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ABSTRACT
In this paper, we show that true 3D placement approaches, enhanced
with reinforcement learning, can offer further PPA improvements
over pseudo-3D approaches. To accomplish this goal, we integrate
an academic true 3D placement engine into a commercial-grade 3D
physical design flow, creating ART-3D flow (Analytical 3D Place-
ment with Reinforced Parameter Tuning-based 3D flow). We use
a reinforcement learning (RL) framework to find optimized place-
ment parameter setting of the true 3D placement engine for a given
netlist and perform high-quality 3D placement. We then use an
efficient 3D optimization and routing engine based on a commer-
cial place and route (P&R) tool to maintain or improve the benefits
reaped from true 3D placement till design signoff. We evaluate our
3D flow by designing several gate-only and processor benchmarks
on a commercial 28nm technology node. Our proposed 3D flow
involving true 3D placement offers the best PPA results compared
to existing 3D P&R flows and reduces power consumption by up
to 31%, improves effective frequency by up to 25%, and therefore
reduces power-delay product by up to 43% compared with commer-
cial 2D IC design flow. These improvements predominantly come
from RL-based parameter tuning, as it improves the performance
of the 3D placer by up to 12%.

CCS CONCEPTS
• Computing methodologies → Reinforcement learning; •
Hardware→ Physical design (EDA);Methodologies for EDA;
Placement.
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1 INTRODUCTION
Monolithic 3D (M3D) integrated circuits (ICs) that leverage Mono-
lithic Inter-tier Vias (MIVs) for inter-die connections have emerged
as a promising way to build commercial-quality, industrial-scale
designs in 3D fashion. The 3D IC physical design methodology
has undergone several critical innovations in the past few decades
in terms of floorplanning, placement, routing, and optimization.
State-of-the-art 3D design flows rely heavily on 2D physical design
tools and partitioning algorithms to build commercial-quality 3D
ICs. Specifically, given a netlist, these “Pseudo-3D flows” [1] first
utilize commercial 2D physical design tools to generate an initial
2D placement. Then, they leverage bin-based min-cut partitioning
algorithm followed by tier-by-tier routing to transform the design
into 3D.

Though these pseudo-3D flows [1] do not build the 3D designs
in a true 3D manner, they “seem to be” of better quality compared
with other existing academic “true” 3D design flows mainly due to
their extensive use of commercial tools that provide high-quality
optimization. However, based on our study, we find that it is not
necessarily true that pseudo-3D flows always yield better power,
performance, and area (PPA) metrics. Even though they leverage
commercial tools to perform critical optimizations, the pseudo-3D
approaches are not aware of the 3D degradation caused by the
partitioning algorithm, which results in sub-optimal PPA metrics.

To reap the benefits of 3D ICs in their entirety, we need physi-
cal design methodologies involving 3D algorithms, starting from
placement to design signoff, integrated into a single tool flow. In
this work, we present a 3D place and route (P&R) methodology
called ART-3D, Analytical 3D placement with Reinforced param-
eter Tuning, which lays a foundation for such a physical design
methodology by replacing 2D to 3D transformation-based place-
ment engine in the proven pseudo-3D approaches with a placer that
is entirely 3D in nature. We also show that such a flow improves
the power-delay product of 3D ICs by up to 10% compared to those
designed using state-of-the-art 3D P&R flows and by up to 43%
compared to 2D ICs.

2 RELATEDWORK AND DIFFERENTIATION
Several 3D placers, such as Force-3D [4], ePlace-3D [5], and Non-
Linear 3D (NL-3D) [6] compare their wirelength estimation and
PPA values post-placement using benchmarks that cannot be de-
signed using a commercial process design kit (PDK). In IC designs,
the complete picture of PPA metrics is not known until the entire
design is routed and optimized for timing and power. Transfor-
mation based pseudo-3D flows [1] are capable of performing the
entire P&R flow, thereby providing a standard means to analyze the
quality of 3D ICs designed using them. When these academic 3D
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Table 1: Qualitative comparison of state-of-the-art Monolithic 3D P&R flows and this work.

