Snake-3D: Differentiable Learning for Cross-Tier Logic Path
Snaking Optimization in 3D ICs

Yen-Hsiang Huang
School of ECE
Georgia Institute of Technology
Atlanta, Georgia, USA
yhhuang @ gatech.edu

Abstract—In the post-Moore era, 3D ICs offer superior timing
performance and lower power compared to traditional 2D designs.
However, current state-of-the-art (SOTA) flows suffer from excessive
snaking along critical paths and require many bond pads. This not
only complicates production ,but also degrades timing, as each inter-
die connection demands a bond pad and 2x BEOL wires. The challenge
arises from relying on bin-based FM partitioning, which overlooks inter-
bin connections and scales poorly. We introduce Snake-3D, a snaking and
timing-aware gradient-based partitioner. It eliminates excessive snaking
and concurrently reduces bond pad usage during the partitioning stage,
the earliest point these optimizations can be applied. Leveraging GPU
acceleration and PyTorch, Snake-3D matches the cutsize quality of
advanced gradient methods while running faster on modest hardware. Its
integrated snaking- and timing-aware cost, combined with local density
control, significantly reduces critical path snaking and achieves superior
final PPA compared to GNN-based methods and the default method in
SOTA 3D IC flows. On six benchmarks at 7nm and 28 nm technology
nodes, Snake-3D outperforms the default method in SOTA 3D IC flows. It
reduces final bond pad by 29%, lowers average and maximum snaking
by 34% and 20%, and improves WNS and TNS by 17% and 42%.
Compared to GNN-based methods, Snake-3D achieves a 47% reduction
in bond pads, reduces snaking by 39% (average) and 30% (maximum),
and improves WNS and TNS by 48% and 62%. Snake-3D runs 7.4x
faster than GNN-based and similar speed to the default method in SOTA
3D IC flows.

I. INTRODUCTION

As CMOS technology nears its physical limits, 3D IC technol-
ogy, exemplified by AMD’s Ryzen V-Cache [1], is emerging as a
promising solution to sustain Moore’s Law. Numerous studies have
explored 3D Place and Route (PnR) using wire-length estimations
and density cost functions [2], [3], [4], [5], adapting 2D tools for
3D [6], [7], and extending commercial methods [8], [9], [10], [11].
Recent heterogeneous 3D placement research [12], [13] has even
outperformed ICCAD contest winners of 2022 and 2023.

However, current SOTA design flows predominantly rely on 2D
PnR tools, such as commercial solutions like Synopsys ICC2 and
Cadence Innovus. These tools, originally developed for 2D designs,
lack optimization for 3D architectures.A key challenge in these flows
is the excessive snaking that results along critical paths. The inter-die
connections that accompany snaking cause timing degradation, and
lead to further issues, such as overlapping, due to the size disparity
between BEOL vias and F2F bond pads, according to [14]. This
ultimately increases the cost and effort required to correct these
problems in later PnR stages or may even render them uncorrectable.

Figure 1 shows a side view of a path snaking between dies in
a face-to-face (F2F) design. Each inter-die connection requires at
least 2X BEOL layers plus a bond-pad . This overhead complicates
timing closure in conventional 2D flows and can render critical paths
unrecoverable. Eliminating snaking on a critical path can reduces wire
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Fig. 1. Example of a path snaking 4 times between dies. Each pair of cells
requiring inter-die connections incurs at least 2x BEOL of wires and 1 F2F
bond pad, significantly impacting timing performance.

TABLE I
SNAKING REDUCTION IMPACT: FOR THE MOST CRITICAL PATH IN CASE
ARMS’ CORTEX A7, ELIMINATING SNAKING IMPROVED SLACK BY 19%.

#Snaking  Slack (ps) Delay (ps)
Before snaking reduction 10 -190 495
After snaking reduction | 0 (-100%) -154 (-19%) 458

delay and improves slack by up to 19%; Table I demonstrates this
gain and underscores the importance of snaking-aware optimization.

Reducing snaking on a single critical path can yield significant
timing gains, but focusing on a few paths may exacerbate snaking
and timing issues on others due to conflicting routing choices and
tangled critical paths. Table II demonstrates a case where we moved
the top 100 critical paths to the same die to completely avoid snaking
in these paths; however, paths outside this top 100 experienced
increased delays, resulting in worse slack than the original worst
case, suggesting that a more global-view approach is needed.

In this paper, we propose Snake-3D, a novel global-view ap-
proach designed to mitigate snaking during the initial partitioning
stage—the earliest point at which snaking can be optimized. To
accomplish this, we employ a gradient-based partitioner, leveraging
its inherent global-view nature, and meticulously design a loss
function that is both snaking- and timing-aware, while also ensuring
3D-IC applicability by incorporating local density constraints. This
integrated approach balances conflicting routing decisions across all
timing-violated critical paths, effectively minimizing overall snaking
and thereby substantially improving timing performance.

In summary, our contributions are:

e We propose Snake-3D, a gradient-based, fast, lightweight,
snaking- and timing-aware 3D-IC partitioner.

o Generality: Snake-3D works on any node or design, including
fixed macros and I/O pins, without modification.



TABLE I
RELOCATING TOP 100 PATHS TO ONE DIE: WORST PATH IMPROVES, BUT A
NEW CRITICAL PATH EMERGES.

Slack (ps)
Original Worst -209
Relocated Worst -193
New Worst (Outside Original Top 100) =215

o Scalability: On commercial and academic circuit benchmarks
with up to 500K cells/nets and 60K+ paths, Snake-3D achieves
30% lower TNS than bin-based methods and X% improvement
over advanced GNN approaches such as [15].

