
On Advancing Physical Design using Graph Neural Networks
(Invited Paper)

Yi-Chen Lu
yclu@gatech.edu

Georgia Institute of Technology

Atlanta, Georgia USA

Sung Kyu Lim
limsk@ece.gatech.edu

Georgia Institute of Technology

Atlanta, Georgia USA

ABSTRACT

As modern Physical Design (PD) algorithms and methodologies

evolve into the post-Moore era with the aid of machine learning,

Graph Neural Networks (GNNs) are becoming increasingly ubiqui-

tous given that netlists are essentially graphs. Recently, their ability

to perform effective graph learning has provided significant insights

to understand the underlying dynamics during netlist-to-layout

transformations. GNNs follow a message-passing scheme, where

the goal is to construct meaningful representations either at the

entire graph or node-level by recursively aggregating and trans-

forming the initial features. In the realm of PD, the GNN-learned

representations have been leveraged to solve the tasks such as

cell clustering, quality-of-result prediction, activity simulation, etc.,

which often overcome the limitations of traditional PD algorithms.

In this work, we first revisit recent advancements that GNNs have

made in PD. Second, we discuss how GNNs serve as the backbone

of novel PD flows. Finally, we present our thoughts on ongoing and

future PD challenges that GNNs can tackle and succeed.

1 INTRODUCTION

With the ever-increasing design complexity struggling commercial

Electronic Design Automation (EDA) tools to deliver high-quality

full-chip designs in a timely manner, Machine Learning (ML) al-

gorithms have been widely leveraged across the entire Physical

Design (PD) flow, from synthesis to sign-off, to achieve faster design

convergence and better end-of-flow Power, Performance, and Area

(PPA) metrics. To make accurate predictions or to discover hidden

netlist characteristics that can drive better PD optimization, ML

algorithms deeply rely on the input vectors that are representative

of the underlying design. Given the fact that VLSI netlists are es-

sentially graphs, where cells can be considered as nodes and nets

can be viewed as edges, Graph Neural Networks (GNNs) become

one of the most promising choices to encode netlist information in

an efficient and systematic manner.

In general, GNNs follow a message passing scheme, where the

goal is to transform the initial features of each node into better rep-

resentations by aggregating the features from neighboring nodes.

A feature vector of a node can be considered as a message which is

iteratively transformed and passed onto its neighboring nodes. If

a GNN model has 𝑘 layers of neurons, the final representations of
each cell are contributed by the features of its local 𝑘-hop neighbor-
hood, which is also known as the receptive field. Nonetheless, the

expressiveness of vanilla GNNs is known to suffer as the number of

layers𝑘 increases beyond a certain threshold, which is known as the
over-smoothing problem [5]. The main reason is that as the number

of 𝑘 increases, the receptive field of each node will have larger over-
lap, which in the end makes the final learned embeddings across

different nodes indistinguishable (i.e., all the nodes have similar

learned embeddings). To overcome the over-smoothing issue in

PD, several works have either focused on improving the GNN mes-

sage passing scheme [3] or enhancing the netlist transformation

step [14] (more details will be discussed in later sections).

In the realm of PD, node embeddings learned by GNNs have been

used to solve the downstream supervised learning, unsupervised

learning, and reinforcement learning tasks including PD problems

such as partitioning [13], placement [12, 14, 16], gate sizing [10, 11,

15], activity simulation [21], and PPA predictions [3, 8, 9, 20], which

often overcome the limitations of traditional PD algorithms or basic

deep neural networks (DNNs) models. The successes of GNNs in

a variety of tasks have proven the effectiveness of using graph

learning to address PD problems. Usually, GNNs serve as feature

encoders of higher level of frameworks, which distills and refines

the initial input features into better representations by considering

the graph structural information for next stage predictors to make

more accurate and reliable predictions.