Shrunk-2D [1] Pin-3D [2] Snap-3D [3] ART-3D

Key idea cell and wire
shrinking

placement compaction
& pin projection tier-row snapping true 3D placement,

cell width shrinking
Die stacking separate dies 3D metal stack 3D metal stack 3D metal stack

Strength first pseudo-3D flow better buffering/sizing better power best performance,
PDP, & EDP

Weakness shrinking causes
DRC issues

die-by-die legalization
& optimization

modified pin locations
during optimization -

Placement commercial 2D + tier
partitioning

commercial 2D + tier
partitioning

tier partitioning +
commercial 2D

true 3D placer
tuned with RL

Legalization die-by-die die-by-die both tiers together both tiers together
Signal routing die-by-die 3D 3D 3D

Clock tree design commercial 2D + tier
partitioning

commercial 2D + tier
partitioning commercial 2D commercial 2D

Post routing optimization not supported enhanced die-by-die not performed enhanced die-by-die

placers are integrated into a full-fledged 3D P&R flow, the results
seen are usually worse than pseudo-3D designs as shown in [1], due
to non-optimized placer parameters. Additionally, the commercial
tool integration approach used for pseudo-3D placement does not
work well with true 3D placement. 3D flows involving 3D plac-
ers currently possess these drawbacks, which prevent them from
reaching their true potential. In this paper:

• We propose a novel 3D P&R flow integrating an academic
true 3D placer.

• We improve the placement quality of the academic placer us-
ing reinforcement learning (RL) based parameter autotuning.
RL tuning has been applied for 2D placement in previous
works. But, to the best of our knowledge, this is the first
work using RL for 3D placement optimization.

• We introduce a commercial-grade 3D router and optimizer
that works well with true 3D placers.

The proposed 3D P&R flow methodology significantly improves
the performance, power, and therefore the power delay product
(PDP) and energy-delay product (EDP) of 3D ICs compared to 2D
and state-of-the-art pseudo-3D flow. The key differences among
our proposed flow and various state-of-the-art 3D P&R flows are
presented in Table 1.

3 OVERVIEW OF OUR 3D FLOW
For the first time, we integrate an academic true 3D placement
algorithm with a commercial P&R tool to create a 3D physical
design flow that operates on the entire three-dimensional space
of 3D ICs. We use NL-3D [6] as our true 3D placement engine1.
We enhance the quality of results (QoR) of the placer by tuning
its parameters using an RL-based framework. Finally, we perform
optimization, routing, and design signoff using a commercial P&R
tool. Our overall 3D P&R flow is shown in Fig. 1. We perform
physical design of different circuits using the described 3D P&R
methodology. The PPA results are presented and compared against
the state-of-the-art 3D flows and the standard 2D flow in Section 7.

1We have acquired the source code of this placer for modification and integration.
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Figure 1: Flow chart depicting our ART-3D P&R flow.

4 NON-LINEAR 3D PLACER INTEGRATION
NL-3D placer [6] is an analytical 3D placement framework. It
uses Huber-based local smoothing and Helmholtz-based global
smoothing techniques to handle the inter-tier and intra-tier non-
overlapping constraints, respectively.

The objective of 3D placement is given as:

minOBJ(𝒙,𝒚, 𝒛) =
∑
𝑒∈𝐸

(1 + 𝛾𝑒 ) (WL(𝑒) + 𝛼MIV ·MIV(𝑒)), (1)

where the placement variables 𝒙,𝒚, 𝒛 are the vectors of 2D (𝑥,𝑦)
and tier 𝑧 locations of the movable cells, 𝐸 is the set of nets, 𝛾𝑒 and
𝛼MIV are respectively the tunable wire and via weights, andWL(𝑒)
andMIV(𝑒) are respectively the half-perimeter wirelength (HPWL)
and the number of vias on net 𝑒 ∈ 𝐸 depending on the placement
variables. The objective function is subjected to non-overlapping
constraints, made differentiable using the log-sum-exp function
and density smoothing techniques, and is solved using a non-linear
programming (NLP) solver, as described in [6]. Hence, we call this
placement engine as the NL-3D placer. By analytically solving this
problem using NLP, we obtain a high-quality 3D placement solution.

The NL-3D placement engine is designed to work on netlists in
bookshelf format [7]. However, standard netlists are synthesized
using Verilog format. We build an interface to convert synthesized
Verilog netlists to bookshelf format using design exchange format

2

Session 8: 3D IC Design ISPD ’22, March 27–30, 2022, Virtual Event, Canada

98



Table 2: Parameters tuned in non-linear 3D placer [6]. The solution space (𝝆) is infinite.