« Snake-3D runs on PyTorch with minimal GPU requirements. On
our largest 500K cells/nets benchmark it finishes in 15 minutes
on an entry-level T4 GPU, 2.4x faster than bin-based FM and
14.8x faster than GNN-based methods, while delivering superior
results across all metrics.

II. PREVIOUS WORKS

SOTA 3D IC flows such as [16], [8] and [10], [11] employ 2D PnR
tools to generate a 2D pseudo chip, which is then partitioned into two
dies for 3D PnR. A downside of these approaches is the introduction
of excessive snaking on timing-critical paths that span both dies and
require vertical traversal (Figure 1). Furthermore, because 2D tools
optimize timing only within each die and offer minimal inter-die
optimization, resolving snaking after partitioning becomes challeng-
ing. These flows also rely on bin-based partitioning [17] methods
such as FM min-cut[18], which ignore inter-bin connections and thus
exacerbate snaking.

Circuits are naturally represented as hypergraphs, and hypergraph
partitioning is a well-studied field. Traditional CPU-driven partition-
ers (hMETIS [19], KaHyPar [20], PaToH [21], Zoltan [22], Scotch
[23]) use multilevel methods but may converge to local optima due to
limited global perspective, as noted in SpecPart [24], which refines
solutions using spectral information. In recent years, GPU driven
methods have emerged. TP-GNN [15] for 3D ICs uses GNN to parti-
tion tiers and optimize timing and hierarchy. MedPart [25] uses GPUs
to optimize a differentiable cost function via gradient descent (GD)
within an evolutionary multilevel framework, reducing dependence on
the initial solution. Both methods incur longer runtimes and higher
GPU requirements. Both support cold-start partitioning; MedPart also
refines initial solutions.

Only bin-based methods [17] and TP-GNN [15] target 3D ICs with
timing or density constraints. General partitioners such as KaHyPar,
PaToH, Scotch, SpecPart and MedPart perform generic graph or
hypergraph partitioning and cannot be applied directly to 3D-IC
designs. Figure 2 shows that a generic partitioner without local
density constraints creates large cell clusters, complicating legaliza-
tion and harming timing, whereas a 3D-IC-aware partitioner with
density constraints yields a uniform distribution and preserves better
timing. Table VI summarizes each method’s approach, hardware
requirements, and 3D-IC applicability.

III. SNAKE-3D ALGORITHM

A. Overview of the Algorithm

Snake-3D resolves prior limitations while retaining key strengths.
Like MedPart [25], it uses a gradient-based method that supports
cold-start partitioning and leverages GPU parallelism. As a 3D-IC-
ready partitioner, Snake-3D incorporates timing, snaking, and local

Fig. 2. 3D-IC partitioning: (a) w/o local density constraints, cells (blue/white:
top/bottom die) cluster unevenly, increasing legalization effort and degrading
timing; (b) with local density constraints, cells are distributed evenly.
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Fig. 3. Our Snake-3D flow integrated into the state-of-the-art 3D-IC flow,
Pin-3D [10]. While Pin-3D originally employs bin-based partitioning, our
advanced Snake-3D seamlessly replaces that component.

density constraints beyond just cutsize. Gradient descent naturally
offers a global view of the design, and Snake-3D is designed to
be lightweight and fast, requiring minimal GPU resources to ensure
broad applicability.

The workflow of Snake-3D and its integration into the SOTA 3D
IC design flow are shown in Figure 3. SOTA flows, such as those in
[16], [8], and [10], consist of three stages: (1) a pseudo-3D stage that
modifies RC parasitics or library files to adapt 2D tools, producing
a flattened 3D IC as a pseudo-chip; (2) partitioning based on this
pseudo-3D layout; and (3) actual 3D IC PnR. Pin-3D, the latest
flow, uses Compact-2D as its default pseudo-3D stage and bin-based
partitioning as its default partitioner. Throughout our experiments, we
adopt the Pin-3D flow [10] with its default bin-based partitioning [17]
as our baseline and conduct evaluations within the Pin-3D framework.

A detailed description of the Snake-3D algorithm is provided in
Algorithm 1, with notations listed in Table IV. The total differentiable
loss used in GD is:

Ltotal = Wch + WSLS + Wde,

where L., Ls, and Ly represent the losses for cutsize (#3D-nets),



Algorithm 1 Snake-3D: GD-based 3D-IC Partitioning

1: Input: A, V°, VJ?, P,Go,G1 Output: z°: Discrete cell Z-coordinate (0 or 1) at level 0

2: function PREPROCESS(N, V, Vs, P, Go, G1)

3: wy  InitWeight (V) > Vertex weight: typically the area of cells.

4: wu < InitWeight (N) > Net weight: uniform, as timing info. is handled by path snaking loss.
5: wp < InitWeight(P) > Path weight: determined by timing criticality.

6: A  GetTimingArcs(P)

7: w < InitWeight(A, wp) > Arc weight: determined by the weight of its associated path.

8: C? < InitConnectivity (V, N, .A) > C°: connectivity matrix (|V!| x [N U A|) at level 0.

9: G° + InitGrid(V, wv, Go, G1) > GO: vertex weight to each grid cell, alreagy contains w1, information.
10:  return C°, G°, wx, wu

11: function GD_OpTIMIZE(V!, C!, G!, war, W)

12: if |V!| > coarse_threshold then > Number of cells at level [, derived from the number of rows of C'.

13: ktarget < |Vl\ X coarse_ratio

14: Y+ H' « Coarsen(V', C!, Etarget) > H': assignment matrix mapping fine nodes to super-nodes.

15: ct  C'H'; G « G'H! > Coarsened connectivity matrix and grid assignment matrix.

16: t'*! <« GD_Optimize(V'™!, C'1, G war, wa)

17: th et > Interpolate coarse solution to level /.

