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Abstract—Native 3D Integrated Circuit (3D IC) design offers enhanced
performance and density but faces challenges in signal routing due
to limited true 3D EDA tool support. Pseudo-3D flows bridge this
gap but lack cross-tier optimization, critical for both mixed-node and
homogeneous designs. Metal Layer Sharing (MLS) addresses this by
enabling cross-tier routing co-optimization but risks timing degradation
if not applied strategically. Additionally, MLS creates open connections in
hybrid-bonded 3D ICs, making chips untestable. We propose GNN-MLS,
a Graph Neural Network-based framework for precise MLS net selection,
combined with a tailored DFT solution for robust testability. Experiments
show GNN-MLS reduces timing violations by 79% and improves WNS
and TNS by 81% and 94%, and moves designs closer to true 3D ICs.

I. INTRODUCTION

Three-dimensional Integrated Circuits (3D ICs) are a promising
solution to extend Moore’s Law by providing increased device den-
sity and performance through vertical integration. However, current
Electronic Design Automation (EDA) tools, primarily designed for
2D ICs, face significant limitations in supporting true 3D integration.
While dedicated 3D flows have been proposed for placement [1]—
[3], true 3D routing remains underexplored, and these methods often
fall short of achieving manufacturable quality. As a result, pseudo-
3D flows, such as sequential-2D [4], Memory-on-Logic (MoL) [5],
and pin-3D [6], have emerged as practical alternatives, leveraging
2D EDA tools to achieve commercially viable 3D designs. However,
these flows fail to exploit fine-grained cross-tier optimization, leaving
untapped opportunities for performance improvements [7]-[10].

Metal Layer Sharing (MLS) offers a promising pathway to bridge
the gap between pseudo-3D and true 3D capabilities by enabling
cross-tier routing co-optimization through 2D EDA tools. MLS facil-
itates the use of routing layers across tiers, as depicted in Figure 1,
unlocking additional paths and enhancing timing performance. How-
ever, state-of-the-art (SOTA) approaches to MLS rely on heuristic
strategies with limited net-level control, leading to indiscriminate
MLS application that can degrade timing performance. For example,
in our experiments with the MAERI 128PE design [11], SOTA
MLS applied to specific nets worsened slack (e.g., net n146095 had
slack degraded to -48ps), whereas disabling MLS improved slack
to -45ps as shown in Table I. These findings underscore the need
for more targeted MLS strategies. Figure 2 illustrates that while
SOTA improves timing with MLS, our proposed method achieves
far superior results.

Additionally, MLS introduces testability challenges, particularly in
hybrid-bonded 3D ICs. Open connections created during fabrication
render critical signals unobservable or uncontrollable, leading to non-
testable designs. As illustrated in Figure 3, these open connections
significantly affect testability in hybrid-bonded designs. Addressing
these issues is crucial for realizing MLS’s potential in cross-tier
co-optimization and advancing pseudo-3D designs toward true 3D
integration.
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Fig. 2: Timing Violation Points: Registers with violations are high-
lighted. No MLS has the most violations, SOTA reduces violations
by 68%, and GNN-MLS achieves an 80% reduction.

To address these challenges, we propose GNN-MLS, a Graph
Neural Network-assisted framework for fine-grained, net-level MLS
decision-making focused on optimizing timing in 3D ICs. The core
challenge lies in evaluating the timing impact of MLS on each net,
which traditionally requires exhaustive Static Timing Analysis (STA)
across all configurations—a computationally prohibitive process.
GNN-MLS eliminates this need by leveraging a novel approach that
converts the hyper-edge nature of nets into a node-centric problem,
enabling efficient graph-based modeling of timing paths.

Using a transformer-based encoder, GNN-MLS captures the in-
tricate interdependencies among nets along critical timing paths,
ensuring precise MLS decisions that prioritize timing improvements.
Additionally, we introduce a tailored Design-for-Test (DFT) solution
to address testability challenges in hybrid-bonded 3D ICs, ensuring
signal observability and controllability across tiers with minimal over-
head. By strategically focusing on timing and testability, GNN-MLS
advances pseudo-3D flows toward the performance and reliability
of true 3D ICs, offering a scalable and practical solution for next-
generation integration.

