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Abstract—Gate-level 3D ICs have demonstrated substantial power
and performance improvements over 2D ICs. However, at advanced
technology nodes, achieving sufficient hybrid bond density within a
reduced chip footprint requires a 200nm bond pitch—beyond the limits
of current manufacturing capabilities. To address this issue, we focus
on block-level 3D IC design which has fewer top-level connections.
Previous methodologies for block-level 3D IC design suffer from several
limitations: (1) reliance on slow simulated annealing-based floorplanning,
(2) suboptimal 3D design flows lacking post-route optimization, (3) a lack
of attention to the critical initial step of soft block design, and (4) excessive
hybrid bond usage that necessitates a 500nm pitch. To overcome these
challenges, we propose a comprehensive methodology that includes: (1)
a fast, gradient-based analytical solver, (2) Fence-3D flow, delivering up
to 15% improvement in power-delay product, (3) ML-based congestion-
aware soft block sizing, delivering up to 6.6% improvement, and (4)
a partial-MLS method that selectively applies Metal Layer Sharing,
reducing hybrid bond count by up to 71%. Collectively, these techniques
enable the use of a lum hybrid bond pitch in 3nm block-level 3D ICs.

I. INTRODUCTION

Gate-level 3D ICs have emerged as a key approach of advanced
packaging, offering significant advantages over their 2D counterparts.
By transforming long interconnects in 2D into shortened verti-
cal connections in 3D, they substantially reduce load capacitance,
lowering power consumption while improving performance through
shorter critical paths. To realize commercial-grade Face-to-Face (F2F)
bonded Logic-on-Logic 3D ICs, extensive research has been con-
ducted. Among the most representative methods is the Pin-3D [16]
flows, which follow a pseudo-3D placement: it first performs physical
design in 2D and subsequently partitions the design into two tiers.

Although Pin-3D, a dedicated design flow for gate-level 3D ICs,
has demonstrated promising results at old technology nodes (e.g.,
28nm and 16nm), it encounters significant challenges when scaled
to advanced nodes. Specifically, due to reduced chip footprints, gate-
level designs require an aggressive hybrid bond pitch of 200nm to
accommodate sufficient vertical connections, as shown in Table [I}
However, current fabrication capabilities limit hybrid bond pitches to
lum, rendering such gate-level 3D designs infeasible.

To address this manufacturability gap, we shift our focus to block-
level 3D ICs. While the pseudo-3D placement stage forces cells
within a single module to be distributed across two tiers—resulting in
a large number of tier-crossing connections—the block-level design
assigns each module to a single tier. As a result, only inter-block
connections can generate hybrid bonds, significantly reducing their
total count. However, block-level designs suffer from degraded power
and performance due to the separation of intra- and inter-block
optimization. In this work, we identify not only the limitations of
existing block-level 3D IC design methodologies but also address
critical challenges that have been previously overlooked, presenting
a suite of techniques that narrow the design quality gap with gate-
level 3D ICs while enabling a practical lum hybrid bond pitch at the
3nm node. Our key contributions are as follows:

TABLE I: Hybrid bond count in gate-level 3D ICs for the JPEG design.
We highlight the maximum number across technology nodes and pitch
sizes. Both 1lum and 500nm pitches are infeasible for the 3nm node.
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Fig. 1: Relative size comparison between hybrid bonds and INV cells.

« We propose an analytical 3D floorplanner that significantly
outperforms previous simulated annealing-based approaches in
runtime and scalability.

« To enable post-route optimization —previously unsupported in
Pin-in-the-Middle [9] —we develop the Fence-3D flow, which
achieves up to a 15% improvement in Power-Delay Product.

« For the first time, we investigate soft block sizing—an essential
first step in block-level design that has remained largely un-
explored—and propose an ML-based congestion-aware sizing
technique, achieving a 6.6% improvement in PDP.

« Finally, we propose a partial-MLS method that selectively ap-
plies Metal Layer Sharing (MLS) to critical regions, reducing
hybrid bond count by up to 71% compared to the Full-MLS.

II. WHY BLOCK-LEVEL 3D IC IN ADVANCED NODES?

While technology nodes have significantly scaled down over the
past decade, the minimum manufacturable hybrid bond pitch has
remained relatively stagnant—Ilimited to the lum to 700nm [4]. This
mismatch creates a substantial scale disparity between 3nm inverter
cells and the lum hybrid bond pitch, as illustrated in Fig[l] which
in turn severely limits the feasible hybrid bond count, as quantified
in Table [l As a result, gate-level 3D ICs become impractical at
advanced nodes due to aggressive 200nm pitch requirements, whereas
block-level 3D ICs—characterized by a smaller number of inter-block
connections—present a viable path forward.

Moreover, advanced nodes increasingly suffer from reduced yield.
This issue is further exacerbated in 3D ICs, where die-to-die inte-



Algorithm 1 Hierarchical Clustering for Soft Block Generation

Input: Npjer: Synthesized netlist with hierarchical cell naming.
Decellarea: Dictionary mapping std cells to their respective areas.
Bhara: List of hard blocks, including memory macros and IPs.
A range: List of min. and max. allowable areas for soft blocks.

Output: Gpiocks(V, E): Block-level graph.