18: else

19: t! < InitT(t', GY) > Use fast initialization heuristics: start with a 50/50 area split for each die.
20: best_loss < co; best_t! « t!

21: t' < t' x scaling_factor > Scale t' at the beginning to prevent it from getting stuck at extreme values.
22: for step = 0 to num_steps — 1 do

23: Z' «— o(th > Relaxed, continuous z-values in [0, 1].

24: Liotar + WeLo(Z, C war) + WoLs (2, C',wa) + WaLa(Z!, GY)

25: t' < AdamOptimizer(n,t', V Liotar) > Update t' using the gradient and Adam Optimizer.

26: if total_loss < best_loss then

27: best_loss + total_loss; best_t' < clone(t")

28: return best_t'

29: (C°, G war,wa) + Preprocess(N,V°, V7, P, Go, G1)
30: t° «— GD_Optimize(V°, C°, G° wxr, wA)
31: 2° < o(t%)

32: 2z° < Snap(z?)

33: return z°

> o is the Sigmoid function.
> Discrete z-values: 0 if 2 < 0.5, 1 if 2 > 0.5.

TABLE III

IMPACT OF LOSS COMPONENTS ON DIFFERENT INSTANCE TYPES. TABLE IV

NOTATIONS USED IN SNAKE-3D ALGORITHM. VARIABLES WITH

SUPERSCRIPT [ ARE LEVEL-SPECIFIC AND AFFECTED BY COARSENING.

Loss Main Target Affected Instance
L¢ |Net cutsize (3D net count) minimization |gates, FFs, clock instances Symbol Description and Role
L |Critical logic path snaking minimization |gates, FFs pLyl Set of vertex and, fixed vertex at level I. VO mean all cells. Vi
L4 |Local density violation minimization gates, FFs, clock instances > “f |includes fixed I/O and memory macros.
NP A Set of nets, timing paths and their arcs; timing arcs can be
> 27" |derived from the paths.
snaking of critical paths, and local density, respectively. The impact Go,G1 | Grid cells on bottom/top dies with user-defined dimensions.
of each loss component on different instance types is summarized in 4l 5 |Discrete (0/1) B.Illd relaxed ([0, 1]) z-coordinates at level [ for
Table III. The weights W., W, and Wy are user-configurable and ' each cell v € V°, for die assignments and relaxations.
should be chosen based on the input net and path counts to balance g1 |Tensor at level I; primary variable operated on by GD solver,
the terms and prevent any one of them from dominating. Each term with o(t") = 2" (1-to-1 mapping), where o is sigmoid.
is discussed in the following subsections Wy W Weights for vertices (e.g., cell area) and nets. we use a uniform
’ Vs WN | et weight; timing information is inserted by the snaking loss.
B. Differentiable Cutsize Loss: the Definition w Weights for paths and arcs. wp is defined by Equation 17, and
PIWA - deri
L o ) W 4 is derived from wp.
The 3D IC_ partm.omng problem seeks .tolmmlmlze the cutsize net Gl | Connectivity matrix (VI % IN U A]) at level I; defines
cost. A net is considered to have a cut if it connects cells on both net-vertex connections at level L.
the top and bottom dies, thereby increasing the cutsize cost. For a G | Grid assignment matrix at level ; maps vertex weight to
net n € N, the cost is defined as: corresponding grid cells.
. . 1 Assignment matrix at level I; maps fine vertices (V) to
cutsize(n) = {1 if 3(vi, v;) € nosit. 2(v;) # 2(vjt1), (1 H coarsened vertices (V'11) during coarsening.

0 otherwise,



where z(v;) € [0,1] is the z-coordinate of vertex v;, The total
weighted cutsize cost is given by

Clotal-cut = Z w(n) - cutsize(n), )
neN
where the weight w(n) is user-defined and can be based on timing,
power, or other metrics. In this work, we use unit weights throughout,
as timing information will be incorporated in the subsequent snaking-
aware cost function section subsection III-D.

Since z(v), the z-coordinate of a vertex (cell or coarsened super-
cell), is discrete (0 or 1) and unsuitable for differentiation, we
introduce a relaxed variable Z(v) to enable a differentiable cost
function. We select the sigmoid function, which is continuous and
bounded in [0, 1], defining: o (t) = z, where t is the tensor optimized
by GD-based Snake-3D, and z has a one-to-one correspondence with
t. Beyond its continuity and bounded range, the sigmoid’s vanishing
gradient, typically a drawback in deep learning when t is extremely
small or large, proves advantageous here. As t approaches extreme
values, z nears 0 or 1, and the diminished gradient stabilizes these
near-binary outcomes, benefiting our optimization. In the following
section, we focus on z rather than t for simplicity and convenience.

A relaxed, differentiable cost function cutsize(n) aims to achieve
two objectives: (1) binarization: drive all Z values toward binary
outcomes (0 or 1); the first and second proxies in [25] are designed
for this. — (Hvi@l Z(vi) +[1,,en(1 — Z(vl))) , and the second as
Entropy (Mean,,cnz(v;)) . (2) convergence: encourage all z values
in a net to align. The first and second proxies from [25] support this
implicitly, while the third and fourth are explicitly designed for it.
The third proxy is given by MSE (Mean,,cnz(v;)), and the fourth
by maxy,en 2(vs) + maxy,en(l — Z(v;)). Although the approach
of augmenting 4 proxies in [25] gives users flexibility to tune their
weights, achieving an optimal balance remains challenging—even
with a Bayesian tuner. Moreover, the added complexity increases the
computational cost of backpropagation. To address these issues, we
derive a single unified equation that meets our requirements.