Parameter Description Type Value
Grids Number of placement bins in each 𝑥 and 𝑦 dimensions Integer [50, 150 ]
Clustering Depth Levels of clusters during initial placement Integer [1, 5]
Cluster Ratio Ratio of clusters at current and previous clustering level Float [0.1, 0.3]
Wire Weight (𝛾𝑒 ) Weight of HPWL in placer objective function Float [1, 100]
Via Weight (𝛼𝑀𝐼𝑉 ) Weight of #MIV in placer objective function Float [1, 10]
Detail Place Overlap Ratio Maximum cell overlap percentage allowed to terminate detail placement Float [0.1, 0.25]
Target Density Percentage of maximum density allowed in each placement bin Float [0.5, 1.0]
𝜀 Helmholtz bin density smoothing parameter Float [0.5, 2.5]
Υ Parameter to accurately depict WL using LogSum expression Float [0.5, 2.5]
Congestion Driven Placement Enable routing congestion driven placement Boolean [True, False]
Dummy Cells Add dummy blocks to prevent routing congestion Boolean [True, False]

(DEF) and library exchange format (LEF) files, and then perform
two-tier 3D placement using NL-3D placer.

The 3D placement algorithm used in [6] predominantly targets
through-silicon vias (TSVs). As state-of-the-art M3D ICs use MIVs,
which are significantly smaller than TSVs, we modify the algorithm
to reduce the penalty of using inter-tier vias to achieve better wire-
length results with an optimum number of MIVs. Further, NL-3D
placer has several parameters that affect the placement quality. We
tune these intelligently using an RL-based approach. Details of this
RL framework are explained in Section 5. We run 3D placement on
different benchmarks using this upgraded NL-3D placer.

5 RL FRAMEWORK
5.1 Motivation
The NL-3D placer [6] provides several configurable parameters,
whose settings can impact the placement result and quality signif-
icantly. However, parameter settings that work well for a given
netlist do not necessarily apply to other netlists. For example, a
parameter configuration that improves the placement quality of
a net-dominant netlist can degrade that of a cell-dominant netlist.
Due to the infinite number of parameter combinations and the sig-
nificant run times of each tuning iteration, it is practically infeasible
to tune individual parameters manually and observe their effect on
the overall placement quality and PPA of different types of netlists.
Hence, we resort to an RL-based automated approach to find op-
timized placement parameter settings suiting the specificities of
different netlists. We pick the parameters tabulated in Table 2, as
they have a significant impact on placement quality.

5.2 Overview of the Framework
The key idea of our RL framework based on [8] is shown in Fig. 2.
The RL agent in our framework solves the problem of identifying
optimal placement parameter settings using the following four key
RL elements.

State (𝒔): For any given netlist, the set of 11 parameters listed
in Table 2 forms a state. The entire state space consists of a single
netlist and all possible parameter combinations (𝝆).

Tool environment (𝑻 ): The environment is the complete P&R
tool flow methodology performing the entire 3D design. It inputs
the current state (parameter settings and netlist) and performs 3D

Reward (R)

Action (a)

RL agent

(OpenTuner)

Tool 

environment

(T)

Parameters

New parameters

State (s
t
)

State (s
t+1

)

NL3D Placer

Commercial 

router

Figure 2: Reinforcement learning framework used to opti-
mize placement quality.

placement using the NL-3D placer. It then performs placement
optimization, clock tree synthesis, and global routing using a com-
mercial P&R tool and computes the PPA results of the given state.
The parameters used for the commercial tool are set to known best
values and are not tuned.

Action (𝒂): Based on a reward, the RL agent repeatedly acts on a
given state 𝑠𝑡 by tuning all the placement parameters and creates a
new state 𝑠𝑡+1 to start the next optimization iteration until a specific
reward threshold is reached.

Reward (𝑹): The reward of a high-quality IC design is the con-
fluence of low power, better timing, and small wirelength. Each
action performed by the RL agent is evaluated based on the reward
obtained. In order to encapsulate these multiple objectives into a
single numerical value, we use a weighted sum in our reward:

𝑅 =
1
4 tanh

(
𝑊𝐿

107

)
+ tanh

(����𝑊𝑁𝑆

1000

����) + tanh
(

𝑃

1000

)
(2)

where𝑊𝐿 is the wirelength (𝜇m),𝑊𝑁𝑆 is the design’s worst nega-
tive slack (ns), and 𝑃 is the total design power (mW). To maximize
the reward, an action taken by the RL agent should reduce these
three metrics. To render these differently scaled values comparable,
we first squash the metrics using the tanh function to the range
[0, 1], as demonstrated in [9], and then consider 25% of normalized
wirelength, 100% of normalized WNS, and 100% of normalized total
power towards the reward computation. We give higher weights

3
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Figure 3: Our RL agent used for placement parameter tuning
based on OpenTuner [10].

to the scores of𝑊𝑁𝑆 and power 𝑃 as improving the effective fre-
quency and total power are the primary goals of our 3D flow.

