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Abstract—As Moore’s law slows down, foundries and design houses are
resorting to design technology co-optimization (DTCO) to squeeze more
performance out of a technology node. However, the efficiency of EDA
tools plays a key role in driving DTCO. The existing commercial parasitic
extraction tools are not able to respond to a process parameter change
efficiently. For example, it takes 25 minutes to re-generate a parasitic
netlist for a mere layer thickness change using existing commercial tools.
This runtime becomes the bottleneck for standard cell DTCO. In this
work, we demonstrate a machine-learning-based method targeted on
standard cells that can efficiently extract parasitic capacitance within
seconds while maintaining competitive error distribution compared to
the state-of-the-art rule-based 2.5D extraction method, which suffers
from pattern mismatch since no real layout is provided at the pre-
characterization stage. We extract patterns from actual standard cell
layouts as training data for the ML model, and the model can predict
coupling capacitance with unseen layer thickness within milliseconds.

Index Terms—parasitic extraction, capacitance extraction, machine
learning, pattern extraction, 2.5-D extraction

I. INTRODUCTION

As the process technology advances, the contribution of parasitic
resistance and capacitance to the delay and power continuously
increases due to the shrinking size of wires [1]. The role of parasitic
extraction (PEX) is becoming increasingly critical for cell and chip
design. Additionally, with the slowing pace of Moore’s law, foundries
and designers resort to design-technology co-optimization (DTCO) to
squeeze even more performance, power, or area (PPA) gain out of
a technology node. However, the efficiency of DTCO exploration
relies heavily on the runtime of EDA tools. The existing EDA tools
for parasitic extraction are still not efficient enough to drive iterative
DTCO, particularly in process parameter exploration, such as metal
and dielectric thickness, resistivity, via height, etc.

Fig. 1 illustrates the first motivation of our method. We use ML
models as a storage medium to store information from multiple
interconnect technology files (ITF) into a model to expedite process
parameter exploration and enable interpolation. As a comparison, the
existing tools are only good at handling layout changes. To evaluate
process changes to PPA gain, none of the commercial tools can handle
these changes efficiently. For example, for StarRC to handle a metal
and dielectric layer thickness change, the pre-characterization must
be executed again, which can take hours or even days for commercial
nodes. This becomes a significant obstacle for process parameter
exploration.

Secondly, we use ML to prevent the manual study of pattern
generation and curve fitting. As will be introduced in Section II-A,
state-of-the-art commercial tools, such as Synopsys StarRC, Cadence
QRC, and Siemens xACT, embrace the idea of pre-characterization.
These tools use field solvers to compute a finite number of patterns
and store them in a pre-characterized library (Pre-K lib); thus, the
extraction becomes querying a database or computing an analytical
formula. However, given the diverse design rules, it is impractical

ITF File Pre-K Lib ML model

(a) (b)

ITF FileITF FileITF File

Fig. 1: Comparison of ITF processing workflows. (a) SOTA com-
mercial tools convert each ITF file into a pre-characterized library
(Pre-K Lib), requiring reprocessing upon changes. (b) The proposed
method encodes multiple ITF files into a single set of ML models,
eliminating repeated pre-characterization.

to enumerate and store all possible patterns in a database. Thus,
generating representative layout patterns to study and meticulous
curve fitting is required, which requires not only manual time but also
expertise. Nevertheless, the problem can be considered a regression
problem and solved or approximated by machine learning (ML)
models. With enough training datasets and careful design of the ML
models to ensure generalization, the ML approach can be highly
automated with minimum expertise. As illustrated in Fig. 2, in this
work, we translate a list of shape coordinates into a feature matrix,
and with the capacitance values computed from a field solver, we train
an ML model that can predict the coupling capacitance between two
metal shapes given a pattern.

We summarize our contributions in this paper as follows:

• Introduced our custom adaptive cross-section pattern extraction
algorithm for extracting patterns as training data.

• Introduced appropriate filtering strategies for the ML models to
handle a reasonable range of number of shapes in a pattern.

• Demonstrated a way to encode layer thickness into feature
vectors for ML models and the potential for interpolating and
extrapolating unseen layer thickness.

• We compared deep neural network with LightGBM and con-
cluded that LGB, which is 10x faster, suffices for most cases.

II. BACKGROUND

A. Pattern-based Extraction

State-of-the-art parasitic extraction tools—such as Synopsys
StarRC [2], Cadence QRC [3], and Siemens xACT [4]—employ
pattern-based extraction, also referred to as 2.5-D extraction or
rule-based extraction. As illustrated in Fig. 3, the pattern-based
methodology involves two primary phases: pre-characterization and
extraction.