We begin with the observation Equation 1 can be expressed as

cutsize(n) = (1 — min z(vl)) -max z(v;), 3)
viEN v, EN

which equals 0 only when max,,cn z(v;) = 0 or min,,cn 2(v;) =
1, implying that either Yv; € n,z(v;) = 0 or Yu; € n,z(v;) = 1,
respectively. However, this formulation is only suited to the discrete
domain. For a function Z(v;), the min and max operations are
not differentiable. To address this, we adopt the smooth maximum
function, LogSumExp (LSE), which provides a close, differentiable
approximation of the max and min function and integrates seam-
lessly into tensor operations. The LSE max and min functions are
defined as

LSE-max{z1, 22,...,2n} = 1 log (Z e‘”i> , “)
o -

LSE-min{z1,22,...,2n} = 1 log <Z e_az’> , 5)
o -

where o > 0 controls the smoothness of the approximation. Thus,
Equation 3 can be reformulated into a differentiable closed form:

cutsize(n) = (1 — LSEémin{E(vi)}) . LSE-Emax{E(vi)} (6)
and the corresponding differentiable loss function of Equation 2 is:

Le =Y w(n) - cutsize(n), )

neN

C. Differentiable Cutsize Loss: Behavior Analysis

In this section, we explain why our cost function cﬁgi/ze(n) can
both encourage all z(v;) in a network to converge to a common
value and drive them toward the binary values O and 1. The gradient
of Equation 6 is complex due to the intricate interplay of the LSE
function with other terms. However, insight emerges by computing
the partial derivatives with respect to LSE-max and LSE-min and
applying the chain rule, given by:

OLSE-max{Z(vi;)} e#(vs)
0z (vy) Y eezwi)?
OLSE-min{z(v;)} e %)

) ISP T ©

When z(v;) values are spread out, only the maximum z(v;) signifi-
cantly affects LSE-max, and only the minimum affects LSE-min:

(®)

OLSE-max{z(vi)} _

{1 if v; = argmax,,cn 2(vi), (10)

9zZ(vj) 0 otherwise,
OLSE-min{Z(v;)} |1 if v; = argminy,cn 2(vs), (11
9z(vj) 10 otherwise,

Given the low correlation between LSE-max and LSE-min when
Z(v;) are spread out, the partial derivatives of cutsize(n) are:

BCIREiJze(n)
OLSE-min

BCIREiJze(n)

~ 1 — LSE-mi
OLSE-max SE-min,

~ —LSE-max. (12)

Combining Equation 10, 11, and 12, we get:

— 1 — LSE-min if v; = arg max.,en 2(vs),
Ocutsize(n) . . ~
W ~ ¢ —LSE-max if v; = argming, en 2(vs), (13)

! 0 otherwise.

Thus, when Z(v;) values are spread out, VctﬂgiJze(n) pushes the
maximum z(v;) toward O in proportion to the distance of the
minimum from 1, and pushes the minimum toward 1 in proportion
to the distance of the maximum from 0, gradually aligning all Z(v;)
to a common value z as the spread narrows. After several iterations,
Yv; € n, z(v;) = z. Then, Equation 6 simplifies to:

cutsize(n) ~ <1 - (2— log">) : (2+ 10g”> L (14
@ @
For all v; € n, the partial derivative becomes:
Ocutsize(n) _ Ocutsize(n) ~l_ 9z (15)

9z(v;)) 0z

This derivative changes sign at z = 0.5, which aligns with our goal:
when z > 0.5, it drives Z(v;) toward 1, and when z < 0.5, toward
0, facilitating binary convergence.

In summary, Equation 6 quickly aligns all Z(v;) for v; € n to
a common value Z, then shifts it toward 0 or 1 depending on its
magnitude. This achieves both convergence and binarization, which
is the primary objective of the cutsize cost function discussed in sub-
section III-B, without auxiliary terms. Equation III-C demonstrates
this behavior on high degree nets with eight cells, compared with the
first and second proxy cost functions from [25]. While the first proxy
eventually achieves convergence, it only does so after binarization.
The second proxy has even more limited impact on convergence.
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Fig. 4. Convergence of Z(v;) over iterations for an 8-cell net: (a) Our cost
function rapidly aligns Z(v;) to a uniform value and then shifts it to O or 1;
(b) first proxy cost function; (c) second proxy cost function—both from [25].

D. Differentiable Snaking Loss

To prevent path snaking, we extract a specified number of violated
paths set P. The k-th path, denoted pr = (Vky, Vkgs - - - Vky, )s 1S
an ordered sequence of vertices, where each vy, represents a cell
with global index k;, and ax, denotes the timing arc between vy,
and v, ,, . These arcs form a sequence of two-cell connections. The
snaking of a single path is then defined as:

|pp|—1
snaking(px) = Z cutsize(ay, ), (16)
i=1
where cutsize(ax,) = |2(vk,) — 2(Vk, 1 )|
To aggregate snaking across all paths, each path pj is assigned a
timing-based weight, given by:

a7

tax — slack(pr)
tel ’

vt =

where . is the clock period. This ensures a minimum weight of 1,
with weights increasing linearly for paths with greater negative slack
relative to tqx. The total discrete snaking cost is then:

Clotal—snaking - Z w(P) : snaking(p) (18)
pEP
lpl—1
= Z(w(p) Z cutsize(ap,)) = Z w(a) - cutsize(a), (19)
pEP i=1 acA

where w(a) =3, ., w(pk), and Ais the set of all unique timing
arcs across all paths. This formulation aligns with the framework used
for the net cutsize cost in Equation 2, and can be interpreted as a
netlist comprising all two-degree edges, making it easily integrable
into our GD framework. The resulting differentiable snaking loss
function is then:

