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ABSTRACT
Leading-edge designs on advanced nodes are pushing physical
design (PD) flow runtime into several weeks. Stringent time-to-
market constraint necessitates efficient power, performance, and
area (PPA) exploration by developing accurate models to evaluate
netlist quality in early design stages. In this work, we propose PD-
LSTM, a framework that leverages graph neural networks (GNNs)
and long short-term memory (LSTM) networks to perform end-of-
flow power predictions in early PD stages. Experimental results on
two commercial CPU designs and five OpenCore netlists demon-
strate that PD-LSTM achieves high-fidelity total power prediction
results within 4% normalized root-mean-squared error (NRMSE) on
unseen netlists and a correlation coefficient score as high as 0.98.
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1 INTRODUCTION
Modern low-power physical design (PD) implementation flows
require designers to perform design space exploration (DSE) in
search of the tool configurations (i.e., input parameters of each
design stage) that lead to desired end-of-flow power targets [11].
However, with the ever-increasing design complexity driven by
Moore’s Law, leading-edge industrial designs in advanced technol-
ogy nodes are pushing PD full-flow runtime into several weeks,
which prohibits designers from performing effective power, per-
formance, and area (PPA) exploration. Therefore, a methodology
that performs accurate end-of-flow PPA predictions in early design
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Figure 1: Overview of our sequential modeling approach.

stages is urgently needed, which allows designers to perform effi-
cient DSE by terminating the runs that are doomed to fail early [5].

Recently, the authors of [9] have attempted to tackle the PD
doomed run prediction problem by predicting end-of-flow design
total negative slack (TNS). However, the literature only focuses on
building a prediction model to capture the effect of sweeping target
frequency and utilization rate (i.e., two parameters) that are set at
the beginning of a flow, where all the other tool parameters are
fixed. This makes previous work [9] impractical because modern
PD implementation tools such as Cadence Innovus and Synopsys IC
Compiler II (ICC2) offer hundreds of tool parameters throughout
the PD flow for designers to explore.

To overcome the above issue and truly build a doomed run pre-
diction framework that will benefit PD engineers, in this paper, we
specifically focus on the aspect of power and develop an end-to-end
learning-based model named PD-LSTM using graph neural net-
works (GNNs) and long short-term memory (LSTM) networks [3].
Our framework predicts end-of-flow total power consumption in
early design stages by sequentially encoding the input parameters
specified for each intermediate PD stage. The goal of this work is to
develop an early-stage power prediction framework that outputs an
end-of-flow total power prediction accurately at each intermediate
PD stage by incorporating DSE through sequential modeling.

Figure 1 demonstrates a high-level view of the proposed model-
ing approach based on a reference commercial PD tool Synopsys
ICC2. As shown in the figure, unlike previous work [9] assuming

 

97

20
22

 A
C

M
/IE

EE
 4

th
 W

or
ks

ho
p 

on
 M

ac
hi

ne
 L

ea
rn

in
g 

fo
r C

A
D

 (M
LC

A
D

) |
 9

78
-1

-6
65

4-
97

29
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

M
LC

A
D

55
46

3.
20

22
.9

90
01

03

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 01,2023 at 12:39:32 UTC from IEEE Xplore.  Restrictions apply. 



MLCAD ’22, September 12–13, 2022, Snowbird, UT, USA Yi-Chen Lu, Wei-Ting Chan, Vishal Khandelwal, & Sung Kyu Lim

initial

place

initial

opt

initial

drc

final

place

build

clock

route

clock

clock

opt

route

auto

LSTM LSTM

graph neural network layers ( universal graph encoding )

LSTM LSTM LSTM LSTM LSTM LSTM

power

concatenate layer: GNN vector (128 dim.)  + tool parameters (19 dim.) + power estimation (1 dim.)

power power power power power power power

early termination check ? YES : NO high-level parameters:
 ccd.prepone
 ccd.postpone
 low_power_effort
 timing_effort

placement parameters:
 is_timing_driven
 is_power_driven
 coarse_density
 target_route_density
 buffer_aware

