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Abstract—Physical design tools have complex workflows with many
different ways of optimizing power, performance, and area (PPA) out
of a large number of options and hyperparameters in different engines
and functionalities. Black-box optimization techniques are widely adopted
to automate quality-of-result (QoR) exploration. Such exploration often
proves impractical in real-world customer environments due to high
computational demands, lengthy exploration cycles, and the need for
large parallel jobs. To reduce the exploration space for viable compute
resource requirements, we propose a novel design methodology to
enable transferable learning by incorporating design insights crafted
on top of physical design experts’ experience and streamlining QoR
exploration as a sequence generation task for best recipe selection.
We apply language model-inspired alignment techniques to learn the
ranking of different recipe sets, enabling our model to generalize beyond
known-good manually tuned expert design recipes. Extensive evaluations
demonstrate our method’s superior QoRs and runtime performance on
unseen industrial designs and rigorous benchmarks.

I. INTRODUCTION

Advancements in technology nodes boost the capabilities available
to circuit designers but, on the other hand, introduce significant
challenges at every stage of the physical design flow, driven by an
explosion in design complexity. Commercial physical design tools ad-
dress these challenges through extensive tunability. At each phase of
the design process, these tools are meticulously calibrated to resolve
specific design- or technology-related issues by balancing critical
factors—such as congestion, cell density, and routing constraints—to
optimize the quality of result (QoR) at flow signoff. However, as
product requirements diversify, these tools are increasingly required
to support a wider range of QoR intentions. This growing spectrum of
tunable parameters can quickly overwhelm designers, making rapid
and optimized design turnarounds ever more challenging.

Although recent works on design flow recipe recommendation have
demonstrated progress in using modern optimization techniques to
manage the rapidly-growing tool parameters, the search for system-
atic approaches to align automatic recipe recommenders and design
experts’ experiences remains open. To address this challenge, we
developed a novel automatic flow recipe recommendation framework
that comprehends physical design expert knowledge by encoding
critical design flow health metrics—what we refer to as “design
insights”—that go beyond traditional QoR measurements. These
insights are the nuanced analyses that experienced designers perform
while evaluating and debugging designs, encompassing both high-
level flow analysis and detailed engine-level behavior to provide a
holistic view of the design’s flow trajectory. These expert analyses
are systematically transformed into quantitative numerical labels,
automatically generated during each place and route (P&R) run,
which guide our framework into design-specific recommendations.

Building on insights that capture critical design behaviors, we
frame the flow recipe recommendation problem as a sequence
generation task. This approach enables us to leverage state-of-the-
art large language model (LLM) alignment techniques—traditionally
employed to align model outputs with human preferences—to align

our model’s recipe recommendations with QoR intentions in physical
design flows: by incorporating design-specific insights and applying
pairwise contrastive training on offline datasets, our model learns to
rank recipe sets by their effectiveness, rather than simply memorizing
high-performing configurations. This approach provides the model
with a nuanced understanding of recipe effectiveness, empowering
it to suggest unexplored recipes that align with QoR requirements
tailored to each unique design. Additionally, this approach addresses
the challenge of exact QoR prediction, which is particularly infeasible
for industrial-scale designs due to the variability in design scales
and QoR metrics. By focusing on relative effectiveness rather than
absolute values, our model achieves robust, cross-design generaliza-
tion in recipe recommendations. For the first time, LLM alignment
techniques are applied to physical design flow recipe recommenda-
tion, and extensive experiments demonstrate optimal zero-shot recipe
recommendation results, even for previously unseen designs. Our
main contributions are as follows:

• We formalize the process of encoding expert knowledge-based
health analyses of designs as quantitative labels, creating a compre-
hensive representation of design flow health metrics that extends
beyond traditional QoR measurements. These labels serve as a
foundation for informed recipe recommendations across diverse
design traits and technology nodes.