Ly = Z w(a) - cutsize(a),

acA

(20)

E. Differentiable Local Density Loss

For 3D IC partitioning, since the XY coordinates are determined
after the pseudo-3D stage, we must constrain the maximum density

of each grid cell to ensure balanced cell distribution across dies,
preventing overcrowding and maintaining design feasibility. As stated
in line 7 of Algorithm 1, we precompute each cell’s grid assignment,
denoted as the matrix G, a vertex-to-grid weight mapping (e.g., cell
area to grid cell). For each grid, we penalize only overflow; the
differentiable local density loss is:

Li=» ReLU| > (1—Z(v))-Glvi,g] — dy
9€Go v;eV?
+ > ReLU [ Y Z(vi) - Glui, gl —dy |, (21)
geG v; eV

where L4 is the loss of local density, Go and G; are the sets of grid-
cells on the die 0 and 1, respectively, d is the local density constraint
of all grids.

F. Multi-Level Support

Snake-3D employs a multi-level approach. Lines 11-17 in Algo-
rithm 1 recursively call the coarsening part of our algorithm. Given
an assignment matrix H' mapping fine vertices to coarsened vertices,
fast matrix operations enable recursive coarsening of the GD function
and tensor expansion using H' (Lines 14—16). The coarsened higher
level t'*! initializes the states of the lower level t', consistent
with traditional partitioners such as [19], [20], [21], [22], [23] and
MedPart [25]. Due to the global-view nature of the GD method
across all levels, we do not need to coarsen to extremely small sizes
in our experiments, unlike [19]; a size of 10,000 is sufficient. Our
implementation adopts the Heavy-Edge Matching method from [19],
although other coarsening methods can be seamlessly integrated.

G. Computational Load Analysis

The most memory-demanding element in the algorithm is the
connectivity matrix C, which stores net-vertex connections with a
dense space complexity of |A|x|V|, where |A/] is the number of nets
and |V| is the number of cells. In VLSI, C is sparse, as most cells are
not connected to most nets. Using a sparse matrix representation, the
space complexity reduces to Y\ deg(n) = > ., deg(v), where
deg(v) is the average fan-in/fan-out per cell (typically under 5, per
the technology node library), making the space complexity O(|V]).
This implies the linear scalability of Snake-3D.

IV. EXPERIMENTAL RESULTS
A. Experiment Settings

Experiments were run on a server with an Intel Xeon Gold 6454S
CPU using Cadence Innovus v21.14 with 16 threads. GPU tasks
were executed on an entry-level NVIDIA T4 (16GB GDDR6) via
Google Colab. We used the ADAM optimizer [26] for GD-based
optimization. The following circuits are designed for logic-on-logic
(LoL) partitioning:

o Commercial Processors: ARM Cortex-A7 (200K gates) and

A35 (500K gates), both without L2 cache.
« Academic Research Processor: OpenPiton [27], 1-core, 64KB
L3 cache, 300K gates.

Since the 7nm node lacks memory support, memories are scaled
from a commercial 16nm node based on contacted poly pitch (CPP)
and standard cell height. Bond pad pitch is critical to this experiment.
The current smallest pitch for wafer-to-wafer (W2W) hybrid bonding
is 0.4 um, as reported by IMEC in [28], while other works, such as
[29], suggest that a 0.2 ym pitch will be available within two years.
Thus, for the 28nm design, we assume a bond pad pitch of 1 um,



TABLE V
CASE-BY-CASE STATISTICS OF INTER- VS. SINGLE-DIE CONNECTION
DELAY DIFFERENCES FOR ARM CORTEX A7, A35, AND OPENPITON[27]
(64KB L3, 1 CORE). INCLUDES AVERAGE CELL DELAY FOR REFERENCE.

TABLE VI
COMPARISON OF PARTITIONING APPROACHES AND KEY ATTRIBUTES.
NOTE THAT ONLY BIN-BASED [17], TP-GNN [15], AND OUR SNAKE-3D
ARE READY FOR 3D-IC PARTITIONING OUT OF THE BOX.

Tech. Node / Bond-Pad Pitch 28nm / 1.0pm 7nm / 0.2um Method Key Approach HW.  Init. Metric 3D-IC
Design A7 A35 OP64 | A7 A35 OP64 Demand Sol. Used Ready
#Single-Die Connection (K) 223 587 794 | 277 701 921 Multi-level Low ]
#Inter-Die Connection (K) 199 509 750 | 203 471 921 hMETIS [19] Lightweight, Fast  (CPU) No cutsize No
Smgle—D_le Conn. Delay (ps) 06 04 08 1.1 1.0 21 Bin-Based [17] Bin based FM, Tow N PPA& v
Inter—Dle.Conn. Delay (ps) 29 33 35 54 54 87 n-basel placement-driven  (CPU) 0 Lutsize es
Inter- vs. Single-Die Conn. (ps) | 23 29 27 | 43 44 6.6 TP-GNN [15] GNN based, Mid N PPAR N
Avg. Cell Delay (ps) 23.0 25.1 29.1 | 168 204 239 - unsupervised (GPU) 0 utsize es
GNN based, Mid . .
SpecPart [24] supervised (CPU) Yes cutsize No
and for the 7nm design, 0.2 um. In both cases, the bond pad width is Evolutionary, High .
. .. K X MedPart [25] . N/Y cutsize No
set to half the pitch. For bond pad parasitics, according to extraction Gradient-based  (GPU)
results, the 1um pitch bond pads in the 28nm design have a resistance Snake-3D ng(‘j‘:‘;ﬁ‘éa SF;;L (é;%) No Cl)ulz‘;i Yes

of 0.045Q2 and a mean capacitance of 0.22fF. A bond pad with a
0.2um pitch exhibits a resistance of 0.9€2 and capacitance of 0.21fF.