CTS parameters:
 clk_routing_effort
 place_effort
 congestion_effort

routing parameters:
 congestion_effort
 tns_driven
 power_effort
 global_effort
 crosstalk_driven
 drv_driven
 wire_via_effort

route

opt 1
route

opt 2

route

opt 3

end-of-flow

power{
placement

{
CTS

{

routing

Figure 2: Overview of our PD-LSTM framework and the modeling parameters offered by Synopsys ICC2. For each stage, our
framework will output an end-of-flow total power estimation which can be taken as the criterion of a doomed PD run.

the underlying implementation is fixed, in this work, we accept the
fact that designers may explore various parameters at each inter-
mediate PD stage. Note that due to the space limit, Figure 1 does
not show all intermediate PD stages that we select for modeling.
In this work, we select 8 design stages offered publicly by ICC2 to
perform sequential modeling using GNNs and LSTM.

At each modeling stage, our framework PD-LSTM will strive to
directly predict the end-of-flow total power value by leveraging all
the information obtained up to the current stage along with the tool
parameters that designers plan to explore in the future stages (i.e.,
a look-ahead mechanism). With the proposed framework, we envi-
sion designers to easily perform the following two operations that
are not imaginable before: (1) on-the-fly changing input parameters
of future PD stages, which enables a more efficient PPA exploration,
and (2) performing early termination on the implementations that
are doomed to miss the power targets.

Ideally, we only want to perform the end-of-flow prediction as
early as possible in the PD flow. However, there is an accuracy
and runtime trade-off between a machine learning (ML) model’s
prediction and its input features collection. With more features
collected from late stages, ML models are expected to make better
predictions in terms of fidelity and correlation. In this work, we
properly balance this trade-off with sequential modeling techniques
by iteratively predicting power at each modeling stage. Note that al-
though at each PD stage, the commercial tool will originally output
a power prediction of the underlying design, this estimation from
the tool is not accurate. In the experiments, we demonstrate that
the proposed framework, PD-LSTM, consistently outperforms com-
mercial tool’s early stage power estimations and is generalizable to
unseen netlists that are not utilized during the training process.

2 RELATEDWORKS OF ML FOR DSE
Novel DSE methods of modern electronic design automation (EDA)
flows mainly focus on devising ML-based techniques that address
the PPA exploration of a single PD stage [4]. Starting from the
placement stage, previous work [1] develops a placement predic-
tion model that takes placement parameters as inputs and output
design quality predictions. At the clock tree synthesis (CTS) stage,

previous works [6, 8] develop ML models to predict and optimize
CTS outcomes under different CTS constraints and targets. As for
the routing stage, the authors of [7, 13] develop learning-based tech-
niques to estimate the routability and design rule violations (DRVs).
Engineering Change Order (ECO) is a key feature provided by mod-
ern PD tools. Previous work [12] presents a gradient-boosted tree
model to predict the path-based timing analysis (PBA) results using
the context of global-based analysis (GBA). The main idea behind
these works is to improve chip design productivity through data-
driven modeling approaches. However, all these previous works
only focus on the PPA estimation of a single PD stage. To truly im-
prove DSE of a full PD flow, a framework that performs end-of-flow
PPA predictions at early design stages is needed.

3 OVERVIEW: PD FLOWMODELING
It has been widely acknowledged that GNNs are powerful ML mod-
els that encode graph knowledge into meaningful representations.
Since VLSI netlists can be naturally represented as hypergraphs, in
this work, we leverage GNNs to distill netlist information at each
intermediate PD stage. Given that a netlist under a PD implemen-
tation is dynamically changing from stage to stage due to buffer
insertion or removal, logic restructuring, fanout re-design etc., the
goal of applying GNNs in this work is to encode these netlist up-
dates effectively, where the encoded information is further taken
as the input of the LSTM framework to perform power estimation.