In this work, we propose a comprehensive framework for cross-
tier routing co-optimization in 3D ICs, combining GNN-MLS for
MLS decision-making, DFT for testability, and PDN design for
heterogeneous stacking. Our main contributions are as follows:
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Fig. 3: Testability Issue in Hybrid-Bonded Design with MLS: Each
MLS induces an open connection during individual die fabrication,
which makes the chip untestable. The timing path consists of start-
point (SP), combinational logic (C1-2), and endpoint (EP).
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1) We propose GNN-MLS, integrating hyper-graph conversion, a
Transformer for net interdependencies, contrastive pretraining,
and supervised fine-tuning for MLS decision-making.

2) We design two DFT strategies for MLS in hybrid-bonded 3D
ICs, ensuring high test coverage with minimal overhead.

3) We develop a multi-power domain framework and a PDN
for mixed-node 3D ICs to support heterogeneous integration
experiments.

4) Our framework achieves up to 75% improvement in WNS,
94% in TNS, and a 75% reduction in timing path violations
compared to sequential 2D designs.

II. MOTIVATION
A. Why MLS and What are its Limitations?

Metal Layer Sharing (MLS) is a critical innovation for routing ef-
ficiency in 3D ICs, addressing key challenges such as congestion and
timing optimization. By enabling nets to utilize BEOL layers across
tiers, MLS provides additional routing resources and unlocks new
pathways for critical connections, which are otherwise constrained in
2D ICs. For example, in the MAERI architecture with 16PE, MLS
improves critical path slack from -76 ps without MLS to -18 ps with
selective MLS, demonstrating its potential to enhance timing and
overall performance.

However, current EDA tools do not model or systematically imple-
ment MLS. The only systematic approach to applying MLS is through
iterative STA, which evaluates the timing impact of MLS on a net-
by-net basis. This process involves repeated disconnection, rerouting,
and slack recalculation, making it computationally infeasible for large
designs. Furthermore, MLS introduces severe testability challenges
in hybrid-bonded 3D ICs, as inter-tier connections disrupt signal
propagation and render dies non-testable. These limitations restrict
the practical adoption of MLS despite its clear performance benefits.

To address these issues, we propose a comprehensive framework
that combines machine learning-based MLS decision-making to elim-
inate exhaustive STA evaluations with tailored DFT solutions to
ensure robust testability. This approach significantly improves the
efficiency and practicality of MLS in modern 3D ICs.

B. Graph Neural Networks for Metal Layer Sharing

Metal Layer Sharing (MLS) decisions are essential for optimiz-
ing timing in 3D ICs, but systematically applying MLS presents
significant challenges. Slack, a key timing metric, depends on the
cumulative delays of all nets in a timing path, where changes to one

TABLE I: Metal layer sharing (MLS) impact on slack with single
net of MAERI 128PE using the heterogeneous 3D integration (16nm
logic, 28nm memory).

Net name before MLS after MLS

slack (ps) [used metals || slack (ps) used metals
n480132 -62 M1-6(bot) -45 M1-6(bot)+M5-6(top)
n146095 -45 M1-4(bot) -48 M1-6(bot)+M6(top)

net propagate through others, creating intricate interdependencies.
The only systematic approach for evaluating MLS decisions is
through Static Timing Analysis (STA), which requires exhaustively
exploring the entire MLS configuration space. This process involves
iterative disconnection, rerouting, and recalculating slack for each net,
making it computationally prohibitive for large designs and delaying
cross-tier routing optimization.

To address the challenges of modeling timing paths, we leverage
Graph Neural Networks (GNNs) to represent timing paths as directed
acyclic graphs (DAGs), where nodes correspond to devices and edges
to nets. GNNs provide a natural framework for propagating informa-
tion across the graph, capturing local dependencies and structural
relationships within the path. However, timing paths exhibit complex
interdependencies that extend beyond immediate neighbors, requiring
the ability to model both local interactions and long-range dependen-
cies effectively. To tackle this, we integrate the Transformer [12]
architecture into the GNN framework. Transformers, with their self-
attention mechanism, dynamically weigh interactions across nodes,
enabling them to model long-range relationships along the path. This
ability to capture both sequential and global interactions complements
the GNN’s structural modeling, making the combined framework
particularly powerful for understanding the cascading impact of MLS
decisions and optimizing timing paths.