1: function CLUSTERMODULE(module)

2 area < Compute module area via Dcellarea
3 if area > Arange[maz] then

4: for sub in {submodules of module} do
5 CLUSTERMODULE(sub)

6 else if area > A;ange[min| then

7 Add module as soft block to V

8: Gblocks(V, E) + empty; add Bhara as hard block to V
9: CLUSTERMODULE(top module of Nhier)
10: Add block edges derived from cell links in Nhjer to E

gration introduces additional sources of yield degradation compared
to 2D designs. Block-level 3D ICs offer a promising solution to this
challenge. By enabling module-level testability, defective dies can be
identified and discarded prior to integration, significantly mitigating
overall yield loss. In addition, the reduced number of hybrid bonds
lowers the probability of failure during the bonding process.

III. RELATED WORK AND SHORTCOMING

Implementing block-level 3D ICs requires a dedicated floorplan
methodology and design flow. Existing approaches to 3D floorplan-
ning, such as [1]], [5], [19], leverage sequence pair representations
with simulated annealing. However, as shown in Table simulated
annealing exhibits slow convergence due to its stochastic move se-
lection mechanism. Furthermore, simulated annealing is less scalable
[2], posing a significant limitation for industrial-scale designs that
often involve 50 to 100 blocks. To address these challenges, we
propose an analytical solver for 3D floorplanning that optimizes a
differentiable loss function.

The current state-of-the-art block-level 3D IC design flow is Pin-in-
the-Middle [9], which implements commercial-grade 3D IC layouts.
It places block pins in the middle, achieving a 12% improvement
in Energy-Delay Product (EDP) compared to 3D block-level designs
where all pins are located on the block boundary. While this approach
enhances the quality of block-level 3D IC design, it is still constrained
by its reliance on the Compact-2D flow [11]], which limits post-route
optimization compared to Pin-3D flow [[16].

IV. OUR BLOCK-LEVEL 3D DESIGN METHODOLOGY
A. Hierarchical Clustering

Block-level design construction begins with clustering cells into
soft blocks. To leverage the existing RTL hierarchy, we preserve
hierarchical information during synthesis by executing the com-
mands change_names -rule verilog -hierarchy followed by
ungroup -all - flatten in sequence. Given a synthesized netlist with
hierarchical naming and cell area information derived from the target
tech node, Algorithm [I] performs hierarchical clustering of the netlist
and generates an undirected graph consisting of multiple blocks and
their connections.

Users can define both minimum and maximum area bounds for
soft block generation. A higher upper bound enables the formation

TABLE II: Comparison between 3D floorplanning algorithms: Sequence
Pair + Simulated Annnealing [1], [5], [19] vs. our Analytical Solver.
Floorplanning runtime is measured when the output chip size difference
between the two algorithms is within 5%.

Sequence Pair + Our
Annealing Analytical
11 blocks 2h 12m 18min
16 blocks 3h 18m 25min
41 blocks 16h 10m 60min

Algorithm 2 Multi-Stage Analytical 3D Floorplanner

Input: Gpiocks(V, E): Block-level graph from Algorithm E]
RX, RY: Chip dimensions, I7: learning rate, maz,,: Maximum
aspect ratio of soft block, Adam.: Custom Adam optimizer
ensuring block locations and widths remain within boundaries.
a;: Weighting coefficient for each loss term.

Qutput: Optimized 3D floorplan.

i A Ainit > Ainit to balance gradients of L and Lo

2: opt + Adam.(RX, RY,lr,maxap, b1, B2)

3: Place soft blocks centrally, with soft blocks initialized as squares.
Hard blocks are pre-placed using a commercial macro placer.

4: for s in stage do

5: for ¢ in epoch do

6: L1 < a1 - Lupwr + a2 - Lupond + @3 - LBatance + @4 - Lz penaiy

7: Ly < X - Density Control

8: Tiy Yi, Ziy Wi <— opt(VL1 + VL2) 4+ Frepusive

9: A= A2 > Increase density control weight

of larger soft blocks, thereby reducing the total number of blocks and,
consequently, minimizing the number of required hybrid bonds. On
the other hand, the lower bound is essential to filter out excessively
small clusters—typically containing only 10-100 standard cells—that
are better handled as gate-level instances during top-level integration.
In this work, the max and min area bounds are set to (1,100 um?,
100 um®) for AES, (2,500 um?®, 100 um?®) for JPEG, and (4,100 um”,
100 um?) for Rocket DualCore, respectively. For each benchmark, the
maximum area bound was determined by defining units that can be
appropriately grouped at the functionality level.

Each node in the block-level graph has an area attribute (A;).
For soft blocks, the area attribute A; is calculated using a uniform
placement density of 60%, which serves as the baseline. The 60%
density is chosen to reserve space for additional buffer insertion
during top-level optimization. In contrast, hard blocks retain their
predefined area values. Each undirected edge is weighted based on the
number of inter-block connections, which is determined by the total
number of connections between cells within the respective blocks.