Depending on the objective formulation, different GNN mes-

sage passing and local neighborhood aggregation mechanisms

have been developed to cope with each specific PD problem. Aside

from common supervised learning-based approaches formulating

the objectives regression or classification based metrics, recent

works [11, 13, 14] have shown that graph representation learning

conducted by GNNs is a promising way to optimize crucial PPAmet-

rics in an unsupervised manner, which truly enables generalization

across different designs and technology nodes. As today’s commer-

cial VLSI designs easily contain millions, if not, billions, of instances

that are required to be jointly optimized within a constrained layout,

conventional optimization algorithms using heuristics or analytical

methods are struggling to keep up with the technology scaling,

which often results in sub-optimal QoR metrics. Therefore, GNNs

offer great opportunity to revisit classical PD problems in a learning-

driven manner.

Despite being a relatively new modeling architecture, GNNs

have revolutionized modern PD implementation flows without a

doubt. The goal of this paper is to highlight the important PD ad-

vancements that have been achieved by GNNs and discuss about

the remaining challenges waiting to be solved. The rest of the pa-

per is organized as follow. Section 2 first presents the necessary

background about GNNs and their common modeling approaches

for solving PD problems. Section 3 presents the details and ratio-

nales on how graph learning-based frameworks have solved the

conventional PD problems including partitioning for 3D ICs, place-

ment, and gate sizing for timing optimization. Section 4 further

illustrates how GNN serve as the backbone of novel commercial PD

flows to achieve faster chip design turn-around time through early

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 01,2023 at 12:38:56 UTC from IEEE Xplore. Restrictions apply.

...
GNN learning

node embeddings

adjacency matrix

node features

a

b

c

d

e

f

g

h

i

j

VLSI netlist

feature

collection

netlist

transformation

PPA predictions

cell clustering

activitiy simulation

gate sizing

(downstream tasks)

PPA optimization

gradient descent udpate

Figure 1: A common GNNmodeling architecture in PD. First, given an initial netlist, an adjacency matrix denoting connectivity

is constructed through netlist transformation and node features are collected to characterize the underlying design. Then,

node representation learning is performed to transform the initial node features into better representations, which can be

taken as the inputs to a variety of downstream tasks. Note that the entire framework can be end-to-end differentiable.

layer

two

input graph

PROJ

AGG

a b c

a

PROJ

AGG

b a c

b

d

PROJ

AGG

c a b

c

h1 c

d

AGG
PROJ

a

learning of

layer

one

h0 ch0 bh0 a h0 b h0 a h0 c h0 d h0 c h0 a h0 b h0 d

h1 a h1 b

h2 a

node ‘a’

a

b

c

d
e

(final embeddings of ‘a’)

Figure 2: Illustration of node embedding process from [12].

Assuming a GNN model has two layers, the final represen-

tations of a node will only depend on nodes within 2-hop

neighborhood, which is also known as the receptive field.

QoR predictions. Finally, we provide conclusion in Section 5 and

present thoughts for future directions as well as remaining critical

challenges.

2 BACKGROUND

2.1 Overview of GNNs in PD

While deep learning (DL) has brought tremendous success to PD in

providing accurate predictions that boost productivity by distilling

huge amount of design data, there is a fundamental challenge in

applying popular DL algorithms such as vanilla neural networks or

tree-based models to encode netlist information without spending

huge amount of time and manual effort in feature engineering.

The main reason is that these models often require a fixed form

of input representations (e.g., assuming input vectors are in the

same dimension), however, netlist come in various sizes and may

have extremely different characteristics. To overcome this issue,

recent works of ML in PD are seeking more systematic the effective

technique for netlist encoding. GNNs thus become the second to

none choices.

Since VLSI netlists are inherently hypergraphs, GNNs and their

variants have been applied to solve a wide variety of PD problems

throughout the entire design flow by constructing representative

node embeddings from initial features and local neighborhood ag-

gregation. Figure 1 demonstrates the common practice of applying

GNNs to solve conventional PD problems. As shown in the figure,

the main goal of GNNs is to construct node embeddings through

representation learning, which takes the adjacency matrix denot-

ing the connectivity among cells and initial features as inputs. The

learned embeddings can be further leveraged in the downstream

tasks to solve a wide range of problems.