In the pre-characterization stage, the tool generates a set of
representative 2-D cross-sectional patterns. These patterns, together
with process-specific information, are analyzed using a 2-D field
solver to compute resistance and capacitance (R/C) per unit length.
The resulting values are stored in a lookup database and are used for
curve fitting to handle potential pattern mismatches during extraction.
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Fig. 2: Capacitance extraction from a given pattern (a list of shapes)
using a traditional field solver vs. machine learning.
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Fig. 3: Pattern-based extraction includes two stages: pre-
characterization and extraction.

In commercial tools, the pre-characterization phase typically relies
solely on process data, with pattern generation performed indepen-
dently of the actual layout. Some even claimed they are generated
empirically or manually [5]. In our experiments using an academic
process design kit (PDK), this stage requires approximately 25 min-
utes when executed with 64 CPU threads. For advanced commercial
technology nodes, the process may span several days due to increased
complexity.

During the extraction phase, the layout is decomposed into po-
tentially thousands of 2-D cross-sectional slices along both the x
and y directions. For each extracted pattern, R/C values are retrieved
from the pre-characterized database or estimated via interpolation
when an exact pattern match is unavailable. Finally, the extracted
values are assembled and translated into a parasitic netlist. This table-
lookup-based approach significantly accelerates extraction, offering
performance gains of several orders of magnitude compared to full
3-D field solver techniques, where numerical solutions are computed
directly.

B. Related Works

The concept of 2.5-D parasitic extraction dates back to the 1990s.
Cong et al. [6] laid the foundational work and successfully integrated
2.5-D extraction techniques into a commercial tool. The integration
of machine learning into parasitic extraction emerged in the late
2010s. Kasai et al. [7] employed a multilayer perceptron (MLP) for

TABLE I: Terminologies used in this paper.

Name Description
Shape A single piece of metal wire segment connecting two

points in a layout, or a conductor polygon in a cross-
section

Pattern A 2-D cross-section, which includes a target shape and
one or more neighbor shapes. We compute coupling
capacitance between the target and each of its neighbors
as depicted in Fig. 2

Target shape Also called an aggressor. We allow every shape to be
the target shape in turn and create cross-section patterns.
Often drawn in red edges in our figures

Victim A neighbor of the aggressor. We compute the capaci-
tance between an aggressor and a victim

Pattern extrac-
tion

The process of scanning the layout and creating cross-
section patterns. Will be introduced in Section IV

Target layer The metal layer that the target shape is in
Secondary
layer

A metal layer other than the target layer

Layer combi-
nation

A combination of a target layer and one or more
secondary layers. We train one ML model for each layer
combination

Feature vector The numerical input for ML model to predict a capac-
itance value

Feature matrix Concatenation of multiple feature vectors as ML model
input to predict multiple capacitance values

ITF Interconnect technology file for Synopsys tool, equiva-
lent to ICT file in Cadence tool

capacitance extraction in 3D integrated circuits (ICs). Li et al. [5]
utilized a deep neural network (DNN) as a classifier to dynamically
select appropriate extraction formulas based on layout pattern ge-
ometries. Yang et al. [8] introduced a density map representation and
demonstrated its effectiveness using convolutional neural networks
(CNNs) for parasitic extraction. However, these initial studies were
limited to synthetic pattern datasets.

A significant advancement was made by Abouelyazid et al. [9],
who were the first to report extraction results based on real de-
sign layouts. They conducted a comprehensive analysis of pattern
extraction setups and proposed a vertex-based feature representation
to enable DNNs to effectively model process variations. In a sub-
sequent study [10], the same authors developed a hybrid approach
capable of automatically selecting the fastest method—traditional
rule-based, DNN, or field solver—based on the user-defined accuracy
requirements. More recently, Tsai et al. [11] proposed a residual
learning framework combining a linear model with a DNN. In this
architecture, the DNN is responsible only for learning the small
residuals rather than the full capacitance values. Their method, based
on a full 3-D extraction paradigm, achieves both high accuracy
and computational efficiency. Despite these advances, existing ap-
proaches do not support exploration across varying layer thickness
configurations, highlighting a key limitation in current methodologies.
Additionally, none of them shared enough details of how they
extracted their patterns from layouts.