• We propose a novel application of LLM alignment techniques
to flow recipe recommendation, achieving alignment between
recipe recommendations and QoR intentions of the physical design
flow. Our approach leverages ranking-based learning to prioritize
recipe sets based on relative effectiveness, thereby addressing the
limitations of conventional supervised learning approaches that
depend on memorizing previously observed recipes. Additionally,
this method circumvents the challenge of exact QoR prediction,
facilitating adaptable cross-design interoperability.

• This work embodies a tight integration of a flow recommender
at an industrial scale, real-world designs and advanced technology
nodes on top of an industrial physical design tool [1]. Extensive ex-
perimental evaluations demonstrate the model’s superior zero-shot
performance across unseen designs, highlighting its generalizability
and effectiveness in practical deployment environments.

II. BACKGROUND

Automating the tuning of Electronic Design Automation (EDA)
flows has become essential for achieving optimal power, performance,
and area (PPA) outcomes as design complexity increases. Due to the
vast parameter space of physical design flows in advanced technology
nodes, conventional design approach to sweep a limited set of key
flow parameters is runtime infeasible and often leaves beneficial
parameter combinations unexplored. Recent EDA research has thus
focused on leveraging machine learning inspired optimization tech-
niques, each with unique strengths and limitations, to automate this
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process. This section summarizes several prominent approaches for
automatic flow tuning.
• Bayesian Optimization (BO): BO [2]–[5] uses a Gaussian process

surrogate model to predict PPA based on parameter settings,
selecting configurations iteratively through an acquisition function.
This method excels in high-cost evaluation settings but can be
limited by the accuracy of its surrogate model, particularly in
highly dynamic or noisy parameter spaces.

• Ant Colony Optimization (ACO): ACO [6] models parameter
tuning as a graph search, with parameters represented as nodes and
pheromone trails guiding configuration selection. While effective
in escaping local optima, ACO may require extensive tuning of
pheromone parameters and often converges slowly, making it less
suitable for large-scale, high-dimensional searches.

• Recommendation-Based Optimization: Inspired by matrix factor-
ization, this approach [7] assigns latent features to netlists and
configurations, predicting QoR through feature similarity. While
useful for suggesting high-quality configurations, this method can
struggle in high-dimensional spaces and lacks domain-specific
insights, potentially leading to suboptimal recommendations.

• Reinforcement Learning (RL)-Based Optimization: Reinforcement
learning frameworks, such as that proposed by [8]–[10], iteratively
refine expert-provided configurations to improve cumulative PPA
rewards. Although effective for fine-tuning, this approach relies
heavily on the initial configuration and is limited by episode length,
making it less effective for discovering new configurations.
Existing use models of recipe recommender include (1) offline

model trained on in-house design project archive, which may not
generalize in new designs or technology nodes, and (2) online model
that starts with an unexplored design and iteratively collects and trains
itself as training data are accumulated through multiple iterations of
a design flow, which could consume huge compute resources. Several
previous works identified the respective challenges of generality
and resource hungriness and suggested building transferable recipe
recommender from offline design project archive to enable the kick-
start of online learning [3], [4], [6], [9], [11]. As pointed out
by [8] and [12], the observability of physical design flow health is
crucial to allow recipe recommender to discover design similarity
and achieve transferability. However, previous works’ flow health
metrics are limited to intuitive statistics of design characteristics and
categorized QoR metrics. [8] suggests metrics dedicated to only cell
placement. [12] and [13] suggest using static snapshots of QoR or
resource metrics at each flow stage, which do not capture the natural
metric fluctuations at different flow stages. [9] proposes building
a graph neural network (GNN) to embed design characteristics
for a transferable recommender. However, it does not address the
complexity of tool behaviors under different QoR objectives.

III. METHODOLOGIES

The goal of our flow recipe recommendation framework, as de-
picted in Figure 1, is to select the optimal subset of recipes to meet
multiple user-defined design objectives. Given a set of preconfigured
recipes, the task is to identify the best subset of recipes that will yield
superior QoR according to user intentions.