Figure 2 further demonstrates the detailed local neighborhood

aggregation during the representation learning. It is shown that

due to the strategy of aggregation, the receptive field of a vanilla

GNN will be limited by its number of layers, which means if a GNN

has 𝑘 layers, then the final representations of each cell will only be
contributed by the neighboring nodes within 𝑘-hop neighborhood.
As aforementioned, due to the issue of over-smoothing, increasing

the number of layers 𝑘 may not always be beneficial to the learning,
as the learned embeddings across different nodes may be indistin-

guishable due to the high overlapping of their receptive fields. It is

suggested in [2] that 𝑘 = 3 often yields good empirical results.

2.2 GNN Message Passing

In general, given a graph 𝐺 = (𝑉 , 𝐸) and node features ℎ, the GNN

node representations at level 𝑘 (e.g., ℎ𝑘) can be obtained from the

ones at the previous level 𝑘 − 1 as:

ℎ𝑘−1𝑁𝑘 (𝑣)
= AGG_OP

(
{W

𝑎𝑔𝑔
𝑘

ℎ𝑘−1𝑢 , ∀𝑢 ∈ 𝑁𝑘 (𝑣)}
)
,

ℎ𝑘𝑣 = 𝜎
(
W
𝑝𝑟𝑜 𝑗
𝑘

· concat[ℎ𝑘−1𝑣 , ℎ𝑘−1𝑁𝑣 (𝑣)
]
)
,

(1)

where AGG_OP denotes the aggregation operation where popular

choices include sum, average, min and max operations; 𝜎 denotes

the sigmoid function; ℎ𝑘𝑣 denotes the representation vector of node
𝑣 at level 𝑘 , 𝑁𝑘 (𝑣) denotes the neighbors sampled at 𝑘-hop which is

subject to the sampling size 𝑠𝑘 ,𝑊
𝑎𝑔𝑔
𝑘

and𝑊
𝑝𝑟𝑜 𝑗
𝑘

denote the aggre-

gation and projection matrices respectively, which can be viewed

as the neural layer at level 𝑘 . Finally, {ℎ0} represent the initial node
features and for a GNN model with 𝐾 layers, ℎ𝐾 denote the final

obtained node embeddings for downstream tasks. It should be noted

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 01,2023 at 12:38:56 UTC from IEEE Xplore. Restrictions apply.

original netlist transformed as GNN input

F1

F2

a

b

c

d

e

f

g

F3

F4

a

D Q

D Q

c

d

e

f

g

D Q

D Q

b

F1

F2

F3

F4

proposed “skip-connection”data-path flow

Figure 3: Netlist transformation from [14]. Compared with

the clique-based technique adopted by many previous works,

the transformed graph now only focuses on preserving the

connections on timing paths while introducing additional

“skip-connection” edges between launch and capture flops.

that several works [3, 14] have enhanced the vanilla GNN archi-

tecture to more precisely address PD problems. In the following

sections, we will present more details on recent GNNs advancement

and achievements made in the realm of PD.

2.3 Netlist Transformation

Since a VLSI netlist is inherently a hypergraph 𝐺 = (𝑉 , 𝐸) and the
node representation learning conducted by GNNs relies on an adja-

cency matrix𝐴 ∈ 𝑅 |𝑉 |x |𝑉 | where each element𝐴𝑖 𝑗 ∈ {0, 1} denotes
whether learning messages can be passed from node 𝑖 to node 𝑗 , a
netlist transformation is needed prior to GNN representation learn-

ing. Most of the previous GNN-related works [1, 10, 12, 13] adopt

the clique-basedmodel for netlist transformation, where cells on the

same net are assigned message passing connections to each other.

Although the clique-based model is the most popular approach to

transform hypergraphs to graphs in PD, it is pointed out in [14]

that this netlist transformation may weaken the expressiveness of

GNNs as it introduces a large amount of edges and thus it may be

difficult to identify critical connections among cells. Considering

the fact that not every edge is equally important, [14] proposes a

novel netlist transformation technique as shown in Figure 3, where

the main highlight is that only connections on timing paths are pre-

served in the transformed graph and additional “skip-connection”

edges are introduced between launch and capture flops.