A significant challenge in implementing MLS is the scarcity of
labeled data, as generating MLS labels through STA is computation-
ally expensive and impractical at scale. To overcome this, we em-
ploy self-supervised learning with Deep Graph InfoMax (DGI) [13]
to pretrain the Transformer. DGI maximizes mutual information
between global path representations and local node embeddings,
enabling the extraction of meaningful features from unlabeled timing
path data. These pre-trained embeddings are then fine-tuned using
a limited labeled dataset, which includes 500 timing paths each
from the heterogeneous A7 single-core and MAERI 128PE designs,
as well as 500 timing paths from the corresponding homogeneous
configurations. This approach significantly reduces reliance on STA
while ensuring efficient and accurate MLS predictions.

By combining the sequential modeling capabilities of Transform-
ers, the graph-structured representation of GNNs, and the data
efficiency of DGI, our framework addresses the challenges of interde-
pendencies, computational overhead, and data scarcity. This enables
early, efficient, and accurate MLS decision-making, advancing cross-
tier routing optimization in 3D IC designs.

III. GNN-MLS ALGORITHMS

Cross-tier co-optimization in 3D ICs with Metal Layer Sharing
(MLS) poses significant computational challenges. Evaluating the
timing impact of MLS relies on post-routing Static Timing Analysis
(STA), which requires iterating through multiple MLS configurations.
This process is infeasible for large designs due to its high compu-
tational cost. To address this, we propose GNN-MLS, a machine
learning-based framework that predicts MLS decisions early in the
design flow. By moving MLS decisions to the routing stage, GNN-
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MLS reduces dependency on STA and enables efficient cross-tier
routing optimization.

A. Design Flow

Our design flow integrates GNN-MLS to tackle timing optimiza-
tion for monolithic and hybrid-bonded 3D ICs, while also ensuring
testability in hybrid-bonded designs. Without MLS-specific tools,
current methods rely entirely on post-routing STA to determine MLS
decisions, restricting EDA tools from leveraging MLS during earlier
stages. This late-stage dependency results in limited optimization
opportunities and increased computational overhead. By enabling
MLS predictions during routing, GNN-MLS integrates seamlessly
into the design flow, facilitating timing optimization and ensuring
testability at an earlier stage.

Figure 4 illustrates the key stages of the flow:

1) MLS Decision-Making with GNN-MLS: The GNN-MLS mod-
ule generates binary MLS decisions for individual nets, indicat-
ing whether MLS should be applied. These decisions identify
whether MLS should be applied based on a learned node
representations. By providing these decisions early, GNN-MLS
enables efficient routing optimization, allowing EDA tools to
consider MLS during cross-tier routing.

2) Targeted Routing and DFT Integration: Using the MLS de-
cisions from GNN-MLS, targeted routing enforces selective
metal layer sharing, ensuring that only specific nets share metal
layers across tiers to maximize timing performance. Following
routing, custom Design-for-Test (DFT) logic is integrated to
ensure testability. This addresses challenges unique to MLS-
enabled designs, ensuring that cross-tier connections remain
verifiable.

This design flow reduces the computational cost of iterative STA

while achieving practical cross-tier co-optimization and addressing
testability challenges.

B. Timing Path Modeling

Evaluating the timing impact of MLS on each net before routing
is essential to optimize timing performance and eliminate iterative
steps in the design flow. This fine-grained decision problem can be
formulated as:

Problem 1 (Net-Level MLS Decision): Given a netlist N and a
timing path set PP, each net in a timing path should decide whether
it uses MLS to maximize the slack of its timing path.

TABLE II: Hand-crafted Features used in our GNN-MLS.

[ Features [ Description [ Unit |
cell location (x,y) location of the cells um
cell delay delay of the cells ps
pin capacitance pin capacitance of the output pin pF
wirelength early-global routing wirelength of the net | pum
wire capacitance estimated wire capacitance of the net pF
wire resistance estimated wire resistance of the net Q

The optimal slack for each path p; is given by:
SlaCkOPl(p’i) = SlaCkZD(pi) + f(é(nl)’ 5(77’2)7 RN 6(n|1’b\))7 (1)

where slackap(p;) represents the slack of p; in the sequential-
2D design (no-MLS). d(n;) is a binary variable to identify if the
net n; € N uses MLS. f(-) represents the slack variation caused
by the MLS decision compared with the sequential-2D design. The
optimization objective then becomes:

amf??{’% 5 p; slackop: (ps) 2)

However, solving this optimization directly is infeasible due to the
exponential number of MLS configurations and the need for STA
evaluations to compute f(-). Instead, GNN-MLS approximates this
solution by learning to predict the optimal MLS decisions d(n;)
based on timing path dependencies. By framing the problem in this
manner, GNN-MLS allows efficient decision-making while indirectly
optimizing the total slack objective.