B. State-of-the-Art Used for PPA Comparison

Table VII and Table VIII present the PPA results of our Snake-
3D optimizer compared to the SOTA Pin-3D default bin-based FM
partitioner and the GNN-based unsupervised TPGNN [15], using
2D as a reference. As noted in Table VI, other partitioners are not
applicable to 3D ICs because they do not consider timing nor local
density, and are therefore excluded from PPA comparisons. For PPA
comparison, we report metrics at both post-3D-placement and post-
3D-routing stages, along with additional metrics indicating design
scale. For partitioners not applicable to PPA, we present pure cutsize
comparisons in Table XI.

C. Snaking Overhead Analysis

As mentioned in Figure 1, snaking incurs a cost of at least two
BEOL layers and one bond pad. In addition to this apparent RC cost,
implicit costs may arise from bond pad legalization or routing detours.
This issue worsens as the ratio of bond pad size to wire size increases
in more advanced nodes. When bond pads are relatively large, nearby
nets may require rerouting to accommodate them, leading to more
severe detours and increased snaking overhead. To quantify this
overhead, we conducted a case-by-case analysis, as shown in Table V.
Our results reveal that the delay difference between inter-die and
single-die connections typically ranges from 2-7 ps, reflecting the
overhead of a single snaking instance. The example in Table I,
implemented on 28nm, further supports this: removing 10 snaking
instances reduces delay by 37 ps (approximately 3.7 ps per snaking),
consistent with our observation in Table V.

D. PPA Results: Post Placement

Snake-3D outperforms Pin-3D [10] across all metrics in 28 nm.
Compared to TPGNN [15], it shows a slight drop in TNS and violated
paths (1% and 3%) but significantly improves all other metrics.
In 7nm, Snake-3D consistently surpasses both baselines with even
greater gains. Since routing is incomplete at the placement stage,
timing metrics (including violated paths) are based on early global
estimates, and bond-pad counts are unavailable. Instead, we report
3D-net count, defined as nets spanning both dies. Snake-3D reduces
snaking by 37% on average and 26% on the worst path compared to
Pin-3D, and by 18% and 36% versus TPGNN. We also observed that
TPGNN performs better than the bin-based baseline in this stage, as
it incorporates timing information into its model, whereas bin-based
methods do not. Overall, Snake-3D delivers consistent improvements
in timing, snaking, and bond-pad usage over both baselines.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Via Density

Fig. 5. Post-route bond-pad comparison for ARM Cortex-A7. (a) Bin-based:
(al) bond-pad locations, (a2) density map. (b) Snake-3D: (bl) bond-pad
locations, (b2) density map. Snake-3D reduces bond-pad usage by 35%.

E. PPA Results: Post Routing

Table VII and Table VIII show post-route results, where bond pads
are finalized. While bond-pad gains slightly decrease compared to the
3D-net count in post-placement, Snake-3D still achieves 31% and
26% fewer bond pads than Pin-3D, and 60% and 34% fewer than
TPGNN, in 28 nm and 7 nm, respectively. Average snaking also drops
by 25% and 33% in 28 nm, and 43% and 44% in 7 nm, compared
to Pin-3D and TPGNN. Figure 5 shows bond pad locations and
the corresponding local density map. As noted in [14], high 3D-VIA
usage complicates legalization. Snake-3D keeps most grid densities
below 50%, while the bin-based method often exceeds 50-60%,
potentially hindering legalization and routing.

Compared to post-placement, Snake-3D’s timing advantage over
Pin-3D [10] further increases, as post-route optimization amplifies



TABLE VII
28 NM PPA METRICS: PIN-3D [10] vs. TPGNN [15] vS. SNAKE-3D (OURS) ON THREE BENCHMARKS AT 28 NM NODE WITH 1.0 um BOND PAD PITCH.
2D RESULTS ALSO PROVIDED AS REFERENCE. UNDERLINED VALUES INDICATE BEST AMONG THREE PARTITIONING METHODS (EXCLUDING 2D).

Design ARM Cortex-A7 ARM Cortex-A35 OpenPiton 64KB L3 A A
Algorithms 2D [10] [I5] Ours| 2D [I0] [I5] Ours| 2D [10] [I5] Ours] [10] | [15]
Tech. Node / Bond Pad Pitch 28nm / 1.0 um -
Target Freq. 3GHz 2GHz 1.5GHz -
#Gate (after synthesis) 209K 538K 317K - -
Footprint (mm?) 047 023 023 023| 1.16 048 048 048 | 1.50 047 047 047 | 0% 0%
Runtime (min) - 50 462 8.0 - 36.8 1515 125 - 158 978 125| -9% | -87%
WNS (ps) -301  -161  -153 -155| -195 ~-114 -111 -105| -250 -309 -283 -281 | -7% | 2%
TNS (ns) -1181 -948  -838 -831|-209.3 -589 -365 -385|-1041 -683 -572 -563 | -22% [ +1%
Post #Vio. Path (K) 15 20 18 19 4 23 19 19 11 18 14 15 | -13% | +3%
Place #3D-Nets (K) - 45 56 28 - 102 161 59 - 52 112 36 | -36% | -60%
Avg #Snk. - 2.8 24 20 - 32 30 20 - 3.8 2.2 2.1 [-37% | -18%
Max #Snk. - 12 11 9| - 11 14 8 | - 19 26 14 |-26% | -36%
Legalization Displacement (um) | - 37 89 33| - 32 57 28 - 28 215 29 | 1% | -67%
WNS (ps) -184  -173  -312 -147 | -121 -116 -237 -107 | -334 -337 -2310 -303 |-11% | -65%
TNS (ns) -966 -1287 -1905 -888 | -152 -226 -1782 -195| -578 -1021 -17874 -850 | -20% | -79%
Post #Vio. Path (K) 14 16 17 13 7 8 26 7 7 10 42 8 | -20% | -60%
Route #Bond-Pad (K) - 50 66 33 - 118 183 81 - 61 160 45 | -31% | -60%
Avg #Snk. - 3.6 33 26 - 43 51 32 - 52 6.6 4.0 |-25% | -33%
Max #Snk. - 13 14 11 - 15 17 13 - 21 36 16 | -18% | -34%
Power (W) 079 079 091 058 )| 1.10 108 121 1.05| 0.87 0.87 1.31 085 | -2% | -21%
TABLE VIII