2.4 Initial Feature Collection

One of the main reasons why GNNs are so powerful is that they per-

form effective netlist encoding based on netlist characteristics. This

allows downstream modules to globally and systematically perform

optimization decisions based on design characteristics rather than

heuristics as most of the conventional algorithms offer in circuit

design. Therefore, prior to the graph learning process, it is essential

to determine an initial feature vector for each node (or edge) of

the underlying netlist. The initial feature vectors are expected to

provide insights related to the problem that is being solved. Popular

node features include timing information (slack, transition), power

consumption (cell internal power, net switching power), parasitics,

library information (constraints), physical information (x, y loca-

tions) etc. During the graph learning process, these initial features

of a design instance will be transform into better representations

by considering the local graph structure and its neighboring nodes.

2.5 Common Learning Objectives

2.5.1 Supervised Learning. This category includes theworkswhose

goals aremaking specific predictions as close as target groundtruths,

where the objective is either in a regression or a classification for-

mat. Common examples include PPA predictions, parasitic extrac-

tions, and activity simulations. Despite that having a rich amount

of data often leads supervised models into better prediction accu-

racy, the generalization of these models is still a major concern

as they inevitably will be limited by the designs or technologies

that are trained upon. Recently, many research groups have dis-

covered that by using GNNs as feature encoders, the supervised

learning-based modules often yield better prediction results and

generalizability [8, 9]. In other words, instead of using raw features

that are manually defined, leveraging GNNs as feature transformers

has been shown to improve accuracy of supervised learning.

2.5.2 Unsupervised Learning. This category refers to the works

whose objective formulations do not involve any target groundtruths

aside from the inputs, which is more preferred in the realm of EDA

as data collection is often extremely expensive. Previous works [12–

14] have successfully leveraged GNNs to perform unsupervised

learning for placement optimization, where curated loss functions

are devised to mimic traditional placement objectives including

wirelegnth, congestion, timing, and power metrics. In these ap-

plications, GNNs not only serve as feature encoders but also as

standalone optimization algorithms where the training is directly

optimizing design metrics.

2.5.3 Reinforcement Learning (RL). This category represents the

works whose goals are to iteratively maximize rewards under des-

ignated environments. Previous works [10, 16] have demonstrated

that GNNs can be leveraged as RL state vector encoders which pro-

vide essential information and guidance on improving the rewards

for placement [16] or timing [10] optimization. A subtle difference

of the GNN usage from those in supervised learning is that GNNs in

RL applications are expected to capture the time-wise node feature

variations on same graph structures, which is because the node

features are continuously changing as different actions are taken.

3 GNN APPLICATIONS IN PHYSICAL DESIGN

After describing the necessary background of how GNNs work and

how they can be applied to solve a wide variety of PD problems, we

now delve into specific applications and illustrate in detail about

how GNNs have advanced PD.

3.1 GNN Circuit Partitioning for 3D ICs

Circuit partitioning is a topic that has been studied extensively for

the past several decades. The renowned algorithm hMetis [4] has

shown that multi-level partitioning can achieve good partitioning

results in terms of cutsize. However, for the circuit partitioning

stage in state-of-the-art 3D design flows, cutsize is no longer the

priority metric to evaluate partitioning results. In 3D ICs, min-cut

partitioning algorithms may not fully realize the potential that 3D

integration provides as they may under-utilize 3D connections. To

overcome this issue, [13] propose a design-aware, unsupervised,

3D tier partitioning framework using GNNs. The key idea is that

instead of focusing on minimizing connectivity as conventional

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 01,2023 at 12:38:56 UTC from IEEE Xplore. Restrictions apply.

input graph

learned

embeddings

......

...............

G = (V, E)

initial features

node represetation

learning

......

...............

|V| x 32

|V| x |F|

|V| x |C|

probability

matrix Q

0.1, 0.2, , 0.3

0.4, 0.2, , 0.1

0.9, 0.0, , 0.1

...

clustering loss
min KL(P || Q)

congestion loss

max entropy(Q H)
T

power loss

min entropy(Q S)
T

timing loss

min Q (1-Q)* Adj’
TT

-∑ log(σ(y y)) -∑ log(σ(-y y))v
uƎN(v)