We propose a timing path modeling methodology tailored to
the unique characteristics of timing paths, as shown in Figure 5.
Circuits are first modeled as directed acyclic graphs (DAGs) based
on signal transmission. However, multi-pin nets, which connect three
or more pins and interconnect multiple devices, introduce significant
challenges for MLS decision-making due to their complexity.

To simplify this, each multi-pin net is treated as a hyperedge
with a single source node, corresponding to the output pin in the
netlist. This transformation allows net-related MLS decisions to be
reformulated as node-specific decisions, effectively combining edge
features with node features. Graph Transformer architectures then
process these features, transforming the initial node attributes into
informative embeddings for accurate MLS predictions. The fused
features are shown in Table II.

C. Graph Transformer-Based MLS Decisions

The Transformer architecture plays a central role in GNN-MLS, as
it effectively captures the interdependencies among MLS decisions
across nets within a timing path. The slack improvement for a
timing path depends on how MLS is applied to all nets along the
path. This interdependence, combined with the sequential nature of
timing paths, necessitates a model that can capture both local and
global relationships. The entire graph Transformer-based framework
is shown in Figure 5.

Traditional GNNs, which aggregate information from immediate
neighbors, are insufficient for this task because they rely on fixed
neighborhood structures. The Transformer’s self-attention mecha-
nism dynamically weighs interactions between all nodes in a path,
regardless of distance, making it ideal for capturing long-range
dependencies. Additionally, the sequential nature of timing paths
is preserved through positional encodings, which ensure that the
order of nodes is explicitly encoded in the model. To balance
expressiveness and efficiency, the proposed Transformer architecture
has three layers. Each layer consists of a three-head self-attention
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mechanism. This architecture is tailored to the complexity of MLS
decision-making, addressing the combinatorial dependencies among
nets while maintaining computational efficiency.

Obtaining labeled data for MLS decisions, such as STA-based
ground truth, is computationally expensive. To address this, we use
Deep Graph Infomax (DGI) for self-supervised pretraining, allowing
the model to learn effective node embeddings from unlabeled timing
path graphs. DGI maximizes the mutual information between global
path representations g(Y') and local node embeddings v, ensuring
that embeddings capture both structural and timing-critical depen-
dencies. Negative sampling, achieved by perturbing node features,
enhances robustness by forcing the model to distinguish true node-
path relationships from noise. We adopt sigmoid function o to map
inner product to probability and aid training stability. The DGI loss
for a graph Y is defined as:

1Y) =) log(o((v,9(Y))))

veY

+ Z log(a((v*, g(Y))))

v eC(Y)

3

Following DGI pretraining, the Transformer-generated embeddings
are fine-tuned using a two-layer Multi-Layer Perceptron with col-
lected labeled data. The MLP maps each node embedding to a binary
decision d(n; ), indicating whether MLS should be applied. The entire
training scheme is shown in Algorithm 1.

D. DFT Strategy for MLS-Enabled Designs

While Metal Layer Sharing (MLS) significantly improves 3D rout-
ing by enabling cross-die connections, it introduces critical testability
challenges. Each MLS connection creates an open circuit, disrupting
signal propagation and preventing observability and controllability
across dies, as shown in Figure 3. This renders upstream signals non-
observable and downstream signals non-controllable, making MLS-
enabled designs non-testable in hybrid-bonded 3D ICs. Conventional
Design-for-Test (DFT) strategies fail to address these challenges,
necessitating tailored solutions for MLS testability.