Figure 2 presents a high-level overview of our PD-LSTM frame-
work. The key idea behind is to model the PD flow as a sequential
process, and perform on-the-fly end-of-flow total power estima-
tion at each targeted modeling stage. Intuitively, with the proposed
framework, designers can perform early termination of an imple-
mentation without waiting several weeks to obtain the end-of-flow
power results. Furthermore, to enable a more fine-grained DSE
for better PPA exploration, we train the proposed framework to
incorporate the tool parameters specified by designers. That is, pa-
rameter configurations are taken as the inputs of the framework.
Unlike previous work [9] which assumes the underlying parameters
are fixed, in this work, the proposed framework accepts on-the-fly
tuning of the input parameters at each intermediate PD stages.
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Figure 3: ICC2 correlation analysis of sequential PD stages on a commercial CPU design. We select 4 intermediate PD stages
and plot the power estimation of ICC2 at each stage to the final achieved power value. We observe that power estimations in
early design stages are poorly correlate with the end-of-flow power values.

Numerous parameters are offered by ICC2 for PPA exploration.
In this work, we select 19 parameters by design expertise to perform
PD flow modeling which are shown in the right of Figure 2. The
high-level parameters are known to have profound impact to the
overall PD flow. Specifically, “CCD” stands for “concurrent clock
data optimization”, which is a key feature of ICC2 that optimizes
clock and data paths for PPA optimization. Finally, we would like to
mention that one of our input features to the LSTM framework is
the power estimation made by the commercial tool ICC2. Although
it is known that this power estimation made by the tool is not
accurate, we reckon that it may act as a baseline for the model to
improve from. In this paper, the main objective of PD-LSTM is to
provide better end-of-flow power estimations than the commercial
tool ICC2 in early design stages.

4 DESIGN OF EXPERIMENTS
4.1 Database Construction
The proposed framework adopts supervised learning, which re-
quires a database to be pre-generated for the model to be trained
upon. To build the database, we leverage Synopsys Design Compiler
to synthesize RTL into gate-level netlists, and utilize Synopsys ICC2
to perform physical implementations. In this work, we utilize 2
commercial multi-core CPU designs and 5 OpenCore designs to
perform the experiments. All the designs are synthesized under
TSMC 28nm technology node at their best achievable frequency.
For each synthesized netlist, we generate 200 PD implementations
by randomly sampling 19 tool parameters as shown in Figure 2.
These parameters govern the tool behaviour of various PD stages
such as placement, clock tree synthesis (CTS), and routing, which
directly impact the final design quality-of-results (QoR).

4.2 Database Analysis
4.2.1 Correlation Analysis. Since the goal of this work is to perform
high-fidelity end-of-flow power estimation in early stages of the
PD flow, the power estimation from the commercial tool of each
intermediate PD stage becomes a natural and meaningful baseline
for us. Figure 3 demonstrates a correlation analysis between the
tool estimated power value at selected PD stage and the end-of-flow
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Figure 4: CCD parameter sweeping experiment. We observe
that the end-of-flow power values can vary asmuch as 15% by
only sweeping two parameters, and the best achieved power
occurs under a non-intuitive combination.

achieved power value. Note that each dot in the figure represents
an actual PD implementation. We observe that as moving toward
the end of the design flow, the tool provides more accurate power
estimations with higher correlation coefficient (Pearson). However,
in the early stages of the design flow (e.g., placement), the power
estimations of the tool correlate poorly with the final achieved
value. This motivates us to build a framework that can provide
accurate power estimation in early stages of the design flow.

4.2.2 CCD Parameter Sweeping. As aforementioned, in ICC2, CCD
optimization is a key methodology to improve design PPA during
many optimization phases throughout the entire design flow. In
this work, we select two CCD related parameters: “prepone” and
“postpone”, which are numerical numbers denoting the maximum
reduction and increment, respectively, of the clock latency to regis-
ters. These two values are extremely critical, since the change of
clock latency will have a direct impact on clock skew that governs
the setup and hold margins of timing paths. Ultimately, the power
consumption will be affected by the tightness or looseness of the
timing margins. For example, buffer insertion is usually applied to
fix timing violations, which inevitably increase the internal power.
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Table 1: Initial node features defined for each design instance.

feature name description
min slack min_data_delay - max_clock_delay
max slack max_data_delay - min_clock_delay
wst output slew maximum transition of output pin
wst input slew maximum transition of input pin
drv net power switching power of driving net
switching power cell switching power
int power cell internal power
leakage cell leakage power
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(learned representations) where 𝐾 is the number of layers.