T
u v

T
k

k~rand

similarity loss

w
e

ig
h

te
d

 s
u

m

|F|: # of features

|C|: # of clusters

P: target distribution

KL: KL Divergence

H : congestion score

Adj’ : critical paths adj

S: switching activity

N(v): neighbors of v

σ: sigmoid function

rand: random sampling

notations

gradient descent update

layer t

layer t+1

layer t+2

to refine

assignments

to spread out

congested cells

to minimize

cut-size of paths

to aggregate

high activity nets

to prevent

long wires

Figure 4: PPA-directed unsupervised deep graph clustering framework from [14]. A GNN module is jointly trained with a

clustering module to optimize PPA metrics as ML loss functions bin an end-to-end manner.

min-cut based algorithms, [13] strives to identify the high similar-

ity cells based on their attributes and local graph structure. The

entire framework consists of two stages. First, GNNs are utilized to

transform the hand-picked features that include hierarchy, timing,

and power information into higher dimensional representations by

minimizing the per-cell similarity-based loss function as:

L(ℎ𝑣) = −
∑

𝑢∈𝑁 (𝑣)

log(𝜎 (ℎ�𝑣 ℎ𝑢))

−

𝑀∑
𝑖=1

E𝑛𝑖∼𝑁𝑒𝑔 (𝑣) log(𝜎 (−ℎ
�
𝑣 ℎ𝑛𝑖)),

(2)

where 𝑁𝑒𝑔(𝑣) denotes the negative sampling distribution of node
𝑣 , and 𝑀 denotes the negative sampling size (negative sampling

denotes the selection of cells that should be dissimilar to the current

target cell). After the graph representation learning is completed,

the weighted k-means clustering algorithm [7] is utilized to cluster

the GNN learned representations into two clusters (they assume

3D ICs to be 2-tier). Finally, it is shown that with the GNN learning-

based tier partitioning approach, the end-of-flow 3D full-chip PPA

metrics can be improved significantly compared with the existing

bin-based min-cut tier partitioning algorithm.

3.2 Placement Optimization using GNNs

In modern industrial PD flows, placement optimization via place-

ment guidance has become a must-use technique to high quality

placement. The placement guidance technique assist placement

optimization in commercial tools by informing placers about the

design instances that should be placed close to each other in order

to optimize crucial PPA metrics. During placement, commercial

placers will spend effort in grouping the cells that are suggested to

be in a common cluster nearby each other. Nonetheless, performing

placement guidance requires in-depth design-specific knowledge,

which is only achievable by a handful of experienced designers

who are familiar with the underlying design. To construct place-

ment guidance (i.e., cell clustering constraints) in a systematic and

automated manner, [12, 14] propose to identify critical cell clusters

using GNNs.

The proposedGNN-based placement optimization framework [14]

is shown in Figure 4. The input to the framework is a globally placed

netlist along with its PPA evaluations which include congestion,

EP

EP

a

b

c

d

e

f

g

h

EP

(a) instance selection

a b d

fh

(b) RL trajectory

state 1 state 2 state 3

state 4 state 5

STA

update

d

c

a

b

f

g

h

(c) local-graph encoding

state vector

Figure 5: Illustration of RL gate sizing process with GNN state

encoding from [10].

timing, and power metrics. The key idea of the framework is to dis-

cover the cell clusters that are important to improve the underlying

netlist if being optimized with extra effort during placement opti-

mization. For the first time, [14] demonstrates that GNNs can not

only be used as feature encoder, but also be leveraged as standalone

optimization algorithms with proper objective formulations.

3.3 Timing Optimization using RL and GNN

It is widely acknowledged that RL is a promising paradigm that

achieves super-human performance on many EDA tasks. A recent

work [16] shows that RL algorithms equipped with GNNs can be

used for macro placement to improve design turn-around time and

final PPA metrics. In addition, RL has also been applied to solve

analog transistor sizing [19], global routing [6], and technology

mapping [17]. In this work, we particularly illustrate how RL can

be leveraged to solve the VLSI gate sizing for timing optimization

problem and how GNNs play an indispensable role to achieve good

performance.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 01,2023 at 12:38:56 UTC from IEEE Xplore. Restrictions apply.

action

�(s)

value

Q(s,a)

policy network

value network

g
n

n
 e

m
b

e
d

d
in

g
 1

shared layers

g
n

n
 e

m
b

e
d

d
in

g
 2

s
h

a
re

d
 F

C
 l
a

y
e

r

R
e

L
U

R
e

L
U

lin
e

a
r

R
e

L
U

R
e

L
U

lin
e

a
r

local-graph

Figure 6: RL agent architecture from [10]. A two-layer GNN

module is utilized as a state encoder. The encoded state vector

is taken as the inputs of the policy and value networks to

decide the action and to estimate the reward.

0

-20

-40

-60

-80

-100

0 50 100 150 200 250

of iterations (RL trajectories)

T
N

S
 (

n
s
)

0 2 4 6 8 10 12

-2.18
0

-20

-40

-60

-80

-100

Figure 7: RL gate sizing iterations on an industrial benchmark

from [10].

Figure 5 presents a high-level overview of RL gate sizing process

in [10], where GNNs are applied to encode local graph informa-

tion of each selected instance into an RL state vector. The GNN

encoded state vector is expected to characterize an instance be-

haviour during timing optimization, and is further taken as the

input to the downstream agent to decide what actions to take in

order to maximize the associated rewards. The detailed architecture

is shown in Figure 6 and a complete sizing process on an indus-

trial benchmark is shown in Figure 7. Finally, it is shown in [10]

that although the RL sizing framework equipped with graph repre-

sentation learning using GNNs adopts a fundamentally different

approach to perform gate sizing, the timing optimization results

are comparable, or even better, with the default algorithm from an

industry-leading commercial tool.

3.4 GNNs for Fast ECO Power Optimization

The most common usage of GNNs lie in supervised learning, where

the goal is to make predictions either in node or graph level. Here,

we describe a recent work [11] on howGNNs can be utilized to expe-

dite signoff power optimization using Engineering Change Orders

(ECOs). At signoff ECO, 𝑉𝑡ℎ-assignment is one of the most popular
techniques to improve power dissipation as it introduces minimum

changes to the overall placed and routed layout. However, this sig-

noff power optimization process is extremely time-consuming and

hop = 1

hop = 2

V
th
 p

re
d

ic
ti
o

nf�

f�

f�

...

(b)(a)

(c)

gate A gate A

gate A

Figure 8: High-level view of the ECO-GNN framework

from [11]. The framework adopts supervised learning phi-

losophy to generate tool-accurate 𝑉𝑡ℎ-assignment prediction

on each design instance.

Figure 9: GNN explanation result from [11]. Important mes-

sage passing edges and neighboring nodes that have more

contributions to the target node are identified.

the power improvement is obscure before spending a huge amount

of time in ECO iterations, which provides a great opportunity to

apply learning-based algorithms in expediting the process.

To achieve this, [11] proposes to train a GNN-based framework

with groundtruth data pre-generated from commercial tools, where

the framework directly predicts the end 𝑉𝑡ℎ-assignment results of
each design instance after the optimization. Ideally, with a large

amount of training data, a well-trained framework will generate

tool-accurate assignments prediction results on unseen designs that

are not utilized in training. Figure 8 shows a high-level view of the

GNN-based signoff power optimization framework named ECO-

GNN [11]. For each design instance, the framework will predict

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 01,2023 at 12:38:56 UTC from IEEE Xplore. Restrictions apply.

ccd.prepone

ccd.postpone

is_timing_driven

is_power_driven

coarse_density

buffer_aware

tns_driven

power_effort

CTS routingplacementRTL

global_effort

crosstalk_driven

drv_driven

wire_via_effort

p
a

ra
m

e
te

rs

LSTM LSTM LSTM

power power power

P
D

 f
lo

w
m

o
d

e
lin

g

termination check ? YES : NO

G
N
N

G
N
N

G
N
N

*our LSTM has

8 PD stages up

to global routing

. .
 .

. .
 .

. .
 .

...

Figure 10: GNN integration in a commercial PD flow from [8].

GNN dynamically encodes netlists at different stages into

graph vectors which are taken as inputs of a LSTM model

that provides decision on early termination.

the 𝑉𝑡ℎ-assignment that the reference commercial tool will make
during ECO optimization. As for each instance, the number of

available assignment choices is discrete and finite, the training loss

is defined as the cross-entropy loss between the predictions made

by the framework and the groundtruths from the reference tool.

In [11], a total of 14 designs are utilized in the experiments with a

train/test splitting ratio of 9:5. It is demonstrated that after training

the framework ECO-GNN with 9 designs, it can generate accurate

prediction results on the remaining 5 testing designs instantly with

an F1-score as high as 0.9, which improves the tool optimization

runtime by as much as 14 times.

Finally, to understand the rationality behind predictions made

by the GNN framework. [11] further proposes a GNN explanation

technique to explain the prediction made behind each cell. The key

idea of the explanation technique is to trace the important message

passing flows and to identify the neighboring nodes that have more

contribution to the prediction of the target node. Figure 9 shows the

explanation result of a target node (colored in red) whose prediction

is made as “low𝑉𝑡ℎ”. It is observed that although the majority of the
neighboring nodes are ultra-high𝑉𝑡ℎ , but cells with lower𝑉𝑡ℎ types
have higher importance to the target node. As a result, low 𝑉𝑡ℎ is
assigned to the target node, which aligns well with common design

knowledge that cells in lower 𝑉𝑡ℎ types have larger capacitance
and thus impose tighter constraints to the target cell.

4 GNN INTEGRATION IN PD FLOWS

After discussing GNN applications on individual PD tasks, we now

describe a recent advancement [8] on integrating GNNs into a com-

plete PD flowwhich helps to reduce chip design turn-around time by

providing early termination check at a series of intermediate stages.

Figure 10 demonstrates an overview of the integration, where GNN

is taken as a netlist encoder and provides information to a LSTM

model that makes decision of whether terminating the underlying

PD implementation based on the criterion of end-of-flow power

estimation. The key highlight is that GNN is leveraged to encode

inter-design encoding

CPU-B

AES

LDPC

intra-design encoding on AES

initial_opt

final_place

clock_opt

route_auto

(a) (b)

Figure 11: t-SNE visualization of GNN netlist encoding

from [8]. (a) Each dot is a complete PD run of an unseen

netlist. (b) Each dot denotes a netlist at a specific PD stage.

netlists in different stages, where the graph structures and the node

features are dynamically (and may be drastically) changing from

stage to stage. To further quantify the effectiveness of GNN repre-

sentation learning, [8] further visualizes the GNN encoding using a

dimension reduction technique, t-SNE [18], as shown in Figure 11.

It is shown that the GNN module not only clearly differentiates

different designs, but also distinguishes netlists from different PD

stages even under a same design, which has proven the success of

leveraging GNNs as netlist encoders.

5 DISCUSSION AND CONCLUSION

In this paper, we have revisited recent advancement made by GNNs

and discussed the key rationales behind their success. It is shown

that GNNs can not only be utilized as feature encoders, but also

as optimization algorithms that can directly improve design PPA

metrics. In spite of the superior results achieved, there are still a

few challenges waiting to be solved to broaden the impact of GNNs

in PD. First, as aforementioned, on one hand GNNs suffer from the

over-smoothing problem as the number of layers increases, and on

the other hand the receptive field of a GNN model is limited by its

number of layers. This directly results in a dilemma on choosing the

feasible number of layers, which has been empirically set between

two to four in many applications. Nonetheless, a more serious issue

is that as the over-smoothing problem prohibits GNNs architecture

from going deep, common message passing mechanism may not

be able to capture the concept of “path” easily. To overcome this

issue, [3] proposes a level-by-level message passing technique to

ensure the information of standpoints of timing paths can always be

passed onto the endpoints. However, timing paths in VLSI designs

can easily have thousands of levels, which makes this technique not

feasible as information may be extremely diluted at the endpoints.

With the successes that GNNs and their variants have brought,

it is no doubt that GNNs will continuously play an important role

in the realm of PD. Going forward, we believe GNNs for PPA opti-

mization using unsupervised learning will be an even more critical

topic for future research to investigate in, as this will allow GNNs

to become truly standalone algorithms that are not limited by any

design or technology. We believe the pioneer works presented in

this paper shall clearly demonstrate on how GNNs can advance PD.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 01,2023 at 12:38:56 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] A. Agnesina, K. Chang, and S. K. Lim. Vlsi placement parameter optimization

using deep reinforcement learning. In Proceedings of the 39th International
Conference on Computer-Aided Design, pages 1–9, 2020.

[2] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
3438–3445, 2020.

[3] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin. A timing engine inspired
graph neural network model for pre-routing slack prediction. In Proceedings of
the 59th Annual Design Automation Conference 2022. ACM, 2022.

[4] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph
partitioning: Applications in vlsi domain. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 7(1):69–79, 1999.

[5] Q. Li, Z. Han, and X.-M. Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Thirty-Second AAAI conference on artificial
intelligence, 2018.

[6] H. Liao, W. Zhang, X. Dong, B. Poczos, K. Shimada, and L. Burak Kara. A
deep reinforcement learning approach for global routing. Journal of Mechanical
Design, 142(6), 2020.

[7] S. Lloyd. Least squares quantization in pcm. IEEE transactions on information
theory, 28(2):129–137, 1982.

[8] Y.-C. Lu, W.-T. Chan, V. Khandelwal, and S. K. Lim. Driving early physical
synthesis exploration through end-of-flow total power prediction. In Proceedings
of the 2022 ACM/IEEE Workshop on Machine Learning for CAD, 2022.

[9] Y.-C. Lu, S. Nath, V. Khandelwal, and S. K. Lim. Doomed run prediction in physical
design by exploiting sequential flow and graph learning. In 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), pages 1–9. IEEE,
2021.

[10] Y.-C. Lu, S. Nath, V. Khandelwal, and S. K. Lim. Rl-sizer: Vlsi gate sizing for
timing optimization using deep reinforcement learning. In 2021 58th ACM/IEEE
Design Automation Conference (DAC), pages 733–738. IEEE, 2021.

[11] Y.-C. Lu, S. Nath, S. S. K. Pentapati, and S. K. Lim. A fast learning-driven signoff
power optimization framework. In 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), pages 1–9. IEEE, 2020.

[12] Y.-C. Lu, S. Pentapati, and S. K. Lim. The law of attraction: Affinity-aware
placement optimization using graph neural networks. In Proceedings of the 2021
International Symposium on Physical Design, pages 7–14, 2021.

[13] Y.-C. Lu, S. S. K. Pentapati, L. Zhu, K. Samadi, and S. K. Lim. Tp-gnn: A graph
neural network framework for tier partitioning in monolithic 3d ics. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2020.

[14] Y.-C. Lu, T. Yang, S. K. Lim, and H. Ren. Placement optimization via ppa-directed
graph clustering. In Proceedings of the 2022 ACM/IEEE Workshop on Machine
Learning for CAD, 2022.

[15] U. Mallappa and C.-K. Cheng. Gra-lpo: Graph convolution based leakage
power optimization. In 2021 26th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 697–702. IEEE, 2021.

[16] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee,
E. Johnson, O. Pathak, A. Nazi, et al. A graph placement methodology for fast
chip design. Nature, 594(7862):207–212, 2021.

[17] G. Pasandi, S. Nazarian, and M. Pedram. Approximate logic synthesis: A rein-
forcement learning-based technology mapping approach. In 20th International
Symposium on Quality Electronic Design (ISQED), pages 26–32. IEEE, 2019.

[18] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

[19] H. Wang, K. Wang, J. Yang, N. Sun, H. Lee, and S. Han. Gcn-rl circuit designer:
Transferable transistor sizing with graph neural networks and reinforcement
learning. In ACM/IEEE 57th Design Automation Conference (DAC), pages 1–6.
IEEE, 2020.

[20] Z. Xie, R. Liang, X. Xu, J. Hu, Y. Duan, and Y. Chen. Net 2: A graph attention
network method customized for pre-placement net length estimation. In 2021
26th Asia and South Pacific Design Automation Conference (ASP-DAC), pages
671–677. IEEE, 2021.

[21] Y. Zhang, H. Ren, and B. Khailany. Grannite: Graph neural network inference
for transferable power estimation. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2020.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 01,2023 at 12:38:56 UTC from IEEE Xplore. Restrictions apply.