These four key elements help define the goal of our RL frame-
work: For a given netlist, find a parameter setting 𝒑 ∈ 𝝆 s.t. reward
R is maximized, where 𝝆 is the set of all parameter combinations.

5.3 RL Agent for Parameter Autotuning
OpenTuner [10] offers a generic framework for autotuning, with a
preset of complex search spaces and a set of complex search tech-
niques that help find an optimal solution. In addition, OpenTuner
defines ways to combine complex search techniques to handle vari-
ous solution spaces. We use the RL model called multi-armed bandit
(MAB). [11, 12] show how the MAB scheme and OpenTuner frame-
work have been successfully applied to parameter tuning in VLSI.
So, we prefer OpenTuner over other RL frameworks.

The OpenTuner RL agent customized for our work is shown
in Fig. 3. It orchestrates a set of search techniques, ranking them
using the area under the curve (AUC) credit assignment method.
We run several search iterations to train our RL model, where each
iteration consists of five P&R runs. A P&R run involves physical
design stages from placement to global routing (as described in
section 6), and takes a few minutes to several hours, depending
on the complexity of the netlist. For this reason, we choose to
speed up the entire search process by parallelizing it (5 runs for
each search iteration), thereby reducing the latency involved in
obtaining optimized placement parameters.

Before building accurate AUC scores for a given search technique,
the MAB explores all the different search techniques in its ensemble
𝑆𝑇 , which includes random Nelder-Mead, uniform Nelder-Mead,
and random differential evolution. After sufficient search history
is collected—the MAB tries different techniques even in a single
iteration—it can further identify the best technique and exploit
it to optimize the placement parameters. Our RL agent assigns a
search technique 𝑡 to each P&R run based on a trade-off between
exploitation and exploration. At each iteration, the RL agent chooses
search techniques using the following equation:

𝑡 = argmax
𝑡 ′∈𝑆𝑇

AUC(𝑡 ′) +𝐶

√
|𝐻 |

𝐻 (𝑡 ′) , (3)

Table 3: Trained placement parameters for different 28nm
benchmarks.

Parameters AES_128 LDPC RocketCore
Grids 144 76 99
Clustering depth 1 4 2
Cluster ratio 0.29 0.15 0.25
𝛾𝑒 96.77 97.17 80.71
𝛼𝑀𝐼𝑉 4.75 4.55 6.47
Overlap ratio 0.2 0.1 0.25
Target density 0.55 0.63 0.97
𝜀 1.93 2.29 1.64
Υ 1.5 1.78 0.83
Congestion-driven 0 1 0
Dummy cells 1 1 0

where |𝐻 | is the length of the sliding history window, AUC(𝑡) is the
credit assignment term quantifying the performance of technique
𝑡 in the sliding window, and 𝐻 (𝑡) is the number of times that
technique has been used in the sliding window. The first term in
Eqn. 3 indicates how good a given technique is in finding the best
placement parameters (exploitation). The second term estimates
a confidence bound to allow least used techniques to be picked
by the MAB (exploration). The more a technique is used to find
placement parameters, the smaller the exploration value becomes
for that technique. 𝐶 is a constant that determines the trade-off
between exploration and exploitation.

Based on the techniques chosen by the search driver, a parameter
manipulator updates the 11 placement parameters 𝑝 for each of the
five P&R runs in each training iteration within a few milliseconds.
A reward measurement engine uses the tool environment 𝑇 to run
the P&R flow based on the updated parameters and measures the
reward 𝑅 given by Eqn. 2. It associates each search technique 𝑡
with the obtained reward R and thereby assists the search driver in
computing the credit AUC(𝑡).

5.4 Training and Testing
We use cell-dominant benchmarks to train our RL framework, such
as AES_128 & Netcard, net-dominant benchmarks, LDPC & ECG,
and macro-based benchmarks, RocketCore & Cortex A7. We per-
form on each of these benchmarks around 20 training iterations
(equivalent to 100 P&R runs) to create three trained models, one
each for cell-dominant, net-dominant, and macro-based bench-
marks. Examples of the best parameters found during training
on our benchmarks at 28nm node are tabulated in Table 3.