A. Problem Formulation

InsightAlign contains the following key components:
a) Design insights: Contextual insights from the prior run

learning contain fine-grained real-time analysis of the complex work-
flow of design implementation flow. Typically, physical design tool
users observe the final metrics in terms of timing (worst negative
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Fig. 1. Overview of InsightAlign: (a) offline alignment, (b) online fine-tuning.

slack (WNS) and total negative slack (TNS)), area, power, routing
design rule check (DRC) violations, etc. Conventional black-box
optimization around the tool explores solution space based on the
final metrics in an iterative loop. In our recommendation framework
formulation, one of the key components is the ability to consume
deep insights into the design, as well as the flow that is learned
from the first run of the design. Typical examples of such insights
are shown in Table I. The tool natively discovers timing, area, and
power challenges in the form of insights. Our objective is to drive
the recommendation framework with deep insights as an input, so
that it overcomes the limitation of black-box optimization. Each time
the P&R flow iteration is executed, the deep insights are collected
and fed to the recommendation framework to suggest more relevant
recipes that will provide faster convergence to the best PPA.

TABLE I
EXAMPLES OF INSIGHTS

Category Insight Description Range
Placement Congestion level during placement step X {low, medium, high}

Timing Is easy to meet timing constraints {yes, no}
Power Good opportunity for power saving during

step Y
{yes, no}

Power Sequential-cell power is dominant {yes, no}
Power Leakage power is dominant {yes, no}
Clock Critical paths with harmful clock skew {yes, no}

Timing Instance count from hold-time fixes N
Timing Weak cell percentage on critical paths R ∈ [0.0, 100.0]

TABLE II
EXAMPLES OF RECIPES

Category Recipe Description
Design intention
tradeoffs

Adjust tradeoffs among timing, power, and area metrics

Timing Balance weights of early hold- and setup-time fixing, and
placement perturbations

Clock tree Adjust clock-tree synthesis (CTS) hyperparameters for
tradeoffs among timing, skew and latency

Routing Adjust knobs of routing congestion
Routing Adjust global routing hyperparameters

b) Recipe: Commercial physical design tools usually offer
thousands of flow parameters and options, creating an expansive
search space that is infeasible to explore exhaustively. To manage
this, we prune the space by defining a suite of preconfigured options,
referred to as “recipes.” Consisting of a set of flow parameters and
options, each recipe serves a specific QoR intention. Example recipes
are outlined in Table II. While each individual recipe has dedicated
intention, we aim to capture the complex interactions among these
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TABLE III
DETAILS OF INSIGHTALIGN MODEL ARCHITECTURE AND DIMENSIONS

Layer Type Input Size Output Size

Decision Token Embed. Embedding (40, 3) (40, 32)
Recipe Pos. Enc. Positional Encoding (40, 32) (40, 32)
Insight Embed. Linear ×1 (1, 72) (1, 32)

Transformer Dec. Transformer Decoder ×1 (1, 32) (40, 32) (40, 1)
Probabilistic Sigmoid ×40 (40, 1) (40, 1)

recipes, and to combine recipes strategically to achieve multiple
design objectives simultaneously.
B. Stage-Based Flow Recipe Recommender

From initial cell placement to design closure, each stage in physical
design flow deals with different physical design problems and usually
provides diverse parameters. Our framework provides separate recipe
sets for each flow stage to fully leverage the parameter diversities, as
shown in Figure 2. Note that our staged framework is not specific to
a given stage definition and can be generalized to any flow variation.
We refer to each run of physical design flow loaded with proposed
recipe sets as an iteration. Each iteration can include up to N recipe
sets, determined by the available computational resources.
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Fig. 2. InsightAlign incorporated into the physical design flow. Each “Rx”
represents a recipe set, which consists of a subset of preconfigured recipes.

Our recommender intelligently consumes the first iteration, serving
as an insight-probing phase, to generate initial insights. We refer
to this insight-probing phase as “offline alignment.” During offline
alignment, our design insight analyzers, imitating human experts’
flow probing process, perform analysis in various algorithm engines,
monitor flow trajectory and accumulate insights in a non-volatile
storage. After the first iteration, subsequent iterations leverage these
accumulated insights and prior QoR results to iteratively refine the
recipe sets, which we refer to “online fine-tuning.” With each new
iteration, additional insights are gathered, providing a progressively
generalized view of the design. As more recipe sets are explored
through successive iterations, the recommender becomes increasingly
tailored, resulting in optimized QoR outcomes.