We propose two targeted DFT strategies designed for MLS con-
nections, inserted post-routing to align with their precise locations.
The first method, illustrated in Figure 6(a), adds a MUX at the
MLS connection, toggling between functional and test modes. In

Algorithm 1: Training Process for MLS Decision-Making

Input: Set of timing path graphs {Y;}*,; node features X;
binary MLS labels for fine-tuning.
Output: Trained Transformer and MLP.
1 DGI Pretraining:
2 for each timing path graph Y; do
Compute node embeddings v using graph Transformer.
Generate global summary vector g(Y;).
Create perturbed graph C(Y;) for negative samples v*.
Compute DGI loss to maximize mutual information.
7 MLP Fine-Tuning:
8 for each labeled timing path graph Y; do
9 Pass DGl-pretrained node embeddings by a 2-layer MLP.
10 Train MLP on labels to predict MLS decisions §(n;).
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are incorrect, (b) Wire-based DFT where the mechanism can detect
if outgoing or incoming F2F pads are fault.

test mode, the scan chain redirects signal flow across the MLS
path, enabling observability and controllability. The second method,
depicted in Figure 6(b), introduces a scan flip-flop (FF) at the MLS
connection, improving test coverage by registering the upstream



DFT method Total fault | Detected fault | WNS
Net-based DFT 444,296 438,152 -21ps
Wire-based DFT 444,346 438,276 -23ps

TABLE III: Two DFT approaches comparison for MLS nets: (a) net-
based MLS DFT, (b) wire-based MLS DFT.
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Fig. 7: Power Design for Hetero-Integration.

signal and driving the downstream signal during testing.

We evaluated these methods on the MAERI 16PE 4BW design
with 16 MLS nets. As shown in Table III, while the MUX-based
method minimizes additional logic, the FF-based method achieves
superior fault coverage, detecting 94 more faults at the cost of 50
additional faults due to added logic. Post-routing ECO adjustments
ensure that the timing impact of these solutions remains minimal.
These results validate both approaches, with the FF-based method
offering enhanced testability for MLS-enabled designs.

E. Power Delivery for Mixed-Node 3D ICs

In mixed-node 3D IC heterogeneous integration setup, we intro-
duce a unique 3D power domain configuration, shown in Figure 7.
The top-level operates at 0.9V, with the 28nm memory sub-domain
also at 0.9V and the 16nm logic sub-domain at 0.81V. Level shifters
are inserted for each 3D signal connection to manage voltage dif-
ferences across tiers, facilitating reliable communication between the
16nm and 28nm technologies.

The PDN is implemented with specific width and pitch to ensure
that the IR-drop of all design are within 10% of lowest VDD (0.81V)
as defined in Table IV. The remaining routing resource are utilized
for the 2D or MLS nets.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate the GNN-MLS framework on homogeneous and het-
erogeneous 3D integrations with Face-to-Face (F2F) bonding using
three benchmarks: 128PE 32BW MAERI-ARCH, dual-core Cortex
A7, and 256PE 64BW MAERI-ARCH. Heterogeneous designs use
TSMC 28nm for the logic die and 16nm for the memory die, while
homogeneous designs use 28nm for both dies. 3D Place-and-Route
(PnR) is performed with Cadence DDI 23.12.000 (Innovus) and the
Macro-3D flow [5]. F2F via parameters are configured as size 0.5um,
pitch 1.0um, resistance 0.5€2, and capacitance 0.2fF.

We compare GNN-MLS with the state-of-the-art (SOTA) MLS
technique [9] and a sequential 2D (no MLS) stacking method,
analyzing timing, routing efficiency, and testability. Runtime, based
on timing path depth, includes transformer-based training and infer-
ence. Results highlight GNN-MLS’s advantages in both integration
contexts.
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Fig. 8: Timing Metric Comparison on different design benchmark.

B. Results for Heterogeneous 3D ICs

In heterogeneous 3D ICs integrating 16nm logic with 28nm mem-
ory, GNN-MLS achieves substantial timing improvements (Figure 8,
Table 1V). For the MAERI 128PE design, which has a balanced
logic-memory ratio, GNN-MLS reduces TNS to -11 ns from -32
ns (SOTA) and -327 ns (No MLS), and decreases violating paths to
2.8K from 4.6K (SOTA) and 14K (No MLS). WNS improves to -23
ps, outperforming both SOTA (-29 ps) and No MLS (-85 ps).