The parameters differ significantly among the benchmarks, in-
dicative of the capability of the RL agent to adapt its tuning to the
particularities of each netlist. For example, in AES_128, which is
cell-dominant, there is only a single level of clustering, the target
density of each placement bin is low to avoid placement congestion,
and dummy cells are used to avoid routing congestion. On the other
hand, in net-dominant LDPC, there are four levels of clustering, the
placement is congestion-driven to avoid routing congestion among
several nets, and there is a smaller overlap ratio, as well as a higher
bin density compared with AES_128. For RocketCore, containing
large memory macros, the bin density and overlap ratio are higher,

4
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Table 4: Training runtime vs PPA trade-off : PPA comparison
of LDPC trained with QoR metrics from the end of the flow,
post placement optimization, and post global routing.

Metric Full P&R Partial P&R
(preCTS)

Partial P&R
(global route)

Runtime (mins) 2405 829 1432
WNS (ps) -30 -78 -45
Power (mW) 182.1 171.8 176.6
PDP (pJ) 126.8 127.8 125.2

and the congestion-related parameters are turned off. As the bigger
macros with many nets are fixed in the design, the parameters are
optimized for the remaining logic cells only.

The RL tuner adapts and tunes the parameters based on the
nature of the circuit. Therefore, we do not reuse these trained
parameters directly for designing similar benchmarks. Instead, after
training the models on various circuits, we use the appropriate
trained model, among the three models, to generate optimized
parameters for any new circuits and then perform P&R using the
newly generated parameters.

5.5 RL Runtime Improvements
Initially, our RL framework was performing multiple iterations of
the complete flow (NL3D placement and entire P&R flow using com-
mercial P&R tools), with five parallel runs per design. Depending
on the complexity of the netlist, this flow runtime can lengthen the
training phase, thus rendering the proposed flow unrealistic, even
if the obtained results are much better. To speed up RL training, we
compute the reward given by Eqn. 2 after global routing using the
commercial tool for each run.

The runtime vs. PPA trade-off on training LDPC (target freq @
1.5 GHz) computed using the QoRs obtained from different stages
of physical design flow are shown in Table 4. Even though using
QoR obtained from the preCTS stage (post-placement optimization)
reduces the training time tremendously, the final reward obtained
after 20 training iterations is much worse than the reward obtained
by using the full P&R flow training. However, by using the global
routing results, we save close to 40% of training time while still
producing the best PPA results.

6 BACK-END DESIGNWITH COMMERCIAL
TOOLS

After performing 3D placement using our parameter tuned NL-3D
placer, we perform the rest of the physical design using a commer-
cial P&R tool. We import the 3D placement obtained from NL-3D
into the commercial tool and perform the following stages.

6.1 3D Placement Optimization
To retain the 3D nature of our proposed P&R flow, we perform
commercial placement and placement optimization on a 3D design
involving two tiers of standard cells and a 3D metal layer stack in
a commercial 2D P&R tool environment. The LEF (physical infor-
mation file) and LIB (timing file) files are modified appropriately
for the 2D tool to perform 3D design. However, placing all the 3D
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Figure 4: Half width standard cells used in ART-3D flow.
Only the width of gate layer is halved, the pins are retained
at the original location.

cells in a 2D placement tool leads to placement density violation,
as the overall density exceeds 100%. To avoid this issue, we halve
the width of the standard cells but retain the pin locations of all
the cells at their original position (for example, retaining pins of
top-tier standard cells at top-tier metal layers), as shown in Fig. 4.

In the case of hard macro blocks, we retain the original pin
locations of the top tier block (if any) and reduce the hard macro
dimensions to the site size (minimum possible size) of the PDK used.
However, hard macros in bottom tier are retained at their original
dimensions. Thus, we tweak a 2D placement tool to function as a
3D placer. However, the 2D P&R tool is incapable of differentiating
the cells of two different tiers and swaps cells of one tier with that
of the other during optimization leading to area imbalance between
the two tiers. This issue is overcome by creating two classes of
cell footprints (top/bottom) and forcing the tool to perform cell
resizing within the same class, similar to snap3D flow [3]. The
look-up table restricts the tool from swapping a logic cell of one
tier with that of the other tier. Combining all these techniques, we
use the commercial placement algorithm to further improve the
placement quality of the NL-3D placer in our work.

6.2 3D Clock Routing and Optimization
After placement optimization, we perform 3D clock tree synthe-
sis and optimization with half-width cells. Similar to placement
optimization, we restrict the tool from swapping the cells of one
tier with the other with the help of a user-defined 3D cell resizing
look-up table. This way, we perform 3D clock routing using a com-
mercial 2D P&R tool. The tool is aware of both 2D and 3D timing
paths in the design, and optimizes them simultaneously, leading to
optimized clock buffering and optimizing placement density and
clock power.