C. Language Model-Based Recipe Recommendation

Our recipe recommender is based on a decoder-only generative
language model architecture, where recipes are treated as tokens
and predicted sequentially in an autoregressive manner, as shown
in Figure 3. The recipes are evaluated one by one at each time
step t, and the model estimates the probability of selecting each
recipe in the recommended subset based on the preceding context.
This autoregressive process enables the model to construct recipe
subsets progressively, adapting its choices to the design insights
and previously chosen recipes. Our model includes the following
components with details in Table III:
1) Decision Token Embedding: Each recipe decision rt indicates

whether a recipe is selected or not. We train separate embeddings
for both decision, allowing the model to learn nuanced representa-
tions of each decision outcome in the context of recipe selection,
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Fig. 3. InsightAlign model architecture for recipe set recommendation. The
same model is used in offline alignment and online fine-tuning phases.

i.e., “selected” (1), “not selected” (0), and an additional “SOS”
(start-of-sequence) token for initiating the generation process.

2) Recipe Positional Embedding: Positional encoding is essential in
language models to convey the order of tokens, and here it is
used to represent the order of recipes in the tuning sequence.
The decision token embedding is combined with a recipe-specific
positional encoding, which provides necessary information such
that the model can distinguish among recipes based on both their
unique characteristics and their positions in the sequence.

3) Insight Embedding: Design insights are concatenated into a vector
and processed by a linear layer to produce a high-dimensional
embedding that will be further served as a contextual information
for design specific recipe recommendation.

4) Transformer Decoder Layer: The model uses a single-head Trans-
former decoder layer [14] that leverages contextual information
through cross attention between recipe and design insight em-
beddings. This architecture enables the model to learn inter-
dependencies between recipe decisions to adaptively tune recipes
based on previous decisions and design insights.

5) Probabilistic Layer: Finally, after the decoder layer generates a
contextualized representation of each recipe, the model converts
this representation into a probability for each recipe using a sig-
moid activation function. This probability indicates the likelihood
of selecting each recipe, enabling the model to make probabilistic,
informed recommendations based on the embeddings and contex-
tual analysis performed in prior layers.

D. Model Training Overview

Ideally, tuning would be fully “online,” using the QoR of each
recipe set to directly guide model updates and the selection of
subsequent recipes. However, the extended runtime of the commercial
physical design tool—which can take days to weeks for industrial-
scale designs—makes continuous online updates impractical. To
address this, we adopt a two-stage training strategy.

Our model training involves two phases: (1) Offline alignment
and (2) Online fine-tuning. The offline alignment process is detailed
in Algorithm 1. Our framework performs offline preference-based
alignment by training a language model to assign higher probabilities
to recipes that historically achieved better QoR outcomes. For each
design, all known recipe sets are pairwise compared based on their
QoR values, and the model is optimized using margin-based direct
preference optimization (DPO) [15] to reflect these preferences by
assigning higher probabilities to recipe sets with better QoRs. During
inference, the aligned model employs beam search with width K to
generate the top-K recommended recipe sets for an unseen design
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by keeping track of the K most promising partial sequences at each
step. After offline alignment, the model enters the online fine-tuning
phase, where it is further refined for specific designs. Here, the model
continuously evolves based on direct feedback from the physical
design tool, using immediate QoR evaluations of newly recommended
recipe sets to make real-time adjustments. This online learning phase
allows the model to adapt dynamically, providing fine-tuned recipe
recommendations tailored to each design’s unique characteristics.