III. OVERVIEW OF OUR APPROACH

In this section, we list the terminologies we will use throughout the
paper in TABLE I and provide a high-level overview of our method.

As illustrated in Fig. 4, our proposed machine learning (ML)-based
parasitic extraction flow comprises two main stages: training and
inference. Each step depicted in Fig. 4 will be explained in detail
in the following paragraphs, with supplementary figures referenced
where helpful.

During the training stage, the inputs include a standard cell
library and multiple interconnect technology files (ITFs). From the
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Fig. 4: Overview of our flow. During the training stage, we extract
patterns from a stdcell library and use them to train the ML models.
During the inference stage, our tool calculates capacitances from an
input GDS and ITF file using the ML models.

cell library, our tool extracts cross-sectional patterns, which are
represented by (x, y, layer) as denoted by “xy+L” in Fig. 4. The
procedure for pattern extraction is described in Section IV. Using
the other input, ITF files, we map each GDS layer name to a
corresponding z-coordinate, thereby enabling 3-D spatial character-
ization. The resulting cross-sectional patterns, exemplified in Fig.
6(c)(e), are then calculated using a 2-D field solver—in our case,
Synopsys Raphael [12]—to compute coupling capacitances between
all relevant shape pairs within each pattern. Simultaneously, the
extracted patterns are encoded into feature matrices, as illustrated
in Fig. 2. The construction and semantics of these feature vectors are
further discussed in Section V-B. With both the input features and
target labels (capacitance values) available, we train the ML models
to generalize across various layer thickness configurations.

In the inference stage, the workflow mirrors the training phase.
Patterns extracted from a cell layout are transformed into feature
matrices using the layer thickness information provided by a new ITF
file. The pre-trained ML model then predicts the coupling capacitance
directly from these feature matrices. Our ML-based methodology
enables accurate parasitic capacitance estimation for unseen layer
thicknesses without requiring a time-consuming pre-characterization
process, which is typically necessary in existing commercial tools.
Notably, the model is trained once and can generalize across vary-
ing technology configurations, offering substantial improvements in
efficiency and adaptability.

IV. PATTERN EXTRACTION ALGORITHM

This section describes our algorithm to extract cross-section pat-
terns from a cell layout, the first step in Fig. 4. These patterns will
later become the training data of our ML models. We first introduce
how our algorithm works, which iterates over every shape in the input
cell layout. Then there are three sub-steps in the algorithm that we
will introduce in more detail: sorting, filtering, and indexing.

A. Overview

As shown in Fig. 2, a pattern in this paper refers to a 2-D cross-
section involving multiple metal shapes, or a list of shapes. A 2-D

field solver is used to compute the capacitance between each pair of
these shapes, yielding a capacitance matrix as shown in Fig. 2. The
shape highlighted in red in the pattern is called a target shape or
aggressor. These two terms will be used interchangeably throughout
the paper. On the other hand, its neighbors are called victims. Our
goal is to extract the coupling capacitance between the aggressor and
every victim.

We describe our pattern extraction algorithm in Algorithm 1, and
illustrate the key steps in the algorithm in Fig. 5, albeit the nested
loop cannot be fully expressed in the flow chart. The algorithm has
three nested for loops to extract cross-section patterns from a cell. The
first for-loop iterates over all metal layers, and the iterator is target
layer. The second for-loop iterates over all shapes in the target layer,
with the iterator being target shape, or simply target. In summary,
the first and second nested loops allow every shape in the layout to
be the aggressor and add its neighbors to the pattern library.

Algorithm 1: Our 2.5D Pattern Extraction Algorithm. fax
and lax stand for forward axis and lateral axis, respectively.
bbox is bounding box.
Input : cell layout, window size
Output: pattern lib

1 pattern lib← {};
2 foreach target layer ∈ all layers do
3 foreach target ∈ target layer do
4 foreach (fax, lax) ∈ {(x, y), (y, x)} do
5 window ← extend(target, lax, window size);
6 neighbors← all shapes within the window;
7 cutlines← {};
8 foreach n ∈ neighbors ∪ {target} do
9 cutlines.add(n.bbox[fax].lower);

10 cutlines.add(n.bbox[fax].upper);

11 foreach c ∈ cutlines do
12 if c /∈ n.bbox[fax] then continue;
13 pattern← {target};
14 foreach n ∈ neighbors do
15 if n overlaps (c, next(c)) then
16 pattern.add(n);

17 pattern.sort();
18 pattern.filter(max lateral = 2);
19 pattern.index assignment();
20 pattern lib.add(pattern);

21 return pattern lib

The third loop is the scanning direction. Each shape is scanned
along both the x and y axes. The target shape is first sliced into non-
uniform segments (lines 7-10), where the cut lines are determined by
the boundary of its neighbors in the search window. Then we traverse
every segment (lines 11-16) to collect the neighbors overlapping the
segment to create the cross-section pattern. We set the window size
to one CPP. In fact, with our preceding filtering in place, the window
size has little impact on the accuracy as long as it is large enough.