7NM PPA METRICS: PIN-3D [10] vS. TPGNN [15] vS. SNAKE-3D (OURS) ON THREE BENCHMARKS AT 7 NM NODE WITH 0.2 um

BOND PAD PITCH.

Design ARM Cortex-A7 ARM Cortex-A35 OpenPiton 64KB L3 A A
Algorithms 2D [10] [I5] Ours | 2D [I0] [I5] Ours | 2D [I0] [I5] Ours | [10] | [15]
Tech. Node / Bond Pad Pitch 7nm / 0.2 ym -
Target Freq. 3GHz 2GHz 1.5GHz -
#Gate (after synthesis) 198K 489K 280K - -
Footprint (mm?) 0.069 0.041 0.041 0.041|0.12 0.060 0.060 0.060 | 0.17 0.082 0.082 0.082 | 0% 0%
Runtime (min) - 49 509 99 - 252 137.0 13.6 - 114 899 125 |[#22%  -86%
WNS (ps) -102 -147  -156  -137 | -79  -354 -338 291 | -64 -269 -231 -228 | -13% | -9%
TNS (ns) -138 405 -373  -314 | -30 -1006 -1090 -764 | -28 -1726 -1101 -1049 | -29% | -17%
Post #Vio. Path (K) 6 17 15 14 0.7 31 32 27 1.8 34 24 23 -20% | -9%
Place #3D-Nets (K) - 34 93 16 - 75 74 53 - 61 93 25 | -47% | -62%
Avg #Snk. - 2.5 4.5 1.1 - 33 34 15 - 4.3 2.1 1.6 | -57% | -51%
Max #Snk. - 10 15 5 - 14 11 5 - 22 30 9 -58% | -64%
Legalization Displacement (um) | - 1.0 19 09 | - 06 06 06 | - 0.9 13 08 |-11% |-32%
WNS (ps) -286 -146 -218 -106 |-196 -201 -213 -138 |-477 -360 -337 -318 | -23% | -31%
TNS (ns) -1137  -603 -1071 -402 | -390 -496 -449 -434 | -368 -1269 -1445 -481 | -36% | -44%
Post #Vio. Path (K) 17 15 18 10 5 15 14 13 3 17 15 8 -34% | -34%
Route #Bond-Pad (K) - 102 150 74 - 251 244 228 - 178 190 102 | -26% | -34%
Avg #Snk. - 3.8 5.1 2.1 - 3.9 39 28 - 5.9 4.6 25 | -43% | -44%
Max #Snk. - 14 15 12 - 14 14 13 - 26 28 15 | -21% | -25%
Power (W) 022 021 022 021 |026 025 026 025|028 028 029 028 |-05% | -5%

the effects of reduced bond-pad count and snaking. WNS improves
by 11% and 23%, and TNS by 20% and 36% in 28 nm and 7 nm,
respectively. Snake-3D also extends its lead over TPGNN [15], with
WNS gains of 65% and 31%, and TNS gains of 79% and 44% in
28nm and 7nm. Notably, TPGNN now underperforms Pin-3D in
most benchmarks and metrics, especially in 28 nm. This is primarily
due to legalization, which follows the 3D placement stage. While
TPGNN incorporates timing, it neglects local density constraints,
causing severe cell overlap after 3D placement, as illustrated in
Figure 2. This leads to excessive legalization and degraded timing.
The effect is reflected in the legalization displacement metric in
Table VII and Table VIII, which measures average cell movement
after 3D placement and strongly correlates with final timing. For
example, in the OpenPiton benchmark at 28 nm, TPGNN shows sig-

nificantly higher displacement than the other two methods, resulting
in much worse WNS and TNS. As discussed in subsection IV-D,
timing awareness provides a strong starting point for optimizing
WNS and TNS during 3D PnR. Separately, local density constraints,
shown earlier, are critical for preventing timing degradation during
legalization. Bin-based methods and TPGNN each lack one of these
elements, while Snake-3D is the first to integrate both effectively.

F. Snaking Awareness and Critical Path Analysis

Our key contribution is integrating snaking awareness into parti-
tioning. As shown in Table VII and Table VIII, Snake-3D shows
25% and 33% less snaking than [10] and [15] in 28 nm, and 43%
and 44% less in 7 nm, respectively. Figure 6 shows that in the 28 nm
A7 benchmark, the worst path in the bin-based method is deeply
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Fig. 6. Worst path in the 28 nm Cortex-A7: (a) the bin-based method results
in deep snaking (#snaking=4, slack=—172ps); (b) Snake-3D shifts the worst
path to a route with reduced snaking (#snaking=2, slack=—147 ps).

TABLE IX
SNAKE-3D WITH/WITHOUT SNAKING AWARENESS VS. BIN-BASED FOR
BENCHMARK A35 ON 28NM NODE. WITHOUT SNAKING AWARENESS,
SNAKE-3D MAY WORSEN WNS AND TNS, EMPHASIZING ITS NECESSITY.