Algorithm 1 Offline QoR-Alignment
Input:
1: Dataset D = {(Ii, Ri, Qi)}Ni=1, where design insight Ii ∈ I, recipe

set Ri ∈ {0, 1}n, compound QoR score Qi ∈ R
2: Beam width K, Insight of a new design I′ ∈ I

Output: Policy πϕ and top-K recipe recommendations {R̂k}Kk=1
3: function ALIGNMENTTRAIN(D)
4: Initialize policy parameters ϕ

5: while not converged do
6: for Ik ∈ D do
7: Pk = {(Ri, Rj) : Ii = Ij = Ik} ▷ All recipe pairs for

design k
8: for (Ri, Rj) ∈ Pk do
9: (Rw, Rl)← (Ri, Rj) if Qi > Qj else (Rj , Ri)

10: log πϕ(R | Ik) =
∑n

t=1 logP (rt | r<t, Ik;ϕ) for
R ∈ {Rw, Rl}

11: Evaluate LMDPO(ϕ) with (2)
12: ϕ← ϕ− η∇ϕLMDPO(ϕ) ▷ Gradient descend
13: end for
14: end for
15: end while
16: return πϕ

17: end function
18: function BEAMSEARCH(πϕ, I

′,K)
19: B0 ← {([SOS], 0)} ▷ Initial beam: (sequence, log probability)
20: for t = 1 to n do
21: Bt ← ∅
22: for (R<t, s) ∈ Bt−1 do
23: Pt ← πϕ(· | R<t, I′)
24: for rt ∈ {0, 1} do
25: Bt ← Bt ∪ {(R<t ⊕ rt, s+ logPt(rt))}
26: end for
27: end for
28: Bt ← top-K sequences from Bt by score
29: end for
30: return {R : (R, s) ∈ Bn} ▷ Return top-K sequences
31: end function
32: πϕ ← ALIGNMENTTRAIN(D)
33: {R̂k}Kk=1 ← BEAMSEARCH(πϕ, I

′,K)
34: return πϕ, {R̂k}Kk=1

E. Offline Alignment

Our recommendation framework leverages alignment techniques
inspired by large language model (LLM) [14] to predict optimal
recipe sets that enhance QoR for complex industrial designs. Instead
of relying on direct QoR prediction—which is challenging due
to the variability in design scales and inherent complexity—our
approach employs a preference-based strategy. This allows the model
to make effective recipe recommendations by comparing relative
performance, even when absolute QoR values are difficult to estimate.
This reframing allows the model to focus on the relative performance
among recipe sets, rather than attempting to predict absolute QoR
values. The overall process is illustrated in Figure 1(a).

1) Offline Data Collection and Preference-Based Training: We
first constructed an offline dataset using the commericial P&R tool.
The dataset contains multiple (design, recipe set, QoR) combinations.
Each data point is composed of (1) a design in the form of the insight
vector with numerical and categorical data describing the contextual
design knowledge, (2) a set of recipes selected for this run, and (3)
the QoR outcome after applying that recipe set.

To align the model’s recipe predictions with actual QoR-based
preferences, we perform pairwise probability updates strategy. The
process starts by pairing the data points from the same design. That is,
for each design (insight), we compare pairs of recipe sets with known
QoR outcomes, querying the model the probability of generating
each recipe set, and then train the model to favor (modify model
weights to assign higher probability to) recipes that contribute to
better performance. This alignment process is iterated through all the
pairs and all the designs. Each pairwise comparison guides the model
to prioritize configurations that historically produce higher-quality
results, ultimately tuning the model to reflect the QoR preferences.

2) Marginal Direct Preference Optimization: Traditional LLM
alignment through Reinforcement Learning from Human Feedback
(RLHF) [16] employs a two-stage approach: first training a reward
model to evaluate outputs based on human-defined quality metrics,
then utilizing proximal policy optimization (PPO) [17] to iteratively
optimize a policy network. In contrast, DPO streamlines this process
into a single-stage training paradigm by introducing an optimized
loss function, eliminating the need for a separate reward model. The
DPO loss LDPO(ϕ) is given by

−E(Rw,Rl,I)∼D

[
log σ

(
β log

πϕ(Rw | I)
πref(Rw | I) − β log

πϕ(Rl | I)
πref(Rl | I)

)]
(1)