In the example shown in Fig. 6b, the target shape (red-edged
rectangle in the middle) is sliced into six segments in a horizontal
scan by five cut lines, creating four unique cross-section patterns 1
- 4 in Fig. 6c, while the leftmost segment has no neighbors and
is omitted. Additionally, the vertical scan (Fig. 6d) creates the fifth
pattern in Fig. 6e. No horizontal cut lines are drawn because there
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Fig. 5: Overview of our pattern extraction algorithm. Our tool first
picks a target shape and scanning direction (1, 2), and draws cut lines
based on its neighbors (3). In (4), another loop traverses every cut
line and creates the cross sections. After some processing (5), the
pattern is stored in the library (6), and the tool enters another loop.

are no neighbors to cut the target when scanning vertically. When
storing the coordinates of the shapes, the target is centered on the
origin, and the others are offset accordingly. The patterns are stored
in a C++ std::set to prevent duplication.

Lastly, there is yet another outer loop to traverse all cells in the
library. To make the description of scan direction independent of the
shapes’ routing direction, we define long axis and short axis. For a
horizontal shape like the red-edged one in Fig. 6, the long axis is
defined as the x-axis and short axis as the y-axis for this shape. Vice
versa for a vertical shape like the green one in Fig. 6.

In addition to adding all surrounding shapes of the target into the
pattern, we enforce sorting to ensure the victims are organized in
a way that the ML model can easily capture hidden information
and filtering to prevent extremely small values from disrupting the
model’s learning.

B. Shape Sorting in a Pattern

There are two goals for sorting the shapes in a pattern: a) to
facilitate the translation from a graphical pattern to a feature matrix
(Fig. 9), which we will discuss in Section V; and b) as a preliminary
step for filtering.

First, we create 2L lists, where L is the number of unique layers
in the pattern. L lists for shapes whose horizontal coordinates of the
center are ≤ that of the target shape, i.e., on the left. The other L
lists for otherwise, i.e., on the right. After every shape is placed in its
corresponding list, the lists are sorted by the center-to-center distance
of each shape to the target shape.

C. Shape Filtering Policy

In our work, we filter out some shapes in patterns. Such filtering is
enforced for the following reasons: a) There is a hard upper bound for
the number of shapes that our ML model can process. A high number
of shapes sacrifices not only the efficiency but also the accuracy. b)

Not all shapes are equally crucial to the aggressor. According to [9],
two shapes for each direction suffice. Adding the third one has less
than 1% effect on the aggressor. c) According to our experiments,
adding extremely small values to the training data distracts the model
from learning critical trends.

We first implement layer filtering, alternatively called vertical
filtering. Suppose there are La layers above the target layer, Ll layers
at the same level as the target layer (lateral layers), and Lb layers
below the target layer. All the Ll layers are kept, and only the nearest
layer from La and Lb layers, respectively, are kept. Note that the
remaining above/below layer of target layer l is not necessarily l±1.
If a M0 shape has a segment not overlapping with M1 but with M2,
a cross-section involving M0 and M2 is created.

Next, we filter the shapes within a layer, alternatively called
horizontal filtering. Horizontal filtering is performed differently de-
pending on the scan direction. For a long-axis scan as depicted in Fig.
7a, the target shape is thin, and the chance that the shape overlaps
more than two shapes is slim. Thus, we filter the shapes according
to their distance from the center. Based on Abouelyazid et al. [9]
and our experiments, we only keep at most two shapes on the left
and right, respectively. The third one has less than 1% capacitance
contribution to the aggressor.

For a short-axis scan, the target shape can be long and overlap
multiple shapes above or below, as shown in Fig. 7b. However, the
capacitance of those overlapped shapes has been computed in the
other scan and need not be extracted. We only need to take care of
lateral and fringe capacitance in this scan. In Fig. 7b, despite crossing
many shapes below, the gray shapes above and under the target shapes
have been extracted during the other scan, and those outer gray shapes
have negligible capacitance to the target. This scan aims to model the
lateral (blue ones) and fringe (orange and green ones) capacitance.
According to our experiment, removing gray shapes in Fig. 7b only
causes less than 4% of increases in the lateral capacitance.