Figure 4 demonstrates a CCD parameter sweeping experiment
on a commercial multi-core CPU design. In this experiment, we
only sweep around the two CCD parameters introduced earlier:
prepone and postpone, from 0 (ns) to 0.25 (ns) with an interval of
0.05, while fixing all other input parameters (shown in Figure 2).
We observe that the best achieved power occurs when prepone
and postpone values are set to 0.1 and 0.15 respectively, which is
non-intuitive. Also, it is shown that the achieved power can vary
as much as 15% only by simply sweeping these two parameters.
Therefore, we believe a framework that predicts end-of-flow power
estimation while considering the effect of tool parameters sweeping
is highly needed to perform efficient PPA exploration.

5 PD-LSTM ALGORITHMS
In this work, we develop a flow-based ML-powered framework
named PD-LSTM that performs on-thy-fly end-of-flow total power
prediction at each intermediate PD stage by incorporating the dy-
namic netlist evolution and various parameter specifications. The
goal of our framework is to perform early and accurate power pre-
dictions by leveraging graph learning and sequential flow modeling.
Specifically, there are two main components in our framework,
which are the GNN model and the LSTM network that are respon-
sible for netlist encoding and time-series modeling, respectively.

5.1 Initial Node Features for Graph Learning
To fully benefit from the graph representation learning conducted
by GNNs, prior to the learning process, we have to hand-craft

related features for each design instance. Table 1 summarizes the
features we utilize for GNNmodeling. As shown in the table, besides
the power features that are directly related to our power prediction
task, for each design instance, we also carefully monitor its timing
information by introducing timing-related features. The key reason
is that timing and power are highly-related with each other. As
aforementioned, buffers or inverters often need to be inserted to
fix timing violations, and on the other hand, if a design has enough
timing budget, power can often be improved by relaxing timingmar-
gins [12]. During graph learning, these initial features of a cell will
be transformed into meaningful high-dimensional representations
by recursively aggregating neighborhood information.

5.2 Graph Embedding
The goal of graph representation learning is to obtain a graph em-
bedding vector that accurately characterizes the underlying netlist.
GNNs perform graph representation learning through a messaging
passing scheme, where the initial representation vector of a node
(i.e., a design instance) can be viewed as a message being recursively
transformed and passed onto its neighboring nodes. This message
passing process will capture the structural information of the graph
and the complex interactions among nodes.

The GNN module is consisted of a set of neuron layers and each
of them is responsible to perform aggregation at a specific level
𝑘 . Figure 5 summarizes the netlist to graph vector encoding pro-
cess using GNN, where for each node we recursively aggregate
its neighborhood information from previous level 𝑘 to obtain the
representation in the next level 𝑘 + 1. Let ℎ𝑘𝑣 denote the representa-
tion vector of node 𝑣 at level 𝑘 , and ℎ0𝑣 represent the initial features
defined in Table 1. Then, following from [2], we design our GNN
model to transform the features from level 𝑘 to level 𝑘 + 1 as:

ℎ𝑘−1
𝑁𝑘 (𝑣) = 𝑟𝑒𝑑𝑢𝑐𝑒_𝑚𝑒𝑎𝑛

(
{W𝑎𝑔𝑔

𝑘
ℎ𝑘−1𝑢 , ∀𝑢 ∈ 𝑁𝑘 (𝑣)}

)
,

ℎ𝑘𝑣 = 𝜎

(
W𝑝𝑟𝑜 𝑗

𝑘
· concat

[
ℎ𝑘−1𝑣 , ℎ𝑘−1

𝑁𝑘 (𝑣)

] )
,

(1)

where 𝜎 denotes the sigmoid function, 𝑁𝑘 (𝑣) denotes the neighbor-
ing nodes of node 𝑣 ,𝑊 𝑎𝑔𝑔