Here, Rw and Rl denote the preferred (“winning”) and non-
preferred (“losing”) recipe set in pairwise comparisons under design
insight I . The probability of outputting R given design insight I
is represented by πϕ(R | I) under model parameters ϕ, while
πref(R | I) denotes the reference policy probability. The preference
model’s sharpness is controlled by hyperparameter β > 0, and σ(·)
represents the sigmoid function. While standard DPO effectively
learns recipe rankings, it does not account for preference magnitude
differences. A margin-based modification [18] addresses this by
assuming policy preferences scale exponentially with recipe QoR
scores and adopting a uniform reference policy πref(R | I) to balance
exploration and exploitation. The margin-based DPO loss is given by

LMDPO(ϕ) = E(Ri,Rj ,I)∼D

[
max

(
0, λ(QoR(Ri)− QoR(Rj))−

sign(QoR(Ri)−QoR(Rj))·( log πϕ(Ri | I)−log πϕ(Rj | I))
)]

(2)

3) Evaluate Probabilities of Recipe Selections: To compute the
margin-based DPO loss in (2), we should be able to efficiently
compute πϕ(Ri), the likelihood that each recipe set Ri will be
predicted by our recipe model. The decoder-only language model is
particularly well-suited for this task because it allows us to efficiently
compute the likelihood of any recipe set by leveraging teacher forcing
[19] in the training process. This setup is illustrated in Figure 4.

In the teacher forcing process, we input each recipe step by step
as ground truth to guide the model’s next prediction. Specifically, a
recipe set, represented as a sequence R = [r1, r2, . . . , rn] (with “1”
indicating a recipe is selected and “0” indicating it is not), serves as
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input. At each time step t = 1, . . . , n, the model receives the actual
recipe rt, which enables it to compute the conditional probability:

log πϕ(R | Ik) =
n∑

t=1

log πϕ(rt | r<t, I
k;ϕ) (3)

In this manner, the model can efficiently evaluate the probability of
each recipe set and hence the pairwise margin-based DPO loss (2).

F. Recipe Set Recommendation

To recommend recipe sets, we employ beam search [19] with width
K to identify the top-K recipe sets following our trained policy
distribution. At each time step t, given an unseen design insight I ′

in the insight space I, the algorithm maintains K partial sequences
and extends each by sampling according to the policy probabilities
πϕ(rt | r<t, I

′;ϕ), shown as “sampling” in Figure 3. The search
accumulates log probabilities of selected recipes, retaining the K
sequences with highest cumulative scores. This process continues
until all recipe decisions are made, yielding K complete recipe sets
that best align with our QoR-optimized policy distribution.

G. Online Fine-Tuning

After the offline alignment phase, the same model transitions into
an online fine-tuning stage to further optimize its recipe recommen-
dations for specific designs, as illustrated in Figure 1(b). Based on
the offline learned policy, the model continuously adapts its policy πϕ

through real-time feedback from the physical design tool. Each itera-
tion follows a closed-loop learning system: the model proposes recipe
sets, executes the physical design flow, and updates its parameters
based on observed QoR metrics. This adaptive mechanism enables the
model to capture design-specific optimization patterns that may not
have been present in the offline training data, enhancing its ability to
generate highly specialized recipes that better align with each design’s
unique characteristics. We implement batch online learning where the
model proposes K = 5 recipes in each iteration and leverages both
margin-based DPO [18] and PPO loss [17] to fine-tune the model.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

We implemented our proposed recipe recommendation framework
using Python and the deep learning library PyTorch [20]. To validate
the effectiveness of our framework, we conducted experiments across
17 industrial-scale, real-world benchmarks. These benchmarks span
a diverse range of design categories and advanced technology nodes,
from 45 nm to sub-10 nm processes with gate counts up to 2 million,
to ensure comprehensive evaluation under realistic conditions. Our
optimization framework integrates n = 40 distinct recipes, each
calibrated for distinct design objectives. The primary goal of the
framework is to identify an optimal subset of recipes that collectively
maximize a user-defined QoR intention as a compound score s based
on multiple performance metrics mi weighted by wi, i.e.,

s =
∑
i

wigi(mi −mean(m)i)/std(m)i (4)

where mean(m)i and std(m)i are the mean and the standard
deviation, respectively, of the ith metric over all datapoints of the
same design, gi = 1 if metric i is to be maximized, and −1 otherwise.

