3𝐺𝐻𝑧), the effective frequency can be improved
by 26%. Another trend worth to mention is that the proposed frame-
work consistently improves the clock wirelength and the clock
power across all designs by up to 2.2% and 1.4%, respectively. We
believe these clock-related improvements are resulted from the pro-
posed “skip-connection” technique that introduces GNN message
passing edges between launch flops and capture flops. Finally, to
determine the total number of clusters |𝐶 | that each benchmark is
clustered into, we conduct 8 parallel model training with the target
number of clusters varying between 7 and 14 (inclusive) to find the
one that achieves the minimum loss (Equation 9). Note that even on
designswithmillions of cells, the entire parallel training process takes
less than 30minutes, which introduces almost no additional runtime
overhead compared with the full-flow implementation runtime that
takes around 10 days. Figure 7 visualizes the congestion impact. It
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Table 4: Detailed comparison with the previous work [8].

PD post-place post-cts post-route
stage [8] ours [8] ours [8] ours

design: design1 ( > 1.3𝑀 cells ), |𝐶 | [23] = 13, |𝐶 |𝑜𝑢𝑟𝑠 = 10
WNS (ns) -0.044 -0.039 -0.048 -0.039 -0.056 -0.009 (-83.9%)
TNS (ns) -35.35 -14.18 -67.71 -61.45 -2.965 -0.032 (-98.9%)
# vios 3119 1622 6411 6049 867 149 (-82.8%)
WL 1 0.999 1 0.998 1 0.999

design: design5 ( > 1.3𝑀 cells ), |𝐶 | [23] = 10, |𝐶 |𝑜𝑢𝑟𝑠 = 8
WNS (ns) -0.058 -0.073 -0.193 -0.121 -0.115 -0.107 (-6.9%)
TNS (ns) -6.42 -6.06 -23.35 -19.29 -27.37 -15.85 (-42.1%)
# vios 479 374 1608 1333 1118 413 (-63.1%)
WL 1 0.993 1 0.981 1 0.992

is shown that the proposed framework immediately reduces the
worst hotspot area by 60.9%, which justifies the effectiveness of the
proposed congestion loss function (Equation 6).

4.1.1 Analysis on Optimization Results using PPA Losses.
Throughout the past several decades, half-perimeter wirelength
(HPWL) and overflow have been the two dominant metrics for
placement evaluation. However, it is widely acknowledged that
these two popular metrics no longer show good correlation with
post-route PPA particularly in advanced technology nodes. In this
experiment, instead of using the two conventional metrics, we
demonstrate the effectiveness of using our PPA loss functions to
evaluate placement quality as shown in Table 3. This implies that
we can improve placement in the same direction as improving post-
route QoR metrics by optimizing the proposed PPA loss functions.

4.2 Comparing with Single-Way Clustering [8]
To demonstrate the effectiveness of the proposed PPA-directed,
end-to-end clustering approach, in this experiment, we perform
head-to-head comparisons with the previous work [8] that requires
a two-step process to determine the clustering assignments. Table 4
demonstrates the comparison results. We observe that our frame-
work achieves significantly better optimization results in every
major PPA metric across all PD stages. We believe the improve-
ments come from the fact that compared with [8], our framework
not only can perform better representation learning with the PPA
feedback from the clustering assignments, but also can improve the
clustering results with improved node representations.

4.3 Why Does our Framework Work?
In the above experiments, we have demonstrate the superior results
achieved by our framework. It significantly improves an industrial
design flow and the previous work [8]. We believe the achievements
of our framework can be accounted by the following reasons:

4.3.1 Global and Systematic Optimization. We think the first
reason comes from the fact that the proposed ML-based placement
optimization technique improves design PPA metrics more globally
and systematically compared with the existing heuristic algorithms
in commercial tools that often perform the optimization in a local
and ad-hoc manner (i.e., path-by-path, cone-by-cone, or subgraph-
by-subgraph) because of their inabilities to deal with large design
complexity. Unlike these heuristic algorithms, our framework op-
timizes the entire netlist graph as a complete entity, where the

PPA-related objectives are calculated across every cell in the design.
Therefore, it has the ability to capture the complicated interactions
among instances that are distant to each other.

4.3.2 PPA-Directed End-to-End Optimization. Unlike previ-
ous graph unsupervised learning works [8, 9] that leverages GNNs
to obtain node embeddings without any guidance from the sub-
sequent clustering task, in this work, we design PPA-inspired ML
loss functions related to congestion, timing, and power to optimize
both node representation learning and clustering assignments in
an end-to-end manner. In contrary to previous works that improve
PPA metrics indirectly, our framework works as a stand-alone opti-
mizer that directly improves the PPA metrics using ML algorithms.
The direct benefits of our approach is demonstrated in Table 4.

5 CONCLUSION
In this paper, we have presented the first placement optimization
framework that directly formulates PPA metrics as ML loss func-
tions and optimizes them to discover the cell clusters that can
improve the underlying placement and end-of-flow QoR metrics.
We validate the proposed framework with industry-leading com-
mercial tools in an industrial design flow and demonstrate that the
improvements are significant and consistent across different com-
mercial GPU/CPU designs. We believe this work shall demonstrate
that ML algorithms can not only be utilized to solve the prediction
or simulation tasks in EDA, but can also be leveraged as standalone
algorithms that directly optimize design-related metrics.
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