𝑘
and𝑊 𝑝𝑟𝑜 𝑗

𝑘
denote the aggregation and

projection matrices at level 𝑘 respectively, which together represent
the neuron layer at level 𝑘 . Finally, after the last transformation
at level 𝑘 = 𝐾 , we take global mean pooling of ℎ𝑘=𝐾𝑣 across every
node in the graph to obtain the final vector 𝑔𝑡 in graph-level at
timestep 𝑡 (i.e., an intermediate PD stage) as:

𝑔𝑡 = concat
[
𝑚𝑒𝑎𝑛_𝑝𝑜𝑜𝑙𝑖𝑛𝑔

({
ℎ𝑘=𝐾𝑣

})
, 𝑒𝑠𝑡𝑃𝑜𝑤𝑒𝑟, 𝑝𝑎𝑟𝑎𝑚𝑠

]
, (2)

where “𝑒𝑠𝑡𝑃𝑜𝑤𝑒𝑟” denotes the commercial tool’s estimation power
at the current stage, and “𝑝𝑎𝑟𝑎𝑚𝑠” represents the tool parameters
that the underlying PD implementation explores, which includes
both past (i.e., up to timestep 𝑡 ) and future (i.e., after timestep 𝑡 )
exploration. The vectors {𝑔𝑡 |𝑡=7𝑡=0} across 8 intermediate PD stages
are further taken as the inputs of the downstream LSTM framework.

5.3 PD Sequential Modeling using LSTM
Since PD is a sequential process where the output of an intermedi-
ate stage is the input of the next stage, the encoded graph vectors
{𝑔𝑡 |𝑡=7𝑡=0} are highly related with each other. Therefore, in this work,
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Figure 6: Architecture of the proposed PD-LSTM framework.

we leverage a LSTM network [3] to model such dependency by con-
sidering the encoded vectors across various stages as time-domain
dependent information. Figure 6 demonstrates the detailed architec-
ture of our framework PD-LSTM.Combined with the GNN model
presented above, here, we present an end-to-end framework that
leverages LSTM architecture to predict end-of-flow total power
value at each timestep 𝑡 based on the encoded graph vectors.

Basically, the LSTM network is a variant of recurrent neural
networks (RNNs) that has a backward connection. That is, at each
timestep 𝑡 , the LSTM network will receive not only the inputs
from the current time step, but also the outputs from the previous
timestep 𝑡 −1 as shown in Figure 6. Note that since at the beginning
there is no previous output, the state vector is usually set to 0. The
key idea of LSTM is that the network possesses long-term and short-
term memories to learn about which information to be disposed of
and which to be kept track of. Specifically, a LSTM cell is consisted
of three gates, which are input gate 𝑖 , forget gate 𝑓 , and output gate
𝑜 subject to a timestep 𝑡 . Given an input sequence 𝑔𝑡 , the LSTM
performs the encoding procedure as follows

𝑖𝑡 = 𝜎 (𝑊𝑖 · [𝑠𝑡−1, 𝑥𝑡 ] + 𝑏𝑖 ), (3) 𝑓𝑡 = 𝜎 (𝑊𝑓 · [𝑠𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 ), (4)

𝑜𝑡 = 𝜎 (𝑊𝑜 · [𝑠𝑡−1, 𝑥𝑡 ] + 𝑏𝑜 ), (5) 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡 , (6)

𝑠𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡 ), (7) 𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 [𝑠𝑡−1, 𝑥𝑡 ] +𝑏𝑐 ), (8)
where {𝑊 } and {𝑏} denote the weights and biases, 𝜎 denotes

the sigmoid activation function, 𝑠𝑡−1 denotes the output from the
previous time step, and ⊙ denotes the element-wise multiplication.
As shown in Figure 6, unlike previous work [9] that trains the LSTM
framework to predict the target value only at the final time step,

Table 2: Our benchmarks and their attributes in TSMC 28nm.