D. Shape Indexing in a Pattern

The last step is to assign an index for each shape in a given pattern.
0 is for the aggressor, 2i−1 for shapes on the left, and 2i for those on
the right. 1 to 4 are for lateral shapes, 5 to 8 for below shapes, and 9 to
12 for above shapes. These indices correspond to their assigned slots
as we will show in Fig. 9. If fewer than three layers are involved, the
maximum index, or number of inputs for the ML model, is decreased
accordingly.

E. Categories of Capacitance

Based on empirical observations, we categorize the impact of layer
thickness variation on capacitance into three types, as shown in Fig.
8. We define sensitivity as a numerical metric to explain the idea:

Sensitivity =
capacitance change (%)
thickness change (%)

(1)

For example, doubling the layer thickness (+100%) yields a corre-
sponding percentage change in capacitance, indicating its sensitivity.

Our results show that lateral capacitance (Fig. 8a) is highly
sensitive, often exceeding 50% and occasionally 100%. Stretched
capacitance (Fig. 8b) shows moderate sensitivity (−10% to −40%),
while others, such as vertical capacitance (Fig. 8c), remain mostly
within ±5%.

This variability in sensitivity directly affects ML model perfor-
mance: high-sensitivity regions create training samples with similar
inputs but significantly different outputs, increasing modeling com-
plexity. We select our ML method based on this observation.
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Fig. 7: Shape indices after sorting and filtering. These indices indicate
their assigned slots in the feature vector. (a) Long-axis scan patterns.
Two shapes on both sides suffice, (b) Short-axis scan patterns. Gray
shapes can be removed with < 4% impact on the lateral capacitance.
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Fig. 8: Categories of cross-section coupling capacitance based on
their sensitivity to a metal thickness change (indicated with arrows).
Red-edged shapes are aggressors. (a) Lateral capacitance (L), (b)
Stretched capacitance (S), (c) Vertical capacitance (V).

V. CAPACITANCE PREDICTION WITH MACHINE LEARNING

This section describes our ML approach, including how we prepare
our training data, translate them into numeric values for ML models,
preprocess the data for better outcomes, the reason why we used
multiple ML models, and finally, our training strategy.

A. Training Data Preparation

After we extracted patterns from the standard cell library, we fed
each pattern to a 2-D field solver to solve the capacitance. As Fig.

2 shows, for a pattern with N shapes, the field solver will output an
N×N symmetric matrix. Cii is the total capacitance of conductor i,
the sum of all its coupling capacitance to the others, while Cij(i ̸= j)
is the coupling capacitance between conductor i and j. On the other
hand, our goal is to extract the capacitance between the aggressor and
each of its victims, i.e., N−1 coupling capacitance values. Therefore,
we formed N − 1 feature vectors, v⃗01 and v⃗02 in Fig. 2’s example.
We will explain our feature vector in Section V-B. Then, C01 and
C02, which are from the field solver, are used as the training labels.
The prediction is denoted as C̃01 and C̃02

B. Feature Vector Representation

Fig. 9 depicts how we organize a pattern into numeric values for the
ML model. We apply the vertex-based representation from [9] for two
reasons: a) This representation inherently includes layer thickness,
which is one of the main targets in our flow. As a comparison, density-
based representation—another representation adopted by [8], [10],
[11]—focuses on a top-down view of shape geometries and cannot
encode thickness into the feature vector. b) The large number of zeros
in the feature vector acts as an efficient way to turn off irrelevant
neurons.

In Fig. 9, we refer a pattern library to a collection of patterns. As
Fig. 2 shows, a pattern with N shapes (1 aggressor, N − 1 victims)
includes N−1 capacitance values of interest, requiring N−1 feature
vectors. Each feature vector consists of three equal-sized parts: all
shapes, aggressor, and victim. The aggressor part is a filtered copy of
the all-shapes part, leaving only the aggressor geometry description
non-zero. Similarly, the victim part is also a copy of the all-shapes
part, leaving only the victim geometry description non-zero. The all-
shapes vector can be viewed as the concatenation of L layer vectors,
where L stands for the number of metal layers involved in this pattern.
In our later experiments, L ranges from 2 to 4. The first layer is
always the target layer, and the first shape slot is always the aggressor,
which is centered at the origin. A layer vector is the concatenation
of 4 (secondary layers) or 5 (target layers) shapes. The shapes are
sorted according to their relative position to the target aggressor or
the origin, as we introduced in Section IV-B. Suppose, for example,
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Fig. 9: Hierarchical breakdown of our feature vector representation.
A pattern with N shapes yields N − 1 feature vectors, each split
into three parts: all shapes, aggressor, and victim. Feature vectors are
built from layer vectors, which consist of 4–5 shapes per layer, with
each shape represented by its (x, y) coordinates.