For illustration purposes, in this paper we define the QoR intention
as minimizing the total power and TNS, with weights 0.7 and 0.3,
respectively. In Algorithm 1, we use hyperparameter λ = 2 and beam
width K = 5 in offline alignment and online fine-tuning.

We design different experiments to evaluate the efficacy of each
phase. For the offline alignment phase, we construct a dataset D using
a commercial physical design tool [1], comprising 3,000 datapoints
collected from 17 designs with various recipe combinations. For the
online fine-tuning phase, we iterate the recommendation and fine-
tuning process for two designs on top of different offline alignment
outcomes, and show how their QoRs are further improved and
converged throughout iterations.

B. Offline Alignment Result

One of the key objectives of our work is to enable the framework
to generalize optimization strategies to previously unseen designs
without requiring retraining. To evaluate the model’s transferability,
we conducted zero-shot evaluations—meaning we tested the model
on entirely new designs without any additional training or fine-
tuning—on designs excluded from the training phase. This evaluation
tests the model’s ability to apply learned knowledge to new designs.

To rigorously evaluate the effectiveness of the offline phase, we
employed a k-fold cross-validation strategy [21]. We divide the 17
designs into k = 4 random groups with roughly equal numbers
of datapoints and carry out k iterations of evaluation. In iteration
i, all designs in the ith group are held out for testing, and only
the remaining designs are used for training and tuning the model.
(As a result, we use different trained models to test designs in
different groups to ensure all designs are unseen when evaluated.)
By systematically rotating the combinations of training and testing
splits, this approach ensures that all designs are evaluated once as
unseen by the corresponding model. Therefore, the performance of
the framework is assessed across the entire design spectrum.

Table IV summarizes the results of the zero-shot evaluation with
cross-validation. For each design, we take five distinct recommenda-
tions from the model and compare the QoR in terms of power, TNS,
and the compound score against the best-known datapoints of the
same design in our offline dataset. (Recall that with cross-validation,
the model never sees any datapoint from the design being tested.)
The “Win%” column indicates the percentage of known recipe sets
(out of approximately 200) that are outperformed by the best of five
recommended recipe sets. It shows that the framework demonstrated
performance comparable to, or even exceeding, the best-known recipe
sets, without any fine-tuning.

Figure 5 visualizes the power-timing distribution of our zero-shot
recommendations for four unseen designs: D4, D6, D11, and D14,
compared to the QoR distribution of known recipe sets (unseen by the
model). The recommended recipe sets are concentrated in the lower-
left region of the plot, indicating superior performance with reduced
power consumption and negative slacks. In contrast, the known recipe
sets from the offline dataset exhibit a scattered distribution, reflecting
the significant cost and effort required for extensive exploration, as
opposed to our approach, which achieves optimal or near-optimal
results at the very beginning of the design iteration.

These observations underscore the effectiveness of the design in-
sight representation in capturing transferable knowledge, enabling the
direct application of learned optimization strategies across designs.
Additionally, they confirm the ability of our framework to capture the
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Fig. 5. QoRs of zero-shot recommended (red) compared with all known
recipe sets in the dataset (blue) for designs (a) D4, (b) D6, (c) D11, (d) D14.

TABLE IV
EVALUATION OF OFFLINE ALIGNMENT ON UNSEEN DESIGNS BASED ON
CROSS VALIDATION. “QOR SCORE” IS OUR OPTIMIZATION OBJECTIVE

DEFINED BY (4). “WIN%” INDICATES THE PERCENTAGE OF KNOWN
RECIPE SETS THAT OUR BEST RECOMMENDATION SURPASSES.