Pin3D Snake-3D Snake-3D
(Bin-Based) W/O snaking aware
WNS (ps) =213 -183
TNS (ns) -610 -426
#Vio. Paths (K) 80 67 64
#Bond-Pad (K) 118 78 80
Avg / Max #Snk. | 4.3 /15 3.6/15 32713

snaking. With Snake-3D, it shifts to a memory path, suggesting timing
bottlenecks move to less controllable factors. We also compare Snake-
3D with and without snaking awareness on A35 in Table IX. Snake-
3D reduces bond-pad count by 32% with snaking awareness and
slightly more, 35%, without it. However, bond-pad count alone does
not determine snaking. Without snaking awareness, average snaking
is 3.6 (16% better than bin-based), while the aware version achieves
3.2 (26% better). TNS improves by 25.4% without and 30% with
snaking awareness. WNS slightly worsens without awareness (1%
worse than bin-based) but improves by 14% with it. These results
underscore the importance of snaking-aware partitioning.

G. Impact of individual Loss Component

We compare our cost function (Equation 6) with Proxy 1 and
Proxy 2 from [25], also discussed in subsection III-B and shown in
Table X. We exclude the other two proxies, as they only encourage z
convergence without binarization and cannot function independently.
Due to its superior convergence behavior (Equation III-C), our
function yields 25% and 72% fewer 3D nets compared to Proxy
1 and Proxy 2, respectively. This leads to better snaking reduction
(subsection III-B) and delivers the best PPA.

H. Cutsize Comparison with State-of-the-Art

We evaluate Snake-3D on ISPD98 benchmarks [31], disabling
local density and path-awareness to focus on cutsize with more
aggressive coarsening. Table XI reports cutsize for Snake-3D and
other partitioners. Snake-3D shows only a 6.8% gap from the best-
known results, close to MedPart’s 5.0%. Yet, it already runs efficiently
on entry-level GPUs and offers room for improvement on more
powerful GPU and cutsize-specific tuning. MedPart [25] Figure 4
reports a 100-minute runtime for 500K edges on an A100, while
our A35 case completes in 15 minutes on a T4 GPU, as shown in
Table VII and VIII. The T4 has 5x less memory (16 vs. 80 GB) and
2.4x lower computational power (8.1 vs.19.5 TFLOPS).

TABLE X
COMPARISON OF SINGLE-NET COST FUNCTIONS (PROXY 1, PROXY2 FROM
[25], AND EQUATION 6) ON CUTSIZE (#3D-NETS) AND PPA
POST-PLACEMENT, ROUTING. BEST VALUES PER ROW ARE UNDERLINED.

Proxy 1 Proxy 2 Ours
WNS (ps) -160 -163 -155
Post TNS (ns) -869 -1004 -831
Place #Vio. Path (K) 19 21 19
#3D-Nets (K) 37 99 28
Avg / Max #Snk. | 25/8 58/16 20/9
WNS (ps) -154 -318 -147
TNS (ns) -972 -1658 -888
Post #Vio. Path (K) 13 16 13
Route  #Bond-Pad (K) 67 116 33
Avg / Max #Snk. | 29 /11 6.0/19 26/11

TABLE XI
CUTSIZE COMPARISON ACROSS BENCHMARKS FOR PARTITIONING
METHODS (SPECPART [24], HMETIS [19], MEDPART [25], AND OUR
SNAKE-3D) AT € = 2%. SOTA DENOTES THE BEST RESULT EVER
REPORTED FOR EACH TEST CASE SUMMARIZED IN [30].

Bench. V| [E| | SOTA [24] [19] [25] Ours
IBMO1 12752 14111 200 202 213 202 203
IBM02 19601 19584 307 336 339 352 358
IBMO03 23136 27401 951 959 972 955 980
IBM04 27507 31970 573 593 617 583 587
IBMOS5 29347 28446 | 1706 1720 1744 1748 1746
IBMO0O6 32498 34826 962 963 1037 1000 1023
IBMO07 45926 48117 878 935 975 913 988
IBM08 51309 50513 | 1140 1146 1146 1158 1140
IBM09 53395 60902 620 620 637 625 640
IBMI0 69429 75196 | 1253 1318 1313 1327 1343
IBM11 70558 81454 | 1051 1062 1114 1069 1097
IBM12 71076 77240 | 1919 1920 1982 1955 2187
IBMI13 84199 99666 831 848 871 850 865
IBM14 147605 152772 | 1842 1859 1967 1876 1871
IBMI15 161570 186608 | 2730 2741 2886 2896 2870
IBM16 183484 190048 | 1827 1915 2095 1972 2246
IBM17 185495 189581 | 2270 2354 2520 2336 2346
IBM18 210613 201920 | 1521 1535 1587 1955 1750
AVG gap to SOTA ‘ 0% 230% 6.20% 5.00% 6.75%

V. CONCLUSION

We introduce Snake-3D, the first 3D IC partitioner that addresses
snaking early in the partitioning stage while also considering local
density. Results show that Snake-3D consistently outperforms both
3D IC partitioning baselines, including the bin-based FM method and
the GNN based approach, across all benchmarks, technology nodes,
and metrics. Snake-3D adopts gradient descent for its natural global
view and optimizes bond-pad count, snaking, and local density simul-
taneously across all cells and nets using a carefully designed, novel
differentiable cost function. Unlike other gradient-based methods that
require tuning multiple weighted loss terms, our design ensures both
convergence and binarization using a single cutsize cost function,
maintaining simplicity and efficiency. Already fast on entry-level
GPUs with moderate memory, Snake-3D is widely accessible and
demonstrates strong scalability and generality.
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