Similarly, in the A7 Dual-Core configuration, GNN-MLS reduces
TNS to -75 ns versus -94 ns (SOTA) and -84 ns (No MLS). Violating
paths decline to 4.2K from 4.4K (SOTA) and 4.5K (No MLS), with
WNS improving to -106 ps compared to -118 ps (SOTA) and -140
ps (No MLS).

Notably, GNN-MLS applies MLS more selectively in heteroge-
neous designs. For MAERI 128PE, MLS usage drops to 2.4K nets
from 9.5K (SOTA); for A7 Dual-Core, usage decreases to 2.6K
nets from 3.5K (SOTA). This selective approach demonstrates GNN-
MLS’s adaptability, applying MLS strategically to maximize timing
benefits and minimize overhead.

These results highlight GNN-MLS’s ability to optimize timing in
heterogeneous designs through targeted and efficient MLS applica-
tion, meeting the specific demands of hybrid-bonded 3D ICs.

C. Results for Homogeneous 3D ICs

In homogeneous 3D ICs stacking 28nm memory on 28nm logic,
GNN-MLS significantly improves timing (Figure 8, Table V). For
MAERI 256PE, selected for balanced logic-memory ratio, GNN-MLS
reduces TNS to -240 ns from -715 ns (SOTA) and -513 ns (No MLS).
Violating paths drop to 9,173 from 24,195 (SOTA) and 16,037 (No
MLS), and WNS improves to -0.077 ns, surpassing SOTA (-0.085
ns) and No MLS (-0.083 ns).

In the A7 Dual-Core design, GNN-MLS lowers TNS to -48 ns
compared to -242 ns (SOTA) and -89 ns (No MLS). Violating paths
decrease to 3,569 from 16,770 (SOTA) and 11,391 (No MLS), with
WNS significantly improving to -0.048 ns versus -0.258 ns (SOTA)
and -0.114 ns (No MLS).

GNN-MLS also expands MLS usage strategically in homogeneous
designs. For MAERI 256PE, MLS coverage increases to 1,600 nets
from 870 (SOTA); in A7 Dual-Core, it rises sharply to 73K nets from
8.4K (SOTA). This adaptive approach highlights GNN-MLS’s ability
to balance extensive MLS coverage with optimal timing.



TABLE IV: PPA metrics comparison between GNN-MLS, State-of-
the-Art [9], and SOTA without MLS in Heterogeneous Integration.
The frequency is in MHz, power is in mW, run time is in minutes.
M-T represents the top-most layer of the memory die where W, P,
and U denote the width, pitch, and utilization of the PDN on this
metal layer. The highlighted entry denotes the best value among all
design options.

16nm Logic + 28nm Memory
MAERI 128PE A7 Dual-Core

No MLS [ SOTA | Ours | No MLS [ SOTA [ Ours
BEOL 6+6 8+8
Target Freq. 2,500 2,000
FP (mm?) 0.38 1.11
WL (m) 5.23 5.18 5.16 7.60 8.30 8.10
WNS (ps) -85 -29 -23 -140 -118 -106
TNS (ns) -327 -32 -11 -84 -94 =75
#Vio. Paths 14,000 4,600 | 2,800 4,500 4,400 | 4,200
#MLS Nets 0 9,500 | 2,370 0 3,542 | 2,621
Run-Time - - 20 - - 15
Pwr 1,472 1,404 | 1,389 1,008 1,061 | 1,052
IR-drop (%) 10.00 9.50 9.40 1.90 2.00 1.98
M-T:W/P/U 2.00pum / 7pum / 14% 2.70pm / 9um / 30%
L.S Pwr 40 45 46 31 32 33
Eff. Freq. 2,061 2,330 | 2,363 1,562 1,618 | 1,650

TABLE V: PPA metrics comparison between GNN-MLS, State-of-
the-Art [9], and SOTA without MLS in Homogeneous Integration.
The frequency is in MHz, power is in mW, run time is in minutes. The
highlighted entry denotes the best value among all design options.