One of the significant merits of our 3D flow is performing clock
and signal routing/optimization after partitioning the circuit. A
major advantage of a 3D clock and signal routing is that the timing
information of all the nets (both 2D and 3D) is available to the
router. This makes it easier to estimate each path’s timing slack and
borrow slack from a path with substantial positive slack and use it to
improve the timing of a failing path. The slack borrowing concept is
integrated into commercial routing tools and can be effectively used
with our 3D flow to achieve better timing performance. Pseudo-3D
flows do not benefit from slack borrowing, as clock routing and

5
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Table 5: Comparison of ART-3D against published state-of-
the-art 3D flows: Pin-3D (P3D) [2] and Snap-3D (S3D) [3].

28nm Benchmarks (Training)
LDPC[2] RocketCore[3]

2D P3D A3D 2D S3D A3D
Target freq. (GHz) 1.5 1.0
Footprint (mm2) 0.11 0.05 0.05 0.31 0.15 0.15
Total WL (m) 2.29 1.43 1.45 1.87 1.46. 1.50
Eff. freq. (GHz) 1.43 1.36 1.41 0.95 0.93 0.97
Total power (mW) 256.4 181.2 176.6 151.4 142.55 142.3
PDP (pJ) 179.5 133.2 125.2 158.9 154.0 146.6
Runtime (min) 1332 2345

optimization is performed in them before partitioning, and can lead
to worsening of the placement quality post partitioning.

6.3 3D Routing and Timing Closure
After clock routing and optimization, we restore the original width
of the standard cells and original dimensions of the shrunk top-tier
hard macros. We then use Pin-3D router and optimizer [2], which
is based on commercial P&R tool to perform global and detailed
routing, and timing closure on the entire 3D design. During RL
training process, we stop each iteration at the global routing stage.
We perform detailed routing using Pin-3D router on the best result
obtained. We then perform post-routing optimization, using Pin-
3D optimizer, in a 3D fashion by placing the cells of both tiers
simultaneously. To overcome the placement density issue, Pin-3D
fixes one tier of cells and makes them transparent to the P&R tool.
As this restricts the movement of cells in one tier while optimizing
the other, we do not use this tool flow methodology for pre-routing
optimization to achieve better optimization.

During this stage, we allow buffer-resizing to use cells that im-
prove timing and reduce the overall power dissipation. We also
perform slack borrowing to further reduce the worst negative slack
in the design. Performing enhanced die-by-die optimization using
Pin-3D flow is remarkably better than optimizing each tier individ-
ually. In enhanced die-by-die optimization, even though individual
tiers are optimized, the tool is aware of the entire 3D structure, all
parasitics and the timing and power information of cells in both
top and bottom tiers. This way, we improve timing, power, and
therefore overall EDP of 3D ICs.

7 EXPERIMENTAL RESULTS
7.1 Experimental Settings
We trained our model using various benchmarks as listed in Section
5.4 and tested it on VGA_LCD and Cortex A53. Due to limited space,
we present the results of 5 benchmarks only: LDPC, RocketCore,
Cortex A7, VGA_LCD, and Cortex A532. We design our benchmarks
at commercial 16 and 28nm technology nodes to show that our 3D
tool performs better regardless of the technology node. Our 2D
designs use 6 metal layers, and 3D designs use 2 tiers and 12 metal

2Due to limited space, we have not included the results of AES_128, Netcard, ECG,
16nm RocketCore and 16nm Cortex A7

layers. MIVs in 3D designs have a pitch of 70nm in 28nm tech node,
and 40nm in 16nm tech node.

We compare our proposed flow against 2D and a 3D flow in-
volving manually tuning of NL3D placer parameters to show the
benefits of RL tuner in our ART-3D flow in Table 6. The runtimes
reported for ART-3D include the time taken for parameter manipu-
lation and RL training as well. The runtime of ART-3D on the tested
benchmarks (VGA_LCD & ARM Cortex A53) are comparable to
that of other flows.

7.2 ART-3D vs State-of-the-art 3D flows
To show the improvement offered by ART-3D over the state-of-
the-art 3D flows, we compare the PPA results of 28nm LDPC and
RocketCore against the published Pin3D [2] and Snap-3D [3] results
respectively in Table 5. We used the same design and corner settings
for a fair comparison. ART-3D provides 6% improvement in PDP on
LDPC over Pin-3D and 5% improvement in PDP on RocketCore over
Snap-3D. We do not directly compare the results of 28nm Cortex
A7 and A53 with the published results as the results are normalized.
But approximately, we see a PDP improvement of 5-10% in these
benchmarks over the published pin3D[2] and snap3D[3] results.