Design
Best known recipe set Offline alignment
TNS Power QoR TNS Power QoR Win%
(ns) (mW) Score (ns) (mW) Score

D1 20.23 1513.39 1.94 16.71 1539.99 1.42 98.7
D2 25.14 1177.70 2.12 55.20 1192.72 1.42 96.9
D3 18.28 2054.68 1.60 27.73 2046.93 1.70 100.0
D4 6.62 111.48 1.96 12.11 109.23 2.34 100.0
D5 0.0552 192.12 1.38 0.0823 191.56 1.49 100.0
D6 39.24 66.34 1.45 42.45 64.46 2.11 100.0
D7 18.12 143.17 1.40 14.47 144.00 1.44 100.0
D8 3.88 75.78 1.28 1.43 75.29 1.90 100.0
D9 0.816 640.01 1.98 0.824 614.90 2.65 100.0
D10 72.24 12.21 1.75 235.98 12.71 0.74 88.5
D11 0.157 0.0257 1.50 0.115 0.0268 1.40 98.1
D12 0.230 403.79 1.53 0.931 399.71 1.61 100.0
D13 118.70 311.99 3.54 379.85 338.46 0.56 95.2
D14 71.24 44.68 1.41 79.39 43.97 1.57 100.0
D15 0.0354 642.84 1.59 0.0838 640.65 1.68 100.0
D16 0.0000 0.706 1.66 0.0012 0.708 1.56 98.6
D17 282.06 688.48 1.11 793.51 677.32 0.93 97.8

complex interaction among recipes, recommend undiscovered, good-
quality combinations of recipes, and provide excellent starting points
of design iterations for previously unseen designs.

C. Online Fine-Tuning Result

Online fine-tuning provides an additional option to further tailor
recipes for specific designs, enabling the achievement of optimal
QoRs. Building on top of the offline alignment model, we show
the online fine-tuning result on designs D10 and D6. As shown in
Table IV, D10 is a design with slightly worse zero-shot recommen-
dation compared to other benchmarks. Design D6, on the contrary,
starts from a superior recommendation at the very beginning.

For design D10, our online reinforcement learning progressively
refines the strategy for this specific design, allowing the model to
recommend recipes that yield increasingly higher QoR scores over
iterations. Figure 6(a) illustrates the average QoR score of the top five
recipes encountered so far across iterations, highlighting the model’s
ability to continuously discover better-performing recipes. Addition-
ally, Figure 7 visualizes the progressive QoR distribution over online
learning. Notably, by leveraging the offline alignment knowledge, our
model begins with a strong initial point. Over successive iterations,
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Fig. 6. Online fine-tuning trajectory: total power (lower-better), TNS (lower-
better), and QoR score (higher-better) per iteration for (a) D10 and (b) D6.
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Fig. 7. Scatter plot of QoR for D10 in online fine-tuning phase. Early iteration
points (darker colored) scattered on upper-right quickly move to lower-left
(lighter colored) and converge to a better QoR than all known recipe sets.

the recommended recipes transition from the upper-right to the lower-
left region of the plot and after a small number of iterations, surpassed
all best-known recipe sets despite its suboptimal starting points. This
demonstrates the continuous enhancement and provides designers
with the flexibility to balance further QoR improvements against
the cost of additional design iterations. For design D6, as shown in
Figure 6(b), the online fine-tuning achieves even better QoR results
than the zero-shot recommendation, and converges within even fewer
iterations than D10, thanks to its superior starting points from offline
alignment. These observations show that a good offline alignment can
significantly reduce the number and hours of design iterations. With
design-specific insights and user intention built in our framework,
the online fine-tuning can achieve better QoR tailored to the specific
design and different user intentions on top of the offline stage.

V. CONCLUSION

This work introduces a novel flow recipe recommendation ap-
proach that enables transferable learning by combining expert design
insights with LLM alignment technique. Once the offline alignment
model is established, online fine-tuning by running the physical
design tool can achieve faster PPA closure by connecting recipe
relevance with newly generated insights and QoRs. The combination
of all these techniques addresses the challenge of high turnaround
time and large compute demand, which is the most critical bottleneck
of automatic flow tuning using expensive black-box tool evaluations.
Extensive experiments on industrial-scale designs and advanced tech-
nology nodes demonstrate superior zero-shot PPA performance and
fast-converging design iterations across unseen designs.
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