28nm Logic + 28nm Memory
MAERI 256PE A7 Dual-Core

No MLS [ SOTA | Ours | No MLS [ SOTA [ Ours
Target Freq. 2500 2000
FP(mm?) 1.42 1.11
WL.(m) 14.5 14.6 15.5 14.5 12.1 11.2
WNS (ps) -83 -85 =77 -114 -258 -48
TNS (ns) -513 =715 -240 -89 -242 -48
#Vio. Paths 16K 24K 9K 11K 16K 3.5K
#MLS Nets 0 870 1.6K 0 8.4K 73K
Run-Time - - 35 - - 15
Pwr.(mW) 4680 4747 | 4804 1425 1412 1442
Eff. Freq. 2,070 2,061 | 2,096 1,628 1,319 | 1,824

These results confirm GNN-MLS’s effectiveness in enhancing
timing through targeted MLS application in homogeneous designs.

D. Design-for-Test Results

Hybrid-bonded 3D ICs face testability issues from open MLS
connections, affecting signal observability. We introduce a Design-
for-Test (DFT) solution using scan flip-flops at critical MLS points
with power gating for minimal overhead. DFT is applied to No MLS
and GNN-MLS designs (excluding SOTA due to impractical probe
pad needs).

As shown in Table VI, the combined GNN-MLS and DFT frame-
work delivers robust testability and timing improvements. MAERI
128PE achieves 98.38% coverage, 75% fewer violating paths and
WNS, 94% lower TNS, and a 15% frequency increase. A7 Dual-
Core maintains 97.49% coverage, reduces violating paths by 17%,
TNS by 10%, WNS by 5%, and frequency increases by 4.3%.

These results confirm the framework effectively addresses MLS
testability and enhances timing in hybrid-bonded 3D ICs.

E. Power Delivery Network Design Results

We integrate the PDN into the heterogeneous 3D design, summa-
rized in Table 1V, carefully selecting PDN width and spacing to main-

TABLE VI: Comparison of MLS in Testable Designs between GNN-
MLS and State-of-the-Art (28nm / 16nm Technology Node). The
frequency is in MHz, power is in mW, run time is in minutes. The
highlighted entry denotes the best value among all design options.

MAERI 128PE A7 Dual-Core

No MLS GNN-MLS No MLS GNN-MLS
Target Freq. 2500 2500 2000 2000
FP. (mm?) 0.38 0.38 1.11 1.11
WL. (m) 5.95 5.93 (0.3%) 9.40 9.30 (1.1%)
Test Cover.(%) 98.25 98.38 (0.1%) 97.32 97.49 (0.2%)
WNS (ps) -86 =21 (75%) -159 -132 (17%)
TNS (ns) -358 -20 (94%) -112 -76 (32%)
#Vio. Paths 15,321 3,766 (75%) 6,055 5,267 (13%)
#MLS Nets 0 2,425 0 2,536
Run-Time - 20 - 15
Pwr 1,539 1,523 (1.0%) 1,157 1,152 (0.4%)
Eff. Freq. 2,062 2,375 (15.2%) 1,517 1,582 (4.3%)

(b) . (

Fig. 9: (a)Hetero-MAERI 128PE IR-drop of 92mV. (b)PDN routing
Layout. (c)Signal routing Layout.

tain IR-drop within 10% of Vpp. Specifically, MAERI 128PE reaches
a 10% IR-drop due to its higher power consumption, whereas the A7
Dual-Core achieves a lower IR-drop of 2%, as shown in Figure 9(a).
Figures 9(b)—(c) illustrate the sharing of top metal layer resources
between PDN and Metal Layer Sharing (MLS) nets, demonstrating
effective balancing of power delivery and signal routing. Level shifter
(LS) power overhead remains comparable across designs, slightly
increasing in SOTA and GNN-MLS due to additional MLS nets,
resulting in a total power overhead of about 2-3%.

V. CONCLUSION

This work presents GNN-MLS, a data-driven framework that en-
ables efficient and effective cross-tier co-optimization through Metal
Layer Sharing (MLS), significantly improving timing performance
in 3D IC designs. Complementing this, our tailored Design-for-Test
(DFT) solution ensures the testability of MLS connections, addressing
a critical challenge in hybrid-bonded 3D ICs. Additionally, our
power design supports heterogeneous integration with mixed-node
configurations, facilitating robust experimentation in diverse 3D IC
setups. Together, these contributions advance pseudo-3D flows toward
true 3D IC performance by bridging the gap between 2D-based
EDA tools and the demands of native 3D designs. This framework
lays the groundwork for manufacturable 3D methodologies, marking
a significant step toward fully optimized, high-density 3D ICs for
commercial adoption.
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