7.3 PPA Comparisons: 28nm Benchmarks
In this subsection, we compare ART-3D results against results of
2D designs and 3D designs involving manual parameter tuning of
NL-3D placer. This comparison in shown in Table 6 Cortex A7, an
industry-standard benchmark from ARM, shows 3% improvement
in frequency, 10% improvement in total power, thereby offering
12.5% improvement in PDP over the 2D design. This is approx-
imately 8% improvement in PDP over the 3D design involving
manual tuning of placement parameters in NL3D placer. The PPA
comparison of two of the other 28nm benchmarks used for training:
LDPC and RocketCore, are presented in Table 5. In LDPC, ART-3D
improves the power consumption by 31% leading to a PDP improve-
ment of 30% over 2D design. ART-3D RocketCore design offers
2% improvement in effective frequency and 6% improvement in
power, leading to 8% improvement in PDP over the corresponding
2D design.

Using the trainedmodel, we directly implement another industry-
standard processor benchmark, Cortex A53. In Cortex A53, we see
a 25% improvement in frequency and 29% improvement in total
power, leading to an improvement of 43% in PDP over the 2D design.
This is 10% improvement in PDP over the 3D design performed
with manual placement parameter tuning.

7.4 PPA Comparisons: 16nm Benchmarks
We compare our results against 2D for 16nm benchmarks as there
are no published pin3D and snap3D results on 16nm circuits. LDPC
designed using ART-3D does not show much frequency improve-
ment, however, the power improves by 21%, leading to 21% im-
provement in PDP over the 2D design. When compared with the
3D design involving manual parameter tuning of NL3D placer, our
ART-3D placer offers 10% improvement in PDP. As our RL-based
training only involves stages from placement through global rout-
ing, the training time is significantly shorter, given that we perform
around 20 training iterations involving 80 P&R runs.
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Table 6: PPA comparison summary of 2D, Non-linear 3D with manual parameter tuning (NL3D) and ART-3D (A3D) : LDPC,
RocketCore and Cortex A7 are some of the circuits used for training the RL model, and VGA_LCD and Cortex A53 are used
for inferencing. Results are normalized w.r.t 2D for comparison.

16nm Benchmarks 28nm Benchmarks
Training Inferencing Training Inferencing
LDPC VGA_LCD Cortex A53 Cortex A7 Cortex A53

2D NL3D A3D 2D NL3D A3D 2D NL3D A3D 2D NL3D A3D 2D NL3D A3D
Target Freq. 3 GHz 8 GHz 1 (no units) 1 (no units) 1 (no units)
Footprint 1.00 0.50 0.50 1.00 0.50 0.50 1.00 0.50 0.50 1.00 0.50 0.50 1.00 0.50 0.50
Total WL 1.00 0.82 0.77 1.00 0.89 0.85 1.00 0.85 0.81 1.00 1.03 0.84 1.00 0.84 0.78
Eff. Freq. 1.00 0.95 1.00 1.00 0.92 1.00 1.00 0.95 1.05 1.00 0.96 1.03 1.00 1.13 1.25
Total Power 1.00 0.83 0.79 1.00 0.97 0.94 1.00 0.95 0.94 1.00 0.91 0.90 1.00 0.73 0.72
PDP (pJ) 1.00 0.87 0.79 1.00 1.05 0.95 1.00 1.11 0.90 1.00 0.95 0.87 1.00 0.63 0.57
Runtime 1.00 1.19 4.89 1.00 2.54 2.00 1.00 3.12 2.90 1.00 1.02 12.69 1.00 0.59 0.53

Table 7: Capacitance analysis of 28nm & 16nm RocketCore

28nm 16nm
Cap. metrics (pF) 2D A3D 2D A3D
Gate Capacitance 239 230 173 142
Wire Capacitance 265 221 152 141

VGA_LCD, implemented using the trained RL model, has a total
power that is 5.7% lower than the corresponding 2D design. The
PDP reduces by 5% than the 2D design. Our ART-3D also offers
9% improvement in PDP over the 3D design involving manual
parameter tuning. It is also observed that the runtimes of 16nm
designs are higher than the corresponding 28nm designs due to a
large number of DRC checks involved in 16nm technology. The
DRC rules check time increases further in 3D 16nm designs as there
are 2x metal layers in them than the 2D design.