B. 3D Floorplanning

This section focuses on 2-tier 3D ICs, but can be extended to N-tier
by dividing the z; into N regions and adjusting the loss terms.
Problem: Given m mixed blocks, determine the optimal location
(i, yi, zi) for each block, and the width w; for soft blocks. Once
w; is specified, the height h; is automatically determined as A; /w;.
Fixed outline constraint: The chip area for a two-tier 3D IC
is defined as half the sum of all block areas (A;) divided by a
placement density of 0.7. The chip width (RX) and height (RY")
are the square root of this area. Given the chip size, the constraints



on block placement are as follows:

z; € [0,RX —w;], vy €[0,RY —h;i], z €][0,1] Vi€ ][l,m]

Our loss function consists of five terms: differentiable HPWL,
hybrid bond number, 3D tier area balancing, z-penalty, and density
control for overlap reduction. For differentiable HPWL, we compute
the wirelength using the center coordinates of each block, adopting
the Weighted Average (WA) formulation [3|:

LupwL = Z wij - (WA(zi + %55, 2 + 3)
(i,J)EE
. hy
+WA(y: + %5, y; + 5 ))/(RX * RY)

To minimize the hybrid bond count, the bond loss is defined as:

1
Lttbona = Z 1+ ea(zi—05)(z-0.5) Wij
i#]
where w;; represents the edge weight between blocks ¢ and j. This
term serves as a smooth approximation of:

iz \0
It counts hybrid bonds when two distinct blocks are on opposite
tiers relative to z = 0.5. The parameter « controls the steepness of
the approximation, with o = 10 used in this study.
Achieving area balancing between tiers is essential for a compact
design. The area balancing term is formulated as:

if (21 — 0.5)(Zj — 0.5) <0
otherwise

Latance = (Z 2 As — Z(l - Zz)Az> /(RX * RY)

However, this formulation tends to force all z; values toward 0.5,
requiring an additional z-penalty term that drives z; away from 0.5:

LZ-penalty = Z Zz(l - Zz)
1

Similar to analytical placement, overlap reduction techniques are
required to mitigate block overlaps. We adopt a multi-stage density
control strategy with bell-shaped smoothing, as summarized in [2],
combined with a repulsive force that alleviates unresolved overlaps
among blocks clustered at the corners due to fixed-outline constraints.
This force is inversely proportional to the squared distance between
overlapping blocks and is bounded to stabilize optimization:

FG3) e = clip (m —log RX, log RX) /RX

The complete analytical 3D floorplan methodology is outlined in
Algorithm [2] Another key advantage of the proposed solver is its
minimal need for hyperparameter tuning. Since the loss terms are
normalized to be independent of chip size, the coefficients a; can be
set at a glance to keep the initial magnitudes of all loss components
comparable. In contrast, sequence pair-based floorplan with simulated
annealing requires careful hyperparameter tuning.

C. Pin and Fence Management

To achieve full post-route optimization capabilities, we propose
the Fence-3D flow, as illustrated in Fig. 2] There are two key
differences between the Fence-3D and Pin-3D flows. Since Fence-
3D targets block-level design, it does not require tier-partitioned
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Fig. 2: Proposed design methodology for block-level 3D ICs. Partial-MLS
can be supported by modifying the steps after the post-CTS stage.

TABLE III: Comparison of two different physical design methods for
block-level 3D ICs: Pin-in-the-Middle (PITM) [9] and Fence-3D.

Benchmark AES JPEG

3D design flow | PITM [9] | Fence-3D | PITM [9] | Fence-3D
Power (mW) 75.5 74.1 301.9 292.1
Perf. (GHz) 4.39 4.93 3.31 3.78
PDP (1) v SSRGSl o AEEE

pseudo-3D placement as input. Instead, 2D blocks are generated on
dedicated top and bottom tiers based on the hierarchical clustering
result and 3D floorplan. Once all blocks are implemented using
a standard 2D physical design flow, they are assembled using the
assembleDesign command in Cadence Innovus. This approach
ensures seamless block-level optimization while preserving block
boundaries and allowing mid-block pin assignment, following the
same method as Pin-in-the-Middle [9].

During the iterative physical design process, the status of cells and
macros alternates between CORE (for cells), BLOCK (for macros),
and COVER. Consequently, the def file loses critical information on
block fences and group constraints for components on the opposite
die, which are in the COVER status. To address this issue, the group
and fence information is preserved and is restored when transitioning
from the COVER back to the CORE and BLOCK. As a result, the
Fence-3D flow retains the advantage of assigning pins within the
block interior, as in Pin-in-the-Middle, while fully leveraging the
optimization capabilities of Pin-3D for block-level 3D IC design.
This is demonstrated in the Table m which highlights the superior
power and performance achieved by the Fence-3D flow.

D. ML-based Congestion-Aware Soft Block Sizing

1) Trade-offs in Soft Block Sizing: The first step in block-level IC
design is the implementation of soft blocks. However, to date, no
existing work has addressed this initial step in depth. While there are
substantial works on automatic 3D floorplanning 5], [19] and 2D
floorplanning [12], [[17]], these studies did not consider block sizing,
as the commonly used MCNC benchmarks provide block sizes as
input. Additionally, prior work on block-level 3D IC design, Pin-
in-the-Middle [9], did not discuss the design of individual blocks,
focusing instead on block integration methods.

Prior to the physical design of each block, several inputs must be
defined, and in this study, we focus specifically on the placement
density, which directly influences block size. Our baseline approach
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Fig. 3: Four representative blocks from the AES benchmark. Two of
them are identified as wire-intensive, exhibiting maximum hotspot values
exceeding the threshold of 100.

TABLE IV: Summary of the dataset used in this work. Build time for
the training and validation sets includes both netlist generation (NG) and
physical design (PD). Our dataset enables the model to generalize to
unseen blocks without requiring additional data generation.

Train & Valid set Test set

Block instance count [1,000, 10,000] [400, 70,000]

# Cell-intensive blocks 743 36
# Wire-intensive blocks 257 20
# Total blocks 1000 (8:2 stratified split) 56

Data build time 9.7h (NG) + 24.3h (PD) | 80.5h (PD)

adopts a uniform placement density of 60% for all soft blocks, as
there is no available information on individual block characteristics at
the RTL level. However, as shown in Fig. E|, we observed that certain
blocks exhibit severe routing congestion, with a maximum hotspot
value |I| approaching 400, even under high-effort congestion-driven
placement. To mitigate this, a lower placement density is required to
distribute cells and allocate additional routing resources. Conversely,
we identified that some blocks do not encounter routing congestion
even at 75% placement density. Based on these observations, we
classify blocks into two categories:

« Wire-intensive block: A block that experiences routing con-
gestion (maximum hotspot > 100) at high placement densities,
prior to DRC errors.

o Cell-intensive block: A block that maintains a maximum
hotspot < 100 until DRC errors are encountered.

This classification provides insight into the trade-offs associated
with soft block sizing. Increasing placement density reduces block
size, which in turn minimizes inter-block wire length, lowering
load capacitance for improved power and shortening connections for
enhanced performance. However, applying high placement density to
wire-intensive blocks leads to severe routing congestion, resulting in
detoured routing paths that degrade both power and timing.

2) Proposed ML-based approach: To optimize block-level design
while addressing the trade-offs of soft block sizing, we leverage Ma-
chine Learning to classify blocks as wire-intensive or cell-intensive
based on RTL-level inputs. Our model enables wire-intensive blocks
to adopt a lower placement density, mitigating intra-block congestion,
while cell-intensive blocks utilize a higher placement density, benefit-
ing from reduced inter-block connection lengths due to their compact

'The maximum hotspot represents the contiguous normalized area of the
GCELLSs experiencing routing overflow. As a general rule of thumb, a value
under 100 is considered tolerable.
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Fig. 4: Our ML model architecture consists of two Graph Convolutional
Network (GCN) layers with sum pooling, followed by a Multi-Layer
Perceptron (MLP) that reduces dimensions from 64 to 16 to 2.

TABLE V: Input node features in the netlist graph for each block.

Features Descriptions

is DFF 1 for sequential cells, O for others

# fanout Number of fanout of each cell
area Area of the cell

drv strength
min. dist. to DFF
max. dist. to DFF

Driving strength of the cell (x1, x2, ..)
Shortest distance to DFF
Longest distance to first encountered DFF

size. The proposed ML model is expected to significantly reduce
design time in industrial-scale block-level designs, while providing
a valuable starting point for block optimization. This section details
the dataset used, the ML model architecture, and the classification
results.

As a netlist (= block) can be represented as a graph, a Graph
Neural Network (GNN) is employed to handle this as a graph classi-
fication task. In this context, each soft block corresponds to a single
data point, implying that constructing a large dataset necessitates
a diverse set of soft blocks. To ensure the model generalizes well
to unseen blocks, the training set must be sufficiently large and
diverse while excluding blocks from the AES, JPEG, and Rocket
DualCore benchmarks, which are designated as the test set. To
achieve this, the Artificial Netlist Generator (ANG) [8] is utilized
to generate training and validation datasets. ANG generates netlists
by leveraging topological parameters and applying a distribution-
matching algorithm for a given technology node. Prior study [S]]
has demonstrated that netlists generated by ANG exhibit similar
characteristics to real circuits, achieving competitive classification
performance and comparable distributions in t-SNE plots.

A total of 1,000 soft blocks are generated by randomly sam-
pling topological parameters, including the number of instances
(1,000-10,000), average net degree (2.5-4.0), timing path depth
(5-15), and combinational logic ratio (20%—80%). Once the netlists
are generated, a 2D physical design (PD) is performed for each block
to determine the ground truth label, with placement density ranging
from 50% to 80% in 5% increments and target frequencies varying
from 1.0 GHz to 9.0 GHz in 0.5 GHz increments. Among the entire
physical design results, blocks exhibiting routing congestion before
DRC errors are classified as wire-intensive, while the remaining
blocks are classified as cell-intensive. The results reveal that 257
blocks are wire-intensive, and the dataset is split into an 8:2 ratio for
training and validation through stratified sampling. For the test set,
56 soft blocks extracted from the AES, JPEG, and Rocket DualCore
benchmarks are analyzed using the same methodology, with 20 blocks
identified as wire-intensive. The overall data construction time on
three servers, each powered by a 2.10-GHz Intel® Xeon® Gold 6230
processor with 64 cores, is provided in Table

The key distinction from previous ML-EDA works [[13]], [14] lies in



TABLE VI: Ablation study on (1) the effectiveness of distance features
and (2) the choice of graph networks.

(1) Impact of Input Features (with GCN)
Validation Accuracy | Test Accuracy
w/o Distance Features 83.8% 83.1%
w/ Distance Features 95.3% 92.3%

(2) Performance Across Graph Networks

GCN 95.3% 92.3%
GAT 92.3% 86.3%
Graph Transformer 96.2% 70.6%

utilizing pre-physical design inputs, rather than intermediate physical
design results. This approach limits the use of detailed input features,
such as timing, power, and capacitance. Consequently, extracting
meaningful features at the netlist level becomes crucial. We configure
the input node features as shown in Table [V] Among these features,
the shortest distance to DFF and the longest distance to the first
encountered DFF play a critical role in improving accuracy. These
features help the model learn how many long nets exist in each block,
contributing to the wire-intensive characteristics. As demonstrated in
Table [VI] the inclusion of these features increases the classification
accuracy from 83% to 92% for the test set.

The ML model is constructed as shown in Fig. ] Binary classifi-
cation is performed using Cross Entropy Loss, with a batch size of
32, 500 epochs, and a learning rate of 0.001, employing the Adam
optimizer with 51 = 0.9 and B2 = 0.999. The model with the highest
accuracy on the valid set during training is used to predict the test
set. Various graph network architectures, including GCN [10], GAT
[[18], and Graph Transformer Network [20]], are compared. As shown
in Table m increasing network complexity degrades the model’s
ability to generalize from artificial netlists to real one, where it tends
to predict all blocks as either wire-intensive or cell-intensive. The
best performance is achieved with GCN, which is therefore selected
as the graph network for this study.

E. Metal Layer Sharing in Block-level 3D ICs

1) Full-MLS and No-MLS method: Metal Layer Sharing (MLS)
was first introduced in [15], enabling 2D nets—those connecting
cells within the same tier—to utilize metal layers from the opposite
tier in 3D ICs. A prior study has demonstrated the benefits of
MLS in reducing manufacturing costs by minimizing the number of
metal layers and improving performance by providing greater routing
flexibility through an expanded set of metal layer options. Although
it has primarily focused on Monolithic 3D ICs, these advantages
remain applicable to F2F 3D ICs. Following the prior study, we define
the approach that allows unrestricted use of MLS without additional
constraints in the physical design flow as the Full-MLS method.

However, in the Full-MLS method, up to 77% of the total hybrid
bonds are consumed by 2D MLS nets, limiting the use of a lum pitch.
This incurs not only integration costs but also additional verification
overhead [|6] associated with 2D MLS nets. To address this issue, we
investigate the No-MLS method, which completely disables MLS.
The implementation of the No-MLS method is illustrated in Fig. [5}
(b). First, the routeDesign step is divided into two phases: one for
2D net routing, where routing blockages are applied to the opposite
tier, and another for 3D net routing. Second, routing blockages are
introduced on the hybrid bond layers during post-route optimization.
Finally, any 2D MLS nets generated in the previous steps are re-
routed with routing blockages enforced on the opposite tier. Through
this process, MLS nets are effectively eliminated.

post-CTS RUDY

17
route 2D nets with select MLS target

Routing stage
blockages
Post-route opt v

Post-CTS stage route 3D nets

route all nets w/
preferred tiers
\
optimize top tier
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route all nets w/ H-bond blockage

17
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Fig. 5: Three variants of Metal Layer Sharing (MLS): (a) Full-MLS [15]
allows unrestricted sharing across all nets, (b) No-MLS prohibits MLS
entirely, and (c) Partial-MLS selectively enables MLS for critical nets to
maintain performance while minimizing hybrid bond count.
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(b) Detoured Nets
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Fig. 6: Post-CTS RUDY map and detoured nets in the final GDS layout
under the No-MLS scenario. The spatial correlation confirms the accuracy
of RUDY-based congestion estimation.

2) Partial-MLS method: The Partial-MLS method aims to enable
a lum hybrid bond pitch in block-level 3D ICs by significantly
reducing the number of hybrid bonds used for MLS while minimizing
performance loss. First, RUDY maps are extracted under the No-MLS
assumption, ensuring that congestion estimation reflects the worst-
case scenario without MLS support. The congestion contribution of
a net e within its bounding box is computed as follows:

We + he 1 1
RUDY.(z,y) X fie (W) X fle (w— + h—)

where w, and h. represent the width and height of the bounding box
for net e, respectively. After computing the contribution of each net,
RUDY maps are derived using the following formulation:

X Cle,

1 1\ Areajienbbox
DY, = w. " he ) T Aream.
RU (m,n) Z We + he) Areagle

e€tilernpn,

1
Ce=1R"
0.5,

C' ensures that 2D nets contribute to the RUDY map of each tier,
while 3D nets contribute to both maps with half the weight.

Once the RUDY map is extracted as shown in Fig@(a), the MLS
candidate nets are selected from congested regions. Specifically, nets
contributing to the top N% (set to 5% in this study) of congested
regions are chosen for MLS support. These selected nets are then
guided through the routing process using preferred layers, assigned
from M5 bot to M5 top, to enable MLS during both global and
detailed routing phases. The remaining 2D nets are assigned preferred
layers from M5 bot to M6 bot for bottom 2D nets, and from M6 top

if e is a 2D net
if e is a 3D net
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Fig. 7: GDS layouts of the Rocket DualCore benchmark with the Fence-
3D flow: (a) The baseline design adopts a uniform 60% placement density
across all blocks, while (b) the proposed ML-based floorplanner assigns
a reduced 50% density to the wire-intensive block (highlighted in white)
to mitigate routing congestion and a 70% to the cell-intensive block.

to M5 top for top 2D nets. The overall routing sequence follows
the order: 3D nets — bottom/top 2D nets — 2D MLS candidates,
ensuring that MLS is applied where congestion is most critical.
Importantly, not all selected candidates are ultimately routed with
MLS. By leveraging preferred layer constraints, the tool selectively
applies MLS only to nets that traverse through congested regions,
avoiding unnecessary MLS usage for nets merely originating or
terminating within those areas. For example, in the JPEG benchmark,
212 out of 133,933 bottom nets and 329 out of 181,557 top nets are
identified as MLS candidates. Among the total 541 MLS candidates,
only 340 nets utilize MLS. After global and detail routing, it will
follow the post-route optimization stage with routing blockages on
the hybrid bond layers. The entire process is fully automated using
TCL, Bash, and Python.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

With 3nm technology PDK, our design targets Homogeneous F2F
bonded Logic-on-Logic block-level 3D ICs. The 3D BEOL consists
of 12 metal layers, with 6 layers on the bottom tier (M1 bot, M2
bot, ..., M6 bot) and 6 layers on the top tier (M6 top, M5 top, ...,
M1 top), where the layer names are ordered from the bottom to the
top. Four metal layers are dedicated to intra-block routing for both
the top and bottom tiers, while the remaining M5 bot, M6 bot, M6
top, and M5 top layers are allocated for inter-block connections. To
ensure a fair comparison, we adopt a 200nm hybrid bond pitch, as
the Full-MLS method is incompatible with 500nm and lum pitch.

We evaluate three benchmarks which have hierarchical RTL struc-
tures: AES and JPEG, representing pure-logic, and Rocket DualCore,
which incorporates memory. AES consists of 131k standard cells and
is organized into 11 soft blocks through hierarchical clustering. JPEG
is composed of 279k cells and is structured into 16 soft blocks. Rocket
DualCore is built with 350k cells, incorporating 29 soft blocks and
12 hard memory macros. These benchmarks collectively span 11-41
blocks, effectively covering a wide design spectrum. Netlist synthesis
is performed using Synopsys Design Compiler, while the Fence-3D

TABLE VII: Analysis of two representative blocks of designs in Fig. Iﬂ
With ML-FP, cell-intensive blocks achieve compact size with acceptable
hotspot levels, while wire-intensive blocks alleviate routing congestion.

Blocks from Rocket DualCore | Baseline | ML-FP
Type cell-intensive
Converter | Placement density 60% 70%
block Block area (um?) 120
Max. hotspot 5.6
Type wire-intensive
FPU Placement density 60% 50%
block Block area (um2) 3,211 3,866
Max. hotspot

TABLE VIII: Comparison of top-level quality metrics for designs in Fig.
m Both utilize the Fence-3D with a 200nm hybrid bond pitch.

Rocket DualCore, 1.9GHz | Baseline ML-FP
Chip size (um x pum) 160x160 | 163x164 (+4.4%)
Wire length (m) 1.055 1.084 (+2.7%)
# Hybrid bonds used 48,407 48,813

# of overflow G-cells 113 52 (-54%)
Power (mW) 194.2 194.4 (+0.1%)
Performance (GH z) 1.68 1.80 (+7.1%)
PDP (fJ) 115.6 108 (-6.6%)

physical design flow is implemented in Cadence Innovus, with power
and timing analyses conducted in Cadence Tempus.

B. State-of-the-Art Used for Comparison

This section summarizes the design methodologies employed
throughout the study. Section IEl adopts the Fence-3D flow with
a 200nm hybrid bond pitch to evaluate the impact of ML-based
soft block sizing. Section evaluates three different MLS control
strategies, all under a consistent design flow that employs Fence-3D
and ML-based soft block sizing. Section [V-E] and compare gate-
level and block-level 3D ICs using Pin-3D [16], Pin-in-the-Middle
(PITM) |]§[], and Fence-3D. While Pin-3D and PITM adopt Full-MLS
as in their original methodologies, our Fence-3D utilizes Partial-MLS.
Each design employs the most relaxed hybrid bond pitch applicable
to its flow—200nm for Pin-3D, 500nm for PITM, and 1um for Fence-
3D. Additionally, since PITM does not incorporate soft block sizing
techniques, it assumes a uniform 60% density, whereas Fence-3D
leverages our ML-based soft block sizing.

C. Impact of ML-based Soft Block Sizing

Two block-level 3D ICs are compared: a Baseline design, where
all soft blocks use a uniform placement density of 60%, and a ML-
FP design, which leverages the ML model implemented in Section
[[V=DJto classify soft blocks based on their characteristics. In the ML-
FP approach, cell-intensive blocks are assigned a 70% density, while
wire-intensive blocks are assigned a 50% density. To ensure that the
floorplan does not affect design quality, both approaches share the
same 3D floorplan. Fig. [7] illustrates the layouts of Rocket DualCore
for both the Baseline and ML-FP designs, confirming that the block
floorplan remains consistent between the two methods, with only
slight adjustments to accommodate the modified soft block sizes.

As shown in the Table [VII] the ML-based approach enables a
compact implementation of cell-intensive blocks while maintaining a
reasonable max hotspot. For wire-intensive blocks, it mitigates severe
routing congestion by enlarging the block area. For Rocket DualCore,
wire-intensive blocks like the FPU and Core consist of large soft
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Fig. 8: Timing-critical path comparison for designs in Fig. [7] We show
the critical path in the baseline vs. the same path in the ML-FP optimized.

TABLE IX: Critical path analysis of the timing paths in Fig. 8] A higher
routed-to-Manhattan path length ratio indicates greater routing detour.
ML-FP enables shortcut paths by mitigating intra-block congestion.

Rocket DualCore Baseline | ML-FP
Max hotspot on Core block 647.2 45.1
Max hotspot on FPU block 214.5 12.5
Manbhattan path length (um) | 256.6 236.6
Routed path length (um) 340.8 278.8
Ratio (Routed to Manhattan) | x1.33 x1.18
Signal delay (n.s) 555.7 485.1
Clock launch - capture (ns) 9.5 4.7

blocks, which increase chip size, wire length, and power consumption
under ML-FP. However, routing congestion—measured by overflow
GCells—is reduced by 54%, boosting performance and yielding a
6.6% PDP improvement as presented in the Table [VIII] On the other
hand, in the JPEG benchmark (result table is omitted due to space
limits), most large soft blocks are cell-intensive. Therefore, ML-FP
reduced chip size and wire length, achieving 1.8% power savings.
Additionally, alleviated routing congestion improves performance by
4.1%, yielding a 5.8% overall PDP gain.

Through experiments on two benchmarks with distinct character-
istics, we observe the following: (1) The impact of ML-FP on chip
size and power is determined by the composition of soft blocks. (2)
Effective intra-block congestion-aware soft block sizing serves as a
key factor in full-chip performance improvement.

To investigate how intra-block congestion mitigation influences
full-chip performance gain, a comparison is made between the
negative slack timing path of the Rocket DualCore Baseline and the
corresponding path extracted from ML-FP, as illustrated in Fig.
This critical path traverses the wire-intensive FPU and Core blocks,
and as summarized in Table[[X] intra-block congestion is significantly
mitigated in ML-FP. When comparing the two paths, it is observed
that the ratio of the actual routed path length to the theoretically ideal
Manhattan path length is considerably lower in ML-FP than in the
baseline. This indicates that, due to reduced congestion in ML-FP,
the routing detour is avoided, leading to a shorter signal path and a
reduction in signal delay, effectively lowering the negative slack.

D. Impact of Metal Layer Sharing

The impact of three MLS strategies is evaluated across all bench-
marks, with the results summarized in Table @ These implementa-
tions leverage the Fence-3D flow and ML-FP method. Since 500nm
hybrid bond pitch requires a via legalization due to the size mismatch
between hybrid bonds and vias [[7], a 200nm pitch is used to eliminate
its effect on power and performance, enabling a fair comparison based
solely on MLS control.

Bottom tier Top tier Bottom tier Top tier

Placement

Routing

1um
pitch

200nm
pitch

Hybrid bond
map

Gate-level 3D IC Block-level 3D IC

Fig. 9: GDS layouts of gate-level (Pin-3D) vs. block-level (Fence-3D) 3D
IC for the JPEG benchmark. Due to feasibility constraints highlighted in
Table@ an aggressive 200nm pitch is used for the gate-level 3D IC.

TABLE X: Feasibility of lum hybrid bond pitch for JPEG among
different methods: Pin-3D , Pin-in-the-Middle (PITM) [E[], and our
proposed Fence-3D. The prior works adopt Full-MLS without considering
MLS control, whereas Fence-3D leverage Partial-MLS.

Gate-level 3D Block-level 3D
3D design flow Pin-3D [16] | PITM [9] | Fence-3D
MLS method Full-MLS Full-MLS | Partial-MLS
Chip size (um) 101x101 99.7x99.7
# 1pum h-bonds avail. 10,201 9,940
# hybrid bonds used 59,761 12,307 3,665
1pum feasible? no no h

For all three benchmarks, the No-MLS method effectively reduces
the number of hybrid bonds but exhibits relatively low performance.
In the JPEG and Rocket designs, this poor performance is attributed
to severe routing congestion, as evidenced by high maximum hotspot
values on inter-block connection layers (M5 and M6). To verify the
impact, detoured nets—those with routed lengths exceeding 1.5x
their Manhattan distance—are analyzed, while excluding short local
nets with design-specific thresholds of 5, 10, and 15um for AES,
JPEG, and Rocket, respectively. The large number of detoured nets
observed in the No-MLS serves as evidence that severe congestion
increases signal delay, ultimately leading to performance degradation.
In contrast, the AES benchmark, which is a cell-dominant benchmark,
does not experience full-chip-level congestion under the No-MLS
condition. However, we still observe 15 detoured nets due to the
absence of MLS-based shortcuts for timing-critical paths.

Compared to the No-MLS method, the Full-MLS approach reduces
power and improves performance by enabling flexible routing and
mitigating inter-block net congestion. However, this comes at the
cost of a substantial increase in hybrid bond usage, which limits
the feasibility of lum pitch. In contrast, the Partial-MLS method
selectively applies MLS to highly congested regions. This strategy
maintains the total hybrid bond count within the maximum allowable
limit for a lum pitch, while delivering a 4-12% improvement in
PDP—comparable to the Full-MLS results. These results demonstrate
that Partial-MLS effectively combines the advantages of both No-
MLS and Full-MLS, achieving a balance between reduced hybrid
bond usage and enhanced power and performance.



TABLE XI: Comparison of metal layer sharing (MLS) methods at the 3nm node: Partial-MLS reduces the hybrid bond count while achieving a
power-delay product (PDP) comparable to Full-MLS. Notably, it brings the hybrid bond count within feasible limits for lum pitch.

AES (131K cells, 11 blocks) JPEG (279K cells, 16 blocks) Rocket (350K, 41 blocks)

No-MLS [ Full-MLS [ Part-MLS | No-MLS [ Full-MLS [ Part-MLS | No-MLS [ Full-MLS [ Part-MLS
Chip size 64pmx64um 99.7umx99.7um 163pumx164um
# h-bonds avail. (1um pitch) 4,096 9,940 26,732
# hybrid bonds used 2165 REEM 3177 4,485 5168 | 14,098 [EXIEN 15934
1pum pitch feasibility yes no yes yes no yes yes no yes
Wire length (m) 0.316 0.314 0.315 0.773 0.761 0.772 1.126 1.084 1.125
Max. hotspot 11.2 9.9 10.8 29.3 101.2 19.3 39.4
# Detoured nets 15 0 2 41 0 12 330 21 105
Power (mW) 75.9 74.1 75.4 296.1 292.1 295.5 195.6 1944 195.2
Performance 4.34 493 491 3.23 3.78 3.74 1.72 1.80 1.79
PDP (fJ) 17.5 15.0 15.4 91.7 77.3 79.0 113.7 108.0 109.1
Design runtime 8.2h 6.2h 7.2h 10.9h 9.4h 10.7h 21.5h 17.7h 19.0h

TABLE XII: Fence-3D bridges the power and performance gap between
gate-level and block-level 3D ICs, while supporting the use of a relaxed
lum hybrid bond pitch and IP reuse. Our reported runtime includes the
time required to generate all blocks within the designs.

Gate-3D Block-3D
IPEG benchmark | i1 31y [16) [ PITM (0] | Fence 3D
MLS method Full Full Partial
Block density N/A 60% uniform varying
Chip size (um) 101x101 99.7x99.7
Wire length (m) 0.53 0.80 0.79
# DRC errors 16 14 13
Hybrid bond pitch 200nm 500nm lum
# hybrid bonds used 59,761 12,307 3,665
Power (mW) 289 302 (+4.7%) | 297 (+2.9%)
Performance (GH z) 3.84 3.28 (-15%) | 3.70 (-3.6%)
Block design reuse no yes yes
Design runtime 14.5h 19.3h 11.5h

E. Closing the Gap between Gate-level and Block-level 3D IC

As previously discussed, 3nm gate-level 3D ICs require a 200nm
hybrid bond pitch, which poses a significant gap from current
manufacturability. A prior method, Pin-in-the-Middle [9], adopted
Full-MLS and resulted in a large number of hybrid bonds, still re-
quiring an aggressive 500nm pitch even with block-level—thus failing
to bridge the gap. In contrast, our proposed Partial-MLS method
enables a substantial reduction in hybrid bond count. Ultimately, our
methodology enables the adoption of a manufacturable lum pitch in
3nm 3D ICs, as shown in Table [X] thereby allowing the benefits of
3D integration to be realized at advanced technology nodes. Note that
in Table E we address hybrid bond overlap by applying the bipartite
matching-based legalization technique proposed in [[7].

Furthermore, Pin-in-the-Middle [9] lacks post-route optimization,
resulting in a 15% performance degradation and a 4.7% increase
in power compared to the gate-level 3D IC. In contrast, our final
design—with the Fence-3D flow and soft block sizing—successfully
narrows the performance and power gap to 3.6% and 2.9%, as shown
in Table [XTI]} It demonstrates the effectiveness of our approach in
closing the quality gap between gate-level and block-level 3D ICs.

F. Runtime Characterization of 3D Design Flows

Table summarizes the design runtimes for gate-level and
block-level 3D ICs. For the gate-level, the flow consists of a pseudo-

TABLE XIII: Runtime breakdown across different methods for JPEG.

Gate-3D Block-3D
Pin-3D [[16] | PITM [9] | Fence-3D

Block design - 6.4h 6.4h

3D floorplanning - 0.4h 0.4h
Mixed-size placement 3h - -
Timing closure 11.5h 12.5h 4.7h
Total runtime 14.5h 19.3h 11.5h (-21%)
Total with block reuse 14.5h 12.9h 5.1h (-65%)

3D phase—where the design is projected onto a 2D IC—followed
by a refinement phase that performs 3D clock and signal routing. In
contrast, the block-level flow involves three stages: soft block design,
3D floorplanning, and top-level integration with refinement.

Among the three methods, our proposed Fence-3D combined with
Partial-MLS achieves the shortest runtime in the refinement stage,
mainly due to the reduced hybrid bonds. This reduction minimizes
the exponential overhead of bond legalization, leading to time savings
during post-CTS, routing, and post-route optimization. As a result,
the proposed method achieves a 21% reduction in total design time
compared to the gate-level flow. Furthermore, assuming all blocks
are pre-designed, the runtime reduction can reach up to 65%.

VI. CONCLUSION

In this paper, we presented several methods to design block-
level 3D ICs. The proposed Fence-3D approach outperforms the
Pin-in-the-Middle flow, achieving up to a 15% improvement in
power-delay-product (PDP). Additionally, our ML-based soft block
sizing mitigates intra-block congestion, yielding a further 6.6% PDP
improvement. Finally, the Partial-MLS method, guided by RUDY
map, maintains a low hybrid bond count, thereby enabling the use
of a lum hybrid bond, while achieving up to a 14% improvement
in PDP compared to the No-MLS method. These results underscore
the significance of our methods in achieving both optimized and
manufacturable block-level 3D IC designs for advanced nodes.
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