there is only one shape on the right; the R2 slot will be empty and
filled with zeros to deactivate the corresponding neurons. Finally,
each shape is represented by four numbers: its lower-left (x, y) and
its upper-right (x, y).

Using the pattern in Fig. 2 as an example to summarize, which
involves three layers and two victims. A feature row vector involving
three metal layers can represent at most 5 + 4 + 4 = 13 shapes.
We enforce filtering during pattern extraction as described in Section
IV-C to ensure each pattern has no more than 13 shapes. These shapes
constitute 13 × 4 = 52-d all-shapes vectors. The dimension for a
feature vector is 52 × 3 = 156. Thus, Fig. 2 will be translated into
a matrix of size (152, 2)

C. Data Pre-processing

Our data preprocessing includes three parts: cleaning, scaling, and
data augmentation.

1) Data Cleaning: Taking Fig. 7a as an example. The shape 4
is shielded by 2 and has orders of magnitude less capacitance than
2 or 1 , which implies the need to model the coupling capacitance

between 0 and 4 , C04 is minimum. However, as [9]’s study, 4
still has a considerable electric field effect on 2 and is essential to
be included in the feature vector. To sum up, though 4 still appears
in the feature vectors for predicting other capacitances, C04 will not
be added to the training data since its value is too small, and even

(a) (b)

Fig. 10: Data augmentation. (a) Original pattern, (b) Flipped version
for data augmentation.
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Fig. 11: A schematic of how layer information is stored in an ML
model. The info is stored implicitly in the model weights.

worse, this sort of shielded capacitance makes up a considerable
portion of the training data if unfiltered. Both reasons distract the
model’s learning. To further generalize the idea, all the feature vectors
describing the extraction of L2 and R2 shapes are removed from the
training data.

2) Data Scaling: The input vectors are in the unit of µm. Ac-
cording to our experiments, there is no need for scaling for the input
vectors. However, the capacitance values range from 3 × 10−16 to
1×10−18 F/µm. Without proper scaling, the model tends to predict
all values to be zero. Thus, we normalized the values to the maximum
capacitance in the dataset so that all values are between 0 and 1.

3) Data Augmentation: As shown in Fig. 10, we horizontally
flip patterns to create new data to increase pattern coverage and
improve the underrepresented patterns. After adding the flipped data
to the dataset, we remove duplicates to prevent data contamination
in the training and validation dataset. Specifically, all the data in the
validation dataset differ from the training set and are not used for
training.

D. Model Separation

As we introduced our input vector in Section V-B, only shape
coordinates are provided to the model, not the dielectric or conductor
information. Hence, as depicted in Fig. 11, we believe that the layer
information is implicitly stored in the weights of the ML model.
As a result, instead of training an almighty model for all layer
combinations, we train one model for each. As will be shown in
TABLE IV, there are ten ML models in our test case spanning from
MD/Gate up to M2. Fig. 11 also explains why sorting and indexing
in Section IV-B and Section IV-D are essential to the model.

E. Our Training Strategy

We tried two ML methods, deep neural network (DNN) and
LightGBM (LGB) [13], a boosting tree algorithm. We concluded that
DNN is more powerful, while LGB is much faster. Thus, our strategy
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TABLE II: DNN hyperparameter search space.

Hyperparameter Search range
# of layers 1, 2, 3, 4
hidden dim [128, 512], step=32
learning rate [2e-4, 1e-2], log-scale
batch size 256, 512, 1024, 2048, 4096
optimizer Adam, SGD
activation function ReLU, Tanh

is to use LGB for simple models and DNN for complex ones. We will
explain the determination of “simple” and “complex” in the following
paragraphs.

Building upon the trichotomy introduced in Section IV-E, we
extend it to classify each model’s complexity or training difficulty.
Fig. 12 shows the flow of how we apply the observation from Section
IV-E to determine the ML method we choose. An enumeration of
all the models we need will be presented in TABLE IV. Suppose
the dataset includes multiple thicknesses of layer l. If the target
layer is also l, the dataset of this layer combination includes a
lot of data points whose input vectors are close but with very
different capacitance. As we will later show in our experiments, we
observe that such a situation is beyond the capability of LightGBM.
Nevertheless, LGB suffices to handle the other cases whose target
layer is not l.

We used Optuna [14] to tune the hyperparameters for both methods
automatically. We first specify an aggressive range of hyperparame-
ters for Optuna to search, for two purposes: a) to figure out influential
hyperparameters b) To observe the baseline loss. Then, we narrow the
search range and expect the mean squared error to be around 10−6 or
less. Our hyperparameter search ranges for both models are reported
in TABLE II and TABLE III, respectively. Some hyperparameters are
used to adjust model complexity, while others are used to prevent
overfitting. Finally, DNNs are trained for 2000 epochs with batch
normalization, and LGBs are trained for 2000 iterations. Optuna runs
100 iterations for LGB and 30 iterations for DNN. Expressed another
way, the training time we will report in TABLE IV is equivalent to
training 100 LGB models or 30 DNN models for each row.

VI. EXPERIMENTAL RESULTS

A. Experimental Setting

We use the imec N2 predictive nanosheet PDK [15] and its standard
cell library as input, comprising 94 cells excluding filler cells. The
largest cell spans 24 contacted poly pitch (CPP) across two rows and
utilizes up to the M2 metal layer. The cross-section of the PDK is
shown in Fig. 13. Since the standard cells use metals only up to
M2, layers above M3 were omitted. On average, 682 cross-sectional
patterns are extracted per cell. After deduplication, 17,178 unique
patterns were identified across all metal stack combinations, resulting

TABLE III: LightGBM hyperparameter search space.

Hyperparameter Search range Hyperparameter Search range
max depth [4, 12] learning rate [1e-4, 0.3]†
subsample [0.6, 1.0] colsample bytree 0.3, 1.0
min child weight [1, 10] lambda l1 [1e-7, 1]†

lambda l2 [1e-4, 10]† boosting gbdt, dart, rf
num leaves [64, 128] path smooth [1e-3, 10]†
min data in leaf [5, 100] bagging fraction [0.9, 1.0]
bagging freq [200, 1000]
† Log-scale

M2

M1

M0

Gate MD

V1

V0

VG VD

Fig. 13: Cross-sectional layer stack and multi-dielectric environment
of the imec PDK [15] we use in this paper.

in 3k–27k data points per DNN model per ITF. Recall that a pattern
with N shapes contributes N − 1 data points.

We varied the thickness of the M0 layer to generate cross-section
patterns. M0 was chosen due to: (a) its dense usage in standard cells,
providing a rich dataset, and (b) the fact that adjusting gate or MD
layer thickness would impact device performance beyond parasitics.

Two datasets were prepared. The first (training/validation) set
spans M0 thicknesses from 22 nm to 58 nm in 6 nm increments (7
configurations), split into 80% training and 20% validation. The
second (testing) set ranges from 18 nm to 62 nm in 2 nm steps.
During hyperparameter tuning, we used the 38 nm thickness (near
the center of the range) as the loss function. Training was conducted
on a workstation equipped with dual Intel 6454S CPUs (64 cores,
128 threads total), utilizing 70% of available threads (89 threads).
Additional ML-related configurations are detailed in Section V-E.
Training runtimes are reported in TABLE IV. At inference, it took
0.082 seconds to extract patterns and 0.803 seconds for ML inference
on average per cell.

In the remainder of this section, we first compare the prediction
accuracy of DNN and LGB models in Section VI-B to support
our ML model choice. We then analyze error trends across varying
M0 thicknesses in Section VI-C, and conclude with a detailed
error histogram at an unseen thickness in Section VI-D, a common
visualization used by [9], [11]

B. Comparison of DNN and LightGBM

Our strategy is to use LightGBM whenever possible, since its
training speed is more than 10x faster than that of DNN. However,
Fig. 14 shows one of the two complex models in TABLE IV for which
LGB is not good enough, on which we decide to use DNN despite the
much longer training time. In Fig. 14, we show the scatter plots with
M0 thickness 38 nm to compare the prediction accuracy of the two
models. The x-axis marks the values the field solver calculates, and
the y-axis is the ML model’s prediction. All values are normalized
by the maximum value in the dataset. All datapoints are expected to
fall on the gray dotted line under an ideal situation. We separate the
datapoints into two groups: lateral capacitance and all the others. As
introduced in Section IV-E, since the sensitivity of lateral capacitance
to changes in layer thickness is high, which is a vastly different
property from other capacitances, LGB failed to capture the trend in

7



TABLE IV: ML models, dataset size, database build time (field solver
runtime), and training time. We use DNN for models whose target
layer is M0, and LightGBM for the rest.

Target
layer

Secondary
layer(s)

# of data
points Model DB build

time
Training
time

Gate MD, M0 79,870 LGB 12.82 mins 19.49 mins
Gate MD, M1 27,650 LGB 4.17 mins 11.87 mins
MD Gate, M0 91,980 LGB 15.46 mins 23.66 mins
MD Gate, M1 23,464 LGB 3.91 mins 12.76 mins
M0 MD, Gate, M1 156,870 DNN 20.78 mins 1 day
M0 MD, Gate, M2 189,472 DNN 23.42 mins 1 day
M1 M0, M2 115,262 LGB 15.52 mins 27.30 mins
M1 MD, Gate, M2 82,586 LGB 10.09 mins 26.80 mins
M2 M1 2,968† LGB 0.23 mins 4.42 mins
M2 M0 19,502 LGB 2.85 mins 14.62 mins
Total 789,614 1.8 hrs 2 days+2.3 hrs
† Less data since M0 change doesn’t affect this layer combination.

(a) DNN

(b) LGB

Fig. 14: Comparison of (a) DNN and (b) LightGBM for target layer =
M0, secondary layers = {MD, Gate, M2}. We zoom in on large values
and show them on the right. LGB cannot perform well in predicting
lateral capacitances and misses the trend (gray dotted line).

this category accurately. Specifically, the upper right points in Fig.
14b significantly deviate from the y = x line and introduce more
error than the other group. On the other hand, DNN is more keen on
the trend of all kinds. In conclusion, Fig. 14 helps to explain why we
use DNN in some instances despite its much longer training time.

C. Prediction Accuracy Across Different Thicknesses

We report the errors for estimating unseen M0 thickness in Fig. 15.
The labels on the x-axis are the thicknesses included in the training
dataset. We extracted patterns from all 94 cells in the library without
removing duplicated patterns for testing, so that the reported errors
are weighted by the number of occurrences in the library. These
patterns were translated into corresponding feature vectors as shown
in Fig. 9 and fed to the corresponding ML model.

From Fig. 15 we can observe that: 1) Errors start to rise at margin
points, even for interpolated points. That implies that, supposedly,
we aim to explore thickness from 22nm to 58nm; we need to extend
the training data coverage beyond this range to ensure accuracy. 2)
The (b) figure proves that our strategy to use LGB on simple tasks
is sufficient to achieve high accuracy. More than 85% of predictions
are within ±1% errors except those around the margin.

(a) DNN (b) LGB

Fig. 15: Relative error across M0 layer thicknesses. Bars show error
distribution for (a) DNN and (b) LightGBM models. Over 80% of
predictions across most thicknesses fall within ±1% error. DNN is
used for complex cases, while LGB performs well for simpler models.

(a)

(b)

Fig. 16: Error distribution using M0=38n. (a) Aggregated result of
DNN for the two complex models, (b) Aggregate result of LGB for
the other eight models

D. Case Study: Impact of M0 Thickness Change

In Fig. 16, we pick M0 thickness 38nm, which is a point around
the center in Fig. 15, to unfold the error distribution for an unseen
thickness. For the two complex models using DNN, 85.75% of
the values are within ±1% error, 1.75% have more than 5% of
underestimate, and 0.82% have more than 5% of overestimate. For
the other eight models using LGB, 92.34% of the values are within
±1% error, 0.037% have more than 5% of underestimate, and 0.079%
have more than 5% of overestimate. All the > 5% outliers are with
value less than 3× 10−18 F/µm.

VII. CONCLUSION

We introduced our pattern extraction algorithm to extract cross-
section patterns to prepare training data for our machine learning
model, and we proposed our data preprocessing steps, including
filtering and data augmentation. We assumed layer thickness as the
main process parameter to explore, implemented a flow to extract
capacitance from ITF and GDS files, and measured the runtime. Our
experiment results demonstrated that the method has the potential
to speed up the parasitic extraction flow by multiple orders of
magnitude despite the longer training and data preparation time.
We also demonstrated that LightGBM is an appealing ML method
for its much faster speed, but DNN is more powerful for handling
complicated tasks.
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