Using the trained model, we also implement Cortex A53. In
Cortex A53, we see a 5% improvement in frequency and 6% im-
provement in total power, leading to an improvement of 10% in
PDP over the 2D design. This is 12% improvement in PDP over the
3D design performed with manual placement parameter tuning.

It is observed that the 3D IC PPA improvement over 2D seen in
16nm node is slightly less than 28nm. This is due to higher gate
capacitance in FinFET technologies. Until 28nm, wire capacitance
dominated gate capacitance. Therefore, the wire capacitance re-
duction in 3D design offered significant PPA improvements. But in
16nm, due to multiple fins in standard cells, the gate capacitance
dominates the wire capacitance. So, the effect of wire capacitance
reduction in 16nm 3D designs on PPA improvement is diminished.

Table 7 shows this capacitance comparison of 28nm and 16nm
2D and 3D designs of RocketCore. 28nm 2D RocketCore has domi-
nant wire capacitance, whereas 16nm 2D RocketCore has dominant
gate capacitance. Hence, the reduction of wire capacitance in 3D
28nm RocketCore lowers the total design capacitance by 11.2%.
Whereas, the wire capacitance reduction in 16nm 3D RocketCore
lower the total design capacitance by 8.9% only. This trend is more
prominent in cell dominant benchmarks, and hence we see less PPA
improvement in 16nm 3D VGA_LCD. However, the latest FinFET
technologies at 5 and 3nm nodes have lesser number of 3D fins per
standard cell, making gate capacitance less dominant. Therefore,
we expect that 3D designs offer better PPA at advanced nodes.

Signal path

Launch clock path
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Figure 5: Critical paths in 28nm Cortex A53.

7.5 Detailed Timing Analysis
Critical path metrics of 28nm Cortex A53 designed using our 3D
flow are presented in Table 8. As 2D generally offers better timing
performance compared to other state-of-the-art flows, we compare
the critical path metrics of our ART-3D flow against the 2D metrics.
The critical paths in 2D and 3D designs of 28nm Cortex A53 are
shown in Fig. 5. It is observed that the ART-3D designs have smaller
critical path delays and larger capture clock delays. These metrics
help in achieving better timing in ART-3D based designs. However,
the launch clock delay is worse than 2D. Lowering this delay can
reduce the slack and improve the effective frequency further.

We perform clock metric analysis using 28nm Cortex A53 as
it is dominated by sequential logic. The clock metric analysis is
presented in Table 9. The reduction in WNS is due to extensive
buffering. This results in higher clock wirelength and buffer count.

Another important benefit of 3D ICs is that they shorten the
memory latency if properly partitioned. We perform memory net
analysis on memory-dominant Cortex A53. The results of compari-
son are presented in Table 10. The memory nets of 2D and ART-3D
designs of 28nm Cortex A53 are shown in Fig. 6. It is observed that
our 3D flow improves memory net metrics by a significant amount
over 2D flow. A massive 25% reduction in maximum memory net
delays plays a significant role in improving the overall effective
frequency of industry standard processor designs.

7

Session 8: 3D IC Design ISPD ’22, March 27–30, 2022, Virtual Event, Canada

103



Table 8: Critical path analysis of 28nm Cortex A53. Results
are normalized w.r.t 2D.

Timing metrics 2D A3D
Slack -1.00 -0.13
Critical path delay 1.00 0.90
(+) Launch clock delay 1.00 1.30
Signal arrival time 1.00 0.98
Capture clock delay 1.00 1.62
(+) Clock period 1.00 1.00
(-) Setup time 1.00 0.26
Required arrival time 1.00 1.17

Table 9: Clock metrics comparison for 28nm Cortex A53 .
Results are normalized w.r.t 2D

Clock Metrics 2D A3D
Frequency 1.0
Clock latency 1.0 0.87
Clock skew 1.0 1.06
Clock WL 1.0 1.04
#Clock buffers 1.0 2.39

(a) Baseline 2D (b) ART-3D
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Memory output nets

Memory input nets

Figure 6: Memory nets in 28nm Cortex A53

Table 10: Memorymetrics comparison for 28nmCortex A53.
Results are normalized w.r.t 2D.

Memory Metrics 2D A3D
Max. mem. latency 1.00 0.75
Avg. mem. latency 1.00 0.53
Max. mem. path length 1.00 0.70
Avg. mem. path length 1.00 0.66
Mem. access power 1.00 0.67

7.6 Why ART-3D Outperforms Pseudo-3D