Design Name # Nets # FFs # Cells Usage
CPU-A 206,224 22,366 202,791

trainingECG 85,058 14,018 84,127
VGA 56,279 17,054 56,194
JPEG 231,934 37,642 219,064
CPU-B 542,391 47,552 597,085

testingAES 90,905 10,688 113,168
LDPC 42,018 2,048 39,377

inter-design encoding

CPU-B

AES

LDPC

intra-design encoding on AES

initial_opt

final_place

clock_opt

route_auto

(a) (b)

Figure 7: t-SNE visualization of GNN netlist encoding. (a)
Each dot represents a complete PD run of an unseen netlist.
(b) Each dot denotes a netlist graph at a specific PD stage.

in this work, our LSTM model outputs a prediction representing
the end-of-flow total power estimation at every time step. Finally,
in this work, we take the mean-squared-error (MSE) as the loss
function to train the model. Note that the proposed framework
PD-LSTM is end-to-end differentiable, which means the parameters
in both GNN module and the LSTM network are jointly updated
in the same computational graph by optimizing the MSE at each
timestep 𝑡 through a gradient descent optimizer.

6 EXPERIMENTAL RESULTS
In this section, we demonstrate the achievements of our PD-LSTM
framework, which is implemented in Python3 and the PyTorch li-
brary. Specifically, we validate our framework on two commercial
multi-core CPU designs and five OpenCore benchmarks with a
train/test split ratio of 4:3. As aforementioned, for each design,
we generate 200 complete PD implementations by randomly sam-
pling the parameters shown in Figure 2. The characteristics of these
designs after synthesizing under TSMC 28nm are shown in Table 2.

6.1 GNN Netlist Encoding Results
Graph encoding is the key to the success of the proposed PD-LSTM
framework. Here, we leverage the t-distributed stochastic neighbor-
ing embedding [10] (t-SNE) algorithm to visualize the embedding
results in 𝑅2. The visualization results are shown in Figure 7. In Fig-
ure 7 (a), for each unseen design, we concatenate the encoded graph
vector of each modeling stage and utilize t-SNE to visualize the
concatenated vector (128 ∗ 8 dimensions) in 𝑅2. As for Figure 7 (b),
within the AES benchmark, we visualize the distribution of the en-
coded graph vector in 128 dimensions extracted from four selected
modeling stages. In the figure, we observe that our GNN module
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Figure 8: Training loss iteration.

not only clearly differentiates the characteristics of different de-
signs, but also comprehends features from various modeling stages.
Hence, we conclude that the proposed GNN model is generalizable.

6.2 Sequential Learning Results
Figure 8 demonstrates the training loss iteration of the selected
modeling stages. We observe that the losses of early design stages
require more iterations to reach convergence. Table 3 demonstrates
the prediction results of the proposed PD-LSTM framework on the
unseen netlists that are not utilized in the training process. In this
work, our PD-LSTM has 8 modeling stages and for each stage, the
framework will output an end-of-flow power estimation as ICC2.
NRMSE denotes the normalized root-mean-squared error and is
calculated by normalizing the RMSE that inherently comes with a
“unit” (e.g.,𝑚𝑊 ) by the difference between the maximum and min-
imum ground truth values (i.e., 𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸

𝑝𝑜𝑤𝑒𝑟𝑚𝑎𝑥−𝑝𝑜𝑤𝑒𝑟𝑚𝑖𝑛
).

NRMSE is a popular comparison metric that removes the effect of
unit scale. As shown in the table, we observe that the predictions
made by PD-LSTM consistently outperform the ones made by ICC2
starting from early stages of the design flow in terms of correlation
coefficient (CC), which directly proves that the proposed frame-
work delivers better end-of-flow total power estimation. Finally, as
moving closer to the end of the design flow, we see that the power
predictions become more accurate for both ICC2 and the proposed
framework. This is expected because with more features collected
from latter stages of the design flow, ML models are expected to
make better predictions in terms of fidelity and correlation.

7 CONCLUSION AND FUTUREWORK
In this paper, we have proposed PD-LSTM, a flow-based frame-
work that leverages graph learning and sequential modeling to
perform end-of-flow total power estimation starting from early PD
stages. The proposed framework consistently demonstrates bet-
ter power estimation results across various intermediate modeling
stages than the reference commercial PD tool ICC2. In spite of the
superior prediction results achieved, in the future, we aim to explore
the possibilities to leverage PD-LSTM to perform on-the-fly PPA
optimization by dynamically searching for optimized parameters.
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