
A Systematic Approach for Multi-objective Double-side Clock Tree
Synthesis

Xun Jiang1, Haoran Lu1, Yuxuan Zhao2, Jiarui Wang1,3, Zizheng Guo1, Heng Wu1, Bei Yu2, Sung Kyu Lim4,
Runsheng Wang1,5,6, Ru Huang1,5,6 and Yibo Lin1,5,6∗

1School of IC, Peking University 2Department of CSE, The Chinese University of Hong Kong
3School of CS, Peking University 4School of ECE, Georgia Institute of Technology

5Institute of EDA, Peking University, Wuxi 6Beijing Advanced Innovation Center for Integrated Circuits

Abstract—As the scaling of semiconductor devices nears its limits,
utilizing the back-side space of silicon has emerged as a new trend
for future integrated circuits. With intense interest, several works have
hacked existing backend tools to explore the potential of synthesizing
double-side clock trees via nano Through-Silicon-Vias (nTSVs). How-
ever, these works lack a systematic perspective on design resource
allocation and multi-objective optimization. We propose a systematic
approach to design clock trees with double-side metal layers, including
hierarchical clock routing, concurrent buffers and nTSVs insertion, and
skew refinement. Compared with the state-of-the-art (SOTA) methods,
the widely-used open-source tool, our algorithm outperforms them in
latency, skew, wirelength, and the number of buffers and nTSVs.

I. INTRODUCTION

Back-side interconnection [1], [2] has emerged to continue the
scaling of semiconductor technologies. With increasingly congested
designs and tight timing budgets on the front-side (FS), both the
academia [2]–[9] and industry [10], [11] have started to consider
utilizing back-side (BS) resources for routing wires, including
signal, power, and clock net. Based on the evaluation in [2], the
latency of the clock tree is decreased from 50ps to 20ps with back-
side metal layers. However, lacking a systematic double-side clock
tree synthesis (CTS) algorithm is impeding further exploration of
the potential of back-side resources, considering the new complex
design space unfolding before researchers.

As shown in the bottom of Fig. 1, the double-side clock net
is jointly implemented with connecting the back-side and front-
side metal layers via additional nTSVs. Although timing benefits
have been reported, the overhead of nTSVs, buffers, and clock
wirelength cannot be neglected, as the primary objectives of CTS
has included latency, skew, and resource consumption. For instance,
many methods, e.g., clock routing [12]–[15], buffer insertion [16]–
[19], useful skew [20]–[22], Flip-Flop (FF) clustering [23]–[25] and
3D clock tree [26]–[28] have all once referred to as timing and power
optimization techniques involving clock trees. However, considering
the challenges of more complex design resource allocation and
multi-objective optimization, the exploration of double-side CTS is
still insufficient to keep pace with advanced technology.

Existing works [2], [6], [7], [29] investigating double-side CTS
all follow the incremental flow shown in the left of Fig. 1. To
elaborate, Veloso et al. [2] flip the high-level part of a clock tree
to the back-side to reduce clock latency to the maximum extent.
Bethur et al. [7] propose leveraging the fanout of driven sinks as
the criteria to decide whether the net should be flipped to back-side.
Bethur et al. [6] utilize the Graph Neural Network to select the subset
of FFs with poor timing performance and flip the connected nets
to the back-side. Vanna-iampikul et al. [29] incorporate the back-
side design methodologies of Power Delivery Network (PDN) based
on the clock synthesis method by Bethur et al. [6]. Although the

∗Corresponding author: Yibo Lin (yibolin@pku.edu.cn)

Off-the-shelf CTS

Placement + Double-side PDK + Constraints

Back-side Opt.

Systematic
Multi-objective

Double-side CTS

Double-side Clock Tree

Single-side Clock Tree

Target 1: FS

Target 2: BS

Target: FS+BS

Front-side

Back-side

Front-side

nTSV

Conventional Flow Our Flow
Fig. 1 Clock tree synthesis with double-side metal layers.

benefits of back-side metal layers to CTS are shown explicitly, the
incremental flow cannot fully uncover their potential. For instance,
the pre-generated single-side clock tree by the off-the-shelf CTS tool
only considers the timing model based on the front-side technology
parameters to guide the buffer insertion process, whose buffering
solutions will deviate from the best one. The follow-up back-side
optimization method has to obey these results to assign nets to
back side by inserting nTSV, which can severely harm the eventual
solution quality due to limited solution space. Thus, a unified
design space of buffer and nTSV insertion with efficient solution
exploration is urgent for double-side CTS, which is also the core of
our work.

In this work, we aim at unleashing the potential of the back-
side technology by handling the challenges from double-side CTS
systematically. The major contributions of this work are as follows:

• We propose a systematic double-side clock tree synthesis
framework aiming at pushing the boundary of the cutting-edge
back-side technology exploration by multi-objective optimiza-
tion.

• We propose an efficient hierarchical clock routing to reduce
clock wirelength and preserve balanced structure.

• We propose a concurrent buffer and nTSV insertion based on
multi-objective dynamic programming (DP) and an efficient
resource-aware end-point buffer insertion as post-processing
method for latency, skew, and resource usage optimization.

• We propose a novel methodology of design space exploration

Trunk Net

Leaf Net

Top Net

Sinks

Clock Root

(a) Initial Buffered Clock Tree

Back-side
Net

Front-side
Net

nTSV

(b) Latency-driven Insertion [2].

Back-side
Net

Front-side
Net

FO=4 FO=5

FO=8

FO=3 FO=2FO=2FO=2

(c) Fanout (FO)-driven Insertion
[7].

Back-side
Net

Front-side
Net

Timing
Critical

Leaf
Buffer

(d) Critical Timing-driven Insertion
[6].

Fig. 2 Comparison between the buffered clock tree and the double-
side clock trees by different methods to assign top and trunk nets
to the back side.

(DSE) of double-side CTS by our framework.

Experimental results demonstrate our superiority over recent
works [2], [6], [7], [29]. Take the method [2] with extreme op-
timization on latency as an example, we can optimize the clock
latency by 2.223×, skew by 2.464×, number of buffers by 1.010×,
clock wirelength by 1.249×, and number of nTSVs by 1.441×,
respectively, with 6.922× speed-up.

The rest of this paper is organized as follows. In Section II, we
demonstrate the preliminaries of our work. In Section III, we explain
the details of our algorithms. In Section IV, we present the results of
our work. In Section V, we conclude our work and discuss further
works.

II. PRELIMINARIES

A. Double-side Clock Tree Structure

The comparison of structure between initial buffered clock tree
and double-side clock trees are drawn in Fig. 2. In Fig. 2(a), the
initial buffered clock tree assign all leaf nets and trunk nets are on
the front side. The leaf net includes clock sink pins, while the trunk
net encompasses all other nets excluding leaf nets. Top nets, defined
by designers as highest-level trunk nets, can be distinguished from
trunk nets for clarity.

We demonstrate three recent post-CTS methods to implement
double-side clock tree in Fig. 2(b), Fig. 2(c), and Fig. 2(d), re-
spectively. The post-CTS method from [2] assigns the trunk-level
nets to the back-side by inserting nTSVs in Fig. 2(b). Owing to
the input and output pins of the buffer on the front side, multiple
nTSVs are incorporated to maintain connectivity between the front
and back sides. The delay from source to sink pins can be reduced
by the lower unit resistance and capacitance of the back-side metal
layers, as most paths traverse these common trunk-level nets. It is
noteworthy that extra nTSVs also increase the resource usage which
needs to be carefully considered for the design of the entire chip.
Therefore, [7] utilizes the fanout of driven sinks as the criteria to
decide whether the nets should be flipped and [6] leverages the
timing criticality of leaf driving buffers to decide the back-side nets
assignment. In a word, these methods try to trade-off the timing
benefits and the nTSV utilization but limited to the methodology of
separated buffers and nTSVs insertion.

OUT IN

(CL/2)f

(RL/2)f

(CL/2)f

(RL/2)f

(a) Inserting Buffer

OUT

IN (CL)b

(RL)bRnTSV

CnTSV

RnTSV

CnTSV

(b) Inserting nTSV

Fig. 3 Delay modeling for buffer and nTSV insertion.

B. Delay Model for Buffers and nTSVs

In the clock tree synthesis with double-side metal layers, buffers
and nTSVs are jointly utilized to minimize the latency of the clock
tree. We follow previous work [2], [6], [7] to use the classic L-type
Elmore delay [30] to compute the delay of wires. We set the front-
side and back-side metal layer unit capacitance to cf and cb and set
the front-side and back-side metal layer unit resistance to rf and
rb. Furthermore, we take a wire segment with the length L and set
the output driven capacitance of wire segment to Cd.

As buffer insertion on the front side in Fig. 3(a), we note Cb as
the input capacitance of buffer and Dbuf as the buffer delay. The
delay of inserting a buffer at the middle of the wire is denoted as
DbufOn, which is computed as follows.

DbufOn =rf
L

2
(cf

L

2
+ Cb) +Dbuf + rf

L

2
(cf

L

2
+ Cd)

=
rfcf
2

L2 +
rf (Cb + Cd)

2
L+Dbuf .

(1)

We use CnTSV and RnTSV to represent the capacitance and
resistance of one nTSV. The delay of inserting two nTSVs at the
endpoints of the wire segment in Fig. 3(b) is denoted as DnTSV On,
which is computed as follows.

DnTSV On =RnTSV (CnTSV + Cd) + rbL(cbL+ CnTSV + Cd)

+RnTSV (2CnTSV + cbL+ Cd)

=(rbcb)L
2 + (rbCnTSV + rbCd +RnTSV cb)L

+RnTSV (3CnTSV + 2Cd).
(2)

In the double-side scenarios, rbcb ≪ rfcf reduce the delay of
back-side metal layers. Meanwhile, the buffer can shield the output
capacitance to reduce delay and meet maximum driven-capacitance
constraint, whereas nTSV cannot. Therefore, the collaborative opti-
mization of buffers and nTSVs insertion is crucial in the double-side
CTS.

C. Multi-objective Optimization

Multi-objective optimization refers to solving problems with
multiple conflicting objectives by exploring a set of optimal trade-
off solutions. The Pareto frontier [31] is the core concept to
represent these solutions, where no objective can be improved
without degrading another. For the multi-objective optimization, it
is essential to leverage Pareto frontier to comprehensively evaluate
the performance of algorithms without being influenced by some
parameter preferences. The diversity of solutions across the objective
space is also important to avoid the algorithm getting stuck in local
optimality.

D. Problem Formulation

Problem 1 (Double-side clock tree synthesis). Given the clock net,
double-side metal layers, and candidate cells, e.g., nTSV and buffer,
construct a double-side clock tree to optimize multiple objectives,
e.g., latency, skew, wirelength, buffer count, and nTSV count, un-
der connectivity and electricity constraints. The decision variables
encompass the positions of inserted nTSVs and buffers, as well as
their mutual topology relationships within the clock tree.

=

Double-side Clock Tree

Hierarchical Clock Routing

Clustering-driven DME Clock Routing

Concurrent Buffer & nTSV Insertion

Double-side Design Space Formulation

Multi-objective Dynamic Programming

Placed DEF Lib & LEF

Skew Refinement

Resource-aware End-point Buffer Insertion

Constraints

Fig. 4 Overview of our algorithm framework.

In this work, the key challenges are formulating unified double-
side CTS design space and developing efficient multi-objective
algorithm to explore Pareto-optimal solutions within this design
space.

III. ALGORITHMS

A. Overview

The overall flow of our algorithm is shown in Fig. 4. It takes
placement results (Placed DEF), PDK, and capacitance and con-
nectivity constraints as input, and output a legal clock tree with
buffers and nTSVs. The algorithm mainly consists of three steps:
hierarchical clock routing, concurrent buffer and nTSV insertion,
and skew refinement (SR). Based on this algorithm, we also support
design space exploration of the double-side CTS solutions. We
explain each step in details in the following sections.

B. Hierarchical Clock Routing

In the modern CTS, the goal of clock routing is to firstly provide
an initial clock tree topology that approximates the optimization
of latency, skew, and wirelength. However, many follow-up timing-
optimization stages, e.g., buffer insertion and sizing, make latency
and skew more resilient to changes in topology, while the wirelength
is still largely determined by the clock routing topology and impacts
power significantly. We propose a hierarchical clock routing focuses
on optimizing wirelength by combining clustering and deferred-
merge-embedding (DME) clock routing.

In our hierarchical clock routing, the clustering is performed
at two sequential steps, i.e., high-level clustering and low-level
clustering, as shown in Fig. 5(a) and Fig. 5(b), respectively. High-
level clustering groups the sinks into several large clusters with size
Hc by minimizing the total intra-cluster wirelength approximately.
Low-level clustering then divides each large cluster into smaller ones
with size Lc. The purpose of the dual-level clustering is to obtain
a hierarchy according to the spatial proximity of sinks. We also
record the centroids of both high- and low-level clustering solutions
for later steps. K-means algorithm is adopted as the backbone for
both clustering steps. In the experiments, we set Hc to 3,000 and
Lc to 30 empirically.

DME is widely used in many clock routing algorithms [13], [14].
It helps to minimize skew and wirelength efficiently. A typical DME
is based on matching, as shown in Fig. 5(c). However, such an
approach is reported to have poor wirelength when dealing with
imbalanced distribution of sinks. Therefore, with the clustering

Macro

Macro

(a) High-level
Clustering

Macro

Macro

(b) Low-level
Clustering

Low
Centroid

Matching
Point

Root

(c) Matching-based
DME

High Cluster

High
Centroid

Root

Low Cluster

(d) Hierarchical DME

Fig. 5 Dual-level clustering and DME-based clock routing. Symbol
“+” refers to sink.

F F F F B B

F F B F F B

P1: PBuffer P2: PWiring_F P3: PWiring_B

P4: PNTSV1 P5: PNTSV2 P6: PNTSV3

Fig. 6 Patterns of wire segments labeled as P1 ∼ P6. F refers to
the front side. B refers to the back side. The right end is close to
sinks and the left end is close to clock root.

results, we perform DME clock routing with the low-level clustering
centroids as leafs and the corresponding high-level clustering cen-
troids as root, denoted as hierarchical DME as shown in Fig. 5(d).

C. Concurrent Buffer and nTSV Insertion

In this section, we describe the details of double-side design space
formulation and multi-objective DP.

1) Double-side Design Space Formulation: The double-side de-
sign space is formulated by the discrete edge patterns and connec-
tivity constraints. Different from the traditional buffer insertion on
the single side, the edge patterns in our algorithm should adapt
to double sides and the characteristics of buffers and nTSVs. We
list six candidate edge patterns, denoted as pattern set P , in the
generated clock tree from hierarchical clock routing, as shown in
Fig. 6. For instance, since the two pins of nTSVs are situated in
different sides, resulting in side types of two endpoints of edge
having distinct types as PNTSV2 and PNTSV3. However, the side
types of two endpoints of PNTSV1 are still F due to two nTSVs
flipping side twice. Meanwhile, since the two pins of buffers are
located in the front side, the side types of two endpoints of edge have
to be F as PBuffer. During buffers and nTSVs insertion process, the
pattern decisions of adjacent edges cannot violate the connectivity
constraint, that the shared vertex of any two edges in the clock tree
must have the same side type.

2) Multi-objective Dynamic Programming: The multi-objective
dynamic programming consists of four steps: build heterogeneous
DP graph, bottom-up generation, multi-objective selection, and top-
down decision, as shown in Fig. 7. With these steps, we can
concurrently insert buffers and nTSVs into the clock tree efficiently.

Step 1 (Build Heterogeneous DP Tree): To build the heteroge-
neous DP graph, we firstly represent each edge of the clock tree
by a node in the DP graph. Two adjacent edges in the clock tree

Full Mode:
Flexible nTSV

Intra-side Mode:
Forbidden nTSV

Clock Root

① Build Heterogeneous
DP Tree

Low-level Clustering Centroids

 Root Node

② Bottom-up
Generation

Select by
MOES

Leaf Nodes

③ Multi-objective
Selection

④ Top-down
Decision

 Sroot Best sroot

Clock Tree

Fig. 7 The process of building DP formulation form clock tree
and the bottom-up and top-down with DP execution. Each edge
corresponds to two sets marked by different colors.

at different levels are connected by edge in DP graph as shown in
Fig. 7. Due to the structure of clock tree, the DP graph is formed as
a tree rooted by the node corresponding to the edge of clock root.
Then, the pattern selection, i.e., buffer and nTSV insertion, can be
conducted on the DP tree. Notice that the clock tree and DP tree
are both binary tree.

A novel idea of ours is to further configure the nodes in DP graph
with two types of nTSVs inserting mode: full mode (flexible nTSV
with P1 ∼ P6 allowed to select) and intra-side mode (forbidden
nTSV with only P1 ∼ P3 allowed to select), which could be easily
implemented by restricting the allowed patterns on the edges in our
framework. Thus, by the inserting mode configurations, we could
obtain a heterogeneous DP tree. To support the DP algorithm to
explore the solutions in the DP tree, we utilize S to represent the
candidate solutions of each node and s to represent the selected final
solution of each node.

Step 2 (Bottom-up Generation): In the process of bottom-up
generation, we firstly set the undirected edges in DP tree by the
topology of clock tree to directed edges, which all point to the
root node finally. During the generation process, each node should
undergo two operations: merging from two predecessor nodes and
inserting in itself. We generated candidate solutions S for all nodes
starting from the leaf nodes. For leaf nodes without predecessor
nodes, the edge end-point close to sinks are forced to front-side,
which restricts the initial insertion of leaf nodes to {P1,P2,P4,P5}
without merging. From the candidate leaf node solutions, we can
generate the candidate solutions of successor nodes by merging each
solution from one predecessor node with every solution from the
other one. Meanwhile, these dependencies are recorded in merged
solutions for fast traversal in Step 4. Notice that the merging
operation is allowed which two predecessor solutions obeying the
connectivity constraint. This rule can ensure we generate a legal
double-side clock tree just by one turn of DP without any additional
legalization steps, which improves the efficiency of our algorithm.

After the merging operations, each node should conduct the
inserting operations to assign patterns based on the merged solutions.
The patterns must be selected from the set P , while the selection
could be restricted by the specific inserting mode. For instance,
if one node is configured to the intra-side mode, the patterns

N/10, 000

t

0.6 1.0

0.06

0.1

Fig. 8 Adaptive scale factor function t ∼ N/10, 000.

{P4,P5,P6} involving nTSVs are forbidden to inserted in that
node. By the delay model introduced in Section II-B and [16], we
could calculate the effective capacitance and path delay for solutions
after inserting patterns. By the iterative execution, we finally obtain
the candidate solutions at the root node, denoted as Sroot at Step 2
in Fig. 7.

Step 3 (Multi-objective Selection): With the generated candidate
solutions Sroot, we try to select the final solution sroot ∈ Sroot con-
sidering multi-objective optimization. With the efficient computation
structure of DP, we could easily record the latency, buffer count, and
nTSV count for each node during the bottom-up generation.

Thus, we propose a multi-objective enhancement score to ap-
proach the multi-objective optimization. With the additional nTSV
as resource for insertion, the candidate solutions at the root node
have many more combinations of buffers, nTSVs, and different
latencies. The distribution of candidate solutions is much more
diverse than that in the single-side buffer insertion scenario, as
observed in IV-C in the experiment. Therefore, we utilize the multi-
objective enhancement score (MOES) to decide the final solution
sroot as follows.

MOES = αlroot + βbroot + γnroot, (3)

where lroot, broot, and nroot are the values of latency, buffer count,
and nTSV count for the candidate solutions at the root edge. α, β,
and γ are manual parameters to weight each objective.

Step 4 (Top-down Decision): After the decision of sroot, we
invert the direction of edges in the DP tree for top-down decision.
By the recorded dependencies in the merged solutions at Step 2, we
can quickly retrace the final solutions for all nodes.

Pruning technique: We extend the inferior solution concept in
[16], that the effective capacitance and maximum path delay of
one solution both worse than those of another solution means this
solution will always be viewed as a bad candidate, to the double-side
scenarios by pruning candidate solutions at front-side and back-side,
respectively. This method ensures our DP algorithm is optimal in
terms of latency. Meanwhile, to satisfy the constraints of the max-
driven capacitance, we prune the solution with effective capacitance
exceeding the maximum threshold.

D. Skew Refinement

As the DP in previous section mainly optimizes clock latency,
we further introduce a resource-aware skew refinement technique to
mitigate skew degradation by inserting buffers at end-points. This
step is triggered when the skew is over p% of the maximum latency.
In the experiments, we set p to 23. N refers to the number of sinks.
t refers to an adaptive factor w.r.t. N , as shown in Fig. 8.

1) Set refined end-points number n as min(N × t,m). m is the
maximum number of refined end-points and set to 33 in the
experiments.

2) Refine n end-points in descending order of delay by inserting
one buffer at the low-level clustering centroids.

Our Framework

Config. 1

Config. 2

Config. N

Timing

Resource

Pareto
Frontier

Inserting
Modes:

Node 1
Node 2
... ...

Fig. 9 Design space exploration for double-side CTS.

By the observation that the skew and wire delay within lower clusters
have a negligible impact on the overall path, this method is efficient
and effective in mitigating skew.

E. Design Space Exploration of Double-side CTS

Based on the concurrent buffer and nTSV insertion approach,
we further propose a general double-side design space exploration
methodology that demonstrates superiority in multi-objective op-
timization of double-side CTS. The main idea is to control the
inserting modes of nodes in DP tree, as shown in Fig. 7. By setting
up various configurations, users could explore more solutions in the
objective space, as shown in Fig. 9.

To make the DSE process easy to control, we allow users to
control the inserting modes of nodes in DP tree by setting a
fanout threshold. Nodes with fanout lower than the threshold will
be configured as full mode, while those with fanout larger than
the threshold will only allow intra-side mode. Furthermore, more
sophisticated methods to control the inserting modes could be
incorporated into our framework other than the simple heuristics.
The concept of decoupling the DP execution flow and the controlling
of nodes inserting allows users to avoid dealing with cumbersome
details, e.g., timing calculation, but still have large multi-objective
optimization space, which will promote more optimization tech-
niques in double-side CTS problem.

IV. EXPERIMENTAL RESULTS

We perform the experiments on the Linux platform with a 20-core
2.40GHz Intel(R) Xeon(R) Silver 4210R CPU and 320GB memory.
We take the ASAP7 PDK [32] to perform our experiments and
adopt the unit resistance and capacitance of back-side metal layers
and nTSV from [1]. These parameters are listed in TABLE I. We
take designs from OpenROAD [33] and use its backend flow to
generate benchmarks. The statistics of the benchmarks are listed in
TABLE II. Our framework is implemented using C++.

A. Technology Settings

We follow OpenROAD’s convention to take the unit resistance
and capacitance of M3 for the evaluation of delays in the front-
side. For the back-side wires, we compute delays according to
the actual usage of layers (BM1∼BM3). We use the Elmore delay
[30], the slew model [34], and the nonlinear delay model (NLDM)
[32] for delay computation. In our work, we follow the default
flow in OpenROAD where one kind of buffer is used. This is a
reasonable setting, because buffer sizing will be further optimized
for skew minimization in the follow-up clock tree optimization after
clock tree synthesis in a real design flow [33], [35], [36]. We take
BUFx4_ASAP7_75t_R with a shape of 0.378nm × 0.27nm as
the buffer and nTSV with a shape of 0.27nm× 0.27nm, which is
aligned to the other standard cells in the layout. The resistance and
capacitance of one nTSV are 0.020kΩ and 0.004fF .

TABLE I Layer resistances and capacitances [1], [32].
Layer Unit Res. (kΩ/µm) Unit Cap. (fF/µm)

M1 0.138890 0.11368
M2 0.024222 0.13426
M3 0.024222 0.12918
M4 0.016778 0.11396
M5 0.014677 0.13323
M6 0.010371 0.11575
M7 0.009672 0.13293
M8 0.007431 0.11822
M9 0.006874 0.13497

BM1∼BM3 0.000384 0.116264

TABLE II The statistics of benchmarks [33].

ID Design
Statistics

#Cells #FFs Util.

C1 jpeg 54973 4380 0.50
C2 swerv_wrapper 148407 14338 0.40
C3 ethmac 56851 10018 0.40
C4 riscv32i 11579 1056 0.50
C5 aes 29306 2072 0.50

B. Comparison with SOTA Methods

We utilize the open-source tool OpenROAD [33] to evaluate
the effectiveness of back-side metal layers and the benefits of our
algorithm. We generate the post-place and post-cts DEF
files [37] from OpenROAD and use consistent evaluation methods
and parameters for all designs. α, β, and γ are set to 1, 10, and 1.
The fanout of [7] is set to 100 and the number of timing critical
paths in [6] is set to 0.5. The inserting modes of all edges of our
algorithm in TABLE III are set to full mode.

We also implement the method from [2] as the baseline, which
extremely optimizes latency. We take the post-cts DEF gener-
ated by the CTS tools in OpenROAD without resizing operations
following CTS. According to [2], we flipped the nets above the
low clustering centroids to the back-side by inserting nTSV as
illustrated in Fig. 2(b) to minimize latency, denoted as OpenROAD
Buffered Clock Tree + [2] (OpenROAD + [2] for short) in
TABLE III.

TABLE III summarizes the comparison between our framework
and recent studies. Our algorithm outperforms the method [2] in
the clock latency by 2.223×, skew by 2.464×, number of buffers
by 1.010×, clock wirelength by 1.249×, and number of nTSVs by
1.441×. The significant reduction in latency and #nTSVs comes
from our hierarchical clock routing and concurrent buffer and nTSV
insertion. We also compare with recent studies [2], [6], [7] using
the buffered clock tree generated by our framework, to demonstrate
the effectiveness of the concurrent buffer and nTSV insertion. We
can see that our algorithm could achieve better quality in almost
all objectives. In addition, our algorithm is efficient. We achieve
6.992× speedup over OpenROAD + [2].

C. Effectiveness of MOES

In Fig. 10, we validate the effectiveness of MOES (Section III)
in concurrent buffer and nTSV insertion compared with the solo
buffered clock tree. The points show the best results achieved by
using MOES and minimal latency deviate far away in the double-
side scenario (see two triangles), while they are much closer in the
single-side scenario (see two squares). The reason is that the double-
side scenario enlarges the design space, where more combinations of
buffers and nTSVs will be preserved at the end of DP and should be
carefully considered. Therefore, an objective function considering
holistic factors, like MOES, is necessary to improve the solution
quality for double-side CTS.

TABLE III Comparison with recent studies on clock tree synthesis with back-side metal layers.

Design
OpenROAD Buffered Clock Tree† OpenROAD Buffered Clock Tree + [2] Ours
Latency Skew Buffers nTSVs Latency Skew Buffers Clk WL nTSVs RT Latency Skew Buffers Clk WL nTSVs RT‡

(ps) (ps) (#) (#) (ps) (ps) (#) (×106) (#) (s) (ps) (ps) (#) (×106) (#) (s)

C1 246.154 37.189 167 0 172.027 40.171 167 4.768 189 4.351 77.694 29.74 172 3.664 130 0.285
C2 449.208 334.353 576 0 311.214 269.791 576 14.702 674 7.095 123.355 58.632 571 11.394 499 1.693
C3 214.629 25.953 375 0 159.982 20.929 375 6.019 487 4.470 90.229 20.675 375 5.326 256 1.149
C4 141.382 25.351 40 0 133.958 24.441 40 0.801 46 3.221 54.296 20.231 33 0.623 24 0.038
C5 213.993 75.261 79 0 192.928 78.307 79 1.723 89 3.436 90.829 46.735 74 1.418 73 0.096

Ratio 2.900 2.830 1.010 - 2.223 2.464 1.010 1.249 1.441 6.922 1.000 1.000 1.000 1.000 1.000 1.000

Design
Our Buffered Clock Tree* Our Buffered Clock Tree + [2] Our Buffered Clock Tree + [7] Our Buffered Clock Tree + [6]

Latency Skew Buffers nTSVs Latency Skew Buffers nTSVs Latency Skew Buffers nTSVs Latency Skew Buffers nTSVs
(ps) (ps) (#) (#) (ps) (ps) (#) (#) (ps) (ps) (#) (#) (ps) (ps) (#) (#)

C1 144.603 41.839 189 0 130.420 54.757 189 243 129.802 54.300 189 167 130.420 55.068 189 200
C2 273.704 70.390 588 0 244.554 117.383 588 739 244.505 117.334 588 551 244.554 117.383 588 576
C3 130.559 29.076 366 0 110.956 30.677 366 418 113.196 32.917 366 385 110.956 30.677 366 382
C4 71.089 17.289 42 0 65.768 28.930 42 50 65.768 28.930 42 35 65.768 28.930 42 47
C5 127.997 60.538 85 0 110.083 64.472 85 109 110.083 63.693 85 72 110.083 63.693 85 66

Ratio 1.714 1.245 1.037 - 1.516 1.683 1.037 1.588 1.520 1.688 1.037 1.232 1.516 1.680 1.037 1.294
† Use OpenROAD to generate buffered clock tree on front-side only. The Clk WL metric is the same as OpenROAD + [2] since the same clock topology is used.
* Use our framework to generate buffered clock tree on front-side only by three steps: conducting hierarchical clock routing, buffer insertion, and skew refinement. The Clk WL metric

is the same as Ours since the same clock topology is used.
‡ The runtime for other methods are omitted due to space limit, as their runtime is either similar to Ours or to OpenROAD + [2], according to which algorithm used to generate the

buffered clock tree.

100
150

Latency (ps)
350

375
400
#Buffers

0

200

#nTSV
s

Ours
Best in Ours w/ MOES
Best in Ours w/o MOES
Our Buffered Clock Tree
Best in Our Buffered Clock Tree w/ MOES
Best in Our Buffered Clock Tree w/o MOES

Fig. 10 The effectiveness of MOES with C3 (ethmac) under
Ours and Our Buffered Clock Tree.

0

50

100

150

1 2 3 4 5

Latency (ps)

w/o SR w/ SR

0

20

40

60

80

1 2 3 4 5

Skew (ps)

w/o SR w/ SR

0
100
200
300
400
500
600

1 2 3 4 5

#Buffers

w/o SR w/ SR

Fig. 11 Effectiveness of skew refinement.

D. Effectiveness of Skew Refinement

In Fig. 11, we demonstrate the effectiveness of skew refinement
by the designs in TABLE II. In the skew refinement, we utilize
the method in Section III-D to pick up the paths that need skew
refinement. From Fig. 11, the skew can be reduced significantly,
while the increases in latency and #buffers are very ignorable. This
indicates that the method can effectively reduce skew as a post-
processing step, which can also provide a better initial solution for
the follow-up clock optimization stages.

E. Comparison on Design Space Exploration

To further verify the superiority of our systematic double-side
framework, we perform design space exploration on different meth-
ods. We set the fanout ranging from 20 to 1000 with step 10 in
our DSE flow as introduced in Section III-E. Meanwhile, we set
the fanout of [7] also ranging from 20 to 1000 with step 10 and
the percentage of critical paths of [6] ranging from 0.2 to 0.9 with
step 0.05. To make the comparison fair, the buffered clock tree is
all generated by our algorithm.

In Fig. 12, we compare our DSE flow with recent methods [2],
[6], [7] in exploration of multi-objective solutions. We can see that
the solution space of these methods are restricted to the buffered
clock trees, and cannot effectively explore better latency or skew

300 400 500
#Buffers + #nTSVs

80

100

120

140

La
te

nc
y

(p
s)

300 400 500
#Buffers + #nTSVs

30

40

50

60

Sk
ew

 (p
s)

Our Buffered Clock Tree + [6]
Our Buffered Clock Tree + [2]

Our Buffered Clock Tree
Ours in Table III
Our DSE Flow

Our Buffered Clock Tree + [7]

Fig. 12 The comparison of latency and skew of different flows.

even given more nTSVs. A possible reason is the target of buffered
clock tree is to minimize clock latency by inserting buffers to
shorten wirelength, while the ability of nTSV insertion will be
weakened with the wirelength decreasing. Instead, our DSE flow
controls the inserting modes in concurrent buffer and nTSV insertion
allows much larger solution space. By simply sweeping the fanout
threshold, we can find the Pareto frontier trading off latency, skew,
buffers, and nTSVs. As our algorithm is very efficient, users can
search for suitable solutions with our DSE flow at low cost.

V. CONCLUSION

In this work, we propose a systematic framework for clock tree
synthesis with double-side metal layers and nTSVs. We propose
hierarchical clock routing, concurrent buffer and nTSV insertion,
and skew refinement to optimize clock tree in multiple objectives.
Compared with the recent method [2] with extreme optimization
on latency, we can optimize the clock latency by 2.223×, skew
by 2.464×, number of buffers by 1.010×, clock wirelength by
1.249×, and number of nTSVs by 1.441×, respectively, with
6.922× speed-up. Meanwhile, our framework offers a DSE flow
for multi-objective exploration to further boost the technology and
design progressing. In the future, we will investigate placement and
routing effects on double-side CTS and develop methodologies for
full-flow optimization.

ACKNOWLEDGEMENTS

The project is supported in part by Grant QYJS-2023-2303-B, the
Natural Science Foundation of Beijing, China (Grant No. Z230002),
the 111 project (B18001), and Research Grants Council of Hong
Kong SAR (No. RFS2425-4S02 and No. CUHK14211824).

REFERENCES

[1] R. Chen, G. Sisto, A. Jourdain, G. Hiblot, M. Stucchi, N. Kakarla,
B. Chehab, S. M. Salahuddin, F. Schleicher, A. Veloso et al., “Design
and optimization of sram macro and logic using backside interconnects
at 2nm node,” in 2021 IEEE International Electron Devices Meeting
(IEDM). IEEE, 2021, pp. 22–4.

[2] A. Veloso, B. Vermeersch, R. Chen, P. Matagne, M. G. Bardon, G. En-
eman, K. Serbulova, O. Zografos, S. Chen, G. Sisto et al., “Backside
power delivery: Game changer and key enabler of advanced logic
scaling and new stco opportunities,” in 2023 International Electron
Devices Meeting (IEDM). IEEE, 2023, pp. 1–4.

[3] D. Prasad, S. T. Nibhanupudi, S. Das, O. Zografos, B. Chehab,
S. Sarkar, R. Baert, A. Robinson, A. Gupta, A. Spessot et al., “Buried
power rails and back-side power grids: Arm® cpu power delivery
network design beyond 5nm,” in 2019 IEEE International Electron
Devices Meeting (IEDM). IEEE, 2019, pp. 19–1.

[4] T.-C. Lin, F.-Y. Hsu, W.-K. Mak, and T.-C. Wang, “An effective netlist
planning approach for double-sided signal routing,” in 2024 29th Asia
and South Pacific Design Automation Conference (ASP-DAC). IEEE,
2024, pp. 288–293.

[5] F.-Y. Hsu, T.-C. Lin, W.-K. Mak, and T.-C. Wang, “A bounding box-
based net partitioning method for double-sided routing,” in Proceedings
of the Great Lakes Symposium on VLSI 2024, 2024, pp. 397–402.

[6] N. E. Bethur, P. Vanna-Iampikul, O. Zografos, L. Zhu, G. Sisto,
D. Milojevic, A. Garcı́a-Ortiz, G. Hellings, J. Ryckaert, F. Catthoor
et al., “Gnn-assisted back-side clock routing methodology for advance
technologies,” Proceedings of the 61st Design Automation Conference,
2024.

[7] N. E. Bethur, “A methodology for back-side clock delivery network
design compatible with commercial eda flows,” Master’s thesis, Georgia
Institute of Technology, 2023.

[8] M. M. S. Aly, T. F. Wu, A. Bartolo, Y. H. Malviya, W. Hwang,
G. Hills, I. Markov, M. Wootters, M. M. Shulaker, H.-S. P. Wong et al.,
“The n3xt approach to energy-efficient abundant-data computing,”
Proceedings of the IEEE, vol. 107, no. 1, pp. 19–48, 2018.

[9] H. Lu, Y. Ge, X. Jiang, J. Sun, W. Peng, R. Guo, M. Li, Y. Lin, R. Wang,
H. Wu et al., “First experimental demonstration of self-aligned flip fet
(ffet): A breakthrough stacked transistor technology with 2.5 t design,
dual-side active and interconnects,” in 2024 IEEE Symposium on VLSI
Technology and Circuits (VLSI Technology and Circuits). IEEE, 2024,
pp. 1–2.

[10] M. Shamanna, E. Abuayob, G. Aenuganti, C. Alvares, J. Antony,
A. Bahudhanam, A. Chandran, P. Chew, A. Chatterjee, B. Chauhan
et al., “E-core implementation in intel 4 with powervia (backside
power) technology,” in 2023 IEEE Symposium on VLSI Technology
and Circuits (VLSI Technology and Circuits). IEEE, 2023, pp. 1–2.

[11] “Tsmc a16 technology,” https://www.tsmc.com/english/
dedicatedFoundry/technology/logic/l A16.

[12] W. Wang, V. F. Pavlidis, and Y. Cheng, “Zero-skew clock network syn-
thesis for monolithic 3d ics with minimum wirelength,” in Proceedings
of the 2020 on Great Lakes Symposium on VLSI, 2020, pp. 399–404.

[13] K. D. Boese and A. B. Kahng, “Zero-skew clock routing trees with
minimum wirelength,” in [1992] Proceedings. Fifth Annual IEEE
International ASIC Conference and Exhibit. IEEE, 1992, pp. 17–21.

[14] M. Edahiro, “A clustering-based optimization algorithm in zero-skew
routings,” in Proceedings of the 30th international Design Automation
Conference, 1993, pp. 612–616.

[15] W. Li, Z. Huang, B. Yu, W. Zhu, and X. Li, “Toward controllable
hierarchical clock tree synthesis with skew-latency-load tree,” in Pro-
ceedings of the 61st ACM/IEEE Design Automation Conference, 2024,
pp. 1–6.

[16] L. P. Van Ginneken, “Buffer placement in distributed rc-tree networks
for minimal elmore delay,” in 1990 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 1990, pp. 865–868.

[17] K. Han, A. B. Kahng, and J. Li, “Optimal generalized h-tree topology
and buffering for high-performance and low-power clock distribution,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 2, pp. 478–491, 2018.

[18] M. R. Guthaus, G. Wilke, and R. Reis, “Non-uniform clock mesh
optimization with linear programming buffer insertion,” in Proceedings
of the 47th Design Automation Conference, 2010, pp. 74–79.

[19] Y.-Y. Chen, C. Dong, and D. Chen, “Clock tree synthesis under aggres-
sive buffer insertion,” in Proceedings of the 47th Design Automation
Conference, 2010, pp. 86–89.

[20] J. G. Xi and W. W.-M. Dai, “Useful-skew clock routing with gate
sizing for low power design,” in Proceedings of the 33rd annual Design
Automation Conference, 1996, pp. 383–388.

[21] W. Shen, Y. Cai, W. Chen, Y. Lu, Q. Zhou, and J. Hu, “Useful clock
skew optimization under a multi-corner multi-mode design framework,”
in 2010 11th International Symposium on Quality Electronic Design
(ISQED). IEEE, 2010, pp. 62–68.

[22] N. Uysal, W.-H. Liu, and R. Ewetz, “Latency constraint guided buffer
sizing and layer assignment for clock trees with useful skew,” in
Proceedings of the 24th Asia and South Pacific Design Automation
Conference, 2019, pp. 761–766.

[23] C. Deng, Y.-C. Cai, and Q. Zhou, “Register clustering methodology
for low power clock tree synthesis,” Journal of Computer Science and
Technology, vol. 30, no. 2, pp. 391–403, 2015.

[24] A. D. Mehta, Y.-P. Chen, N. Menezes, D. Wong, and L. Pilegg,
“Clustering and load balancing for buffered clock tree synthesis,” in
Proceedings International Conference on Computer Design VLSI in
Computers and Processors. IEEE, 1997, pp. 217–223.

[25] S. Bang, K. Han, A. B. Kahng, and V. Srinivas, “Clock clustering and
io optimization for 3d integration,” in 2015 ACM/IEEE International
Workshop on System Level Interconnect Prediction (SLIP). IEEE,
2015, pp. 1–8.

[26] T.-Y. Kim and T. Kim, “Clock tree synthesis for tsv-based 3d ic de-
signs,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 16, no. 4, pp. 1–21, 2011.

[27] J.-S. Yang, J. Pak, X. Zhao, S. K. Lim, and D. Z. Pan, “Robust clock
tree synthesis with timing yield optimization for 3d-ics,” in 16th Asia
and South Pacific Design Automation Conference (ASP-DAC 2011).
IEEE, 2011, pp. 621–626.

[28] S. Pentapati, J. Lee, Y. S. Yu, S. K. Lim et al., “Tier partitioning and
flip-flop relocation methods for clock trees in monolithic 3d ics,” in
2019 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED). IEEE, 2019, pp. 1–6.

[29] P. Vanna-iampikul, H. Yang, J. Kwak, J. X. Hu, A. Rahman, N. E.
Bethur, C. Hao, S. Yu, and S. K. Lim, “Back-side design methodology
for power delivery network and clock routing,” in 2024 IEEE Sympo-
sium on VLSI Technology and Circuits (VLSI Technology and Circuits).
IEEE, 2024, pp. 1–2.

[30] J. Hu, G. Schaeffer, and V. Garg, “Tau 2015 contest on incremental
timing analysis,” in 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2015, pp. 882–889.

[31] T. Marler and J. S. Arora, “Multi objective optimization: concepts and
methods for engineering,” 2009.

[32] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “Asap7: A 7-nm finfet predictive process
design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.

[33] “Openroad,” https://github.com/The-OpenROAD-Project/
OpenROAD-flow-scripts.

[34] C. Sitik, W. Liu, B. Taskin, and E. Salman, “Design methodology for
voltage-scaled clock distribution networks,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 24, no. 10, pp. 3080–3093,
2016.

[35] “Cadence Innovus Implementation System,” http://www.cadence.com.
[36] R. Ewetz, “A clock tree optimization framework with predictable timing

quality,” in Proc. DAC, 2017, pp. 1–6.
[37] J. Chen, I. H.-R. Jiang, J. Jung, A. B. Kahng, V. N. Kravets, Y.-L. Li,

S.-T. Lin, and M. Woo, “Datc rdf-2019: Towards a complete academic
reference design flow,” in 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 2019, pp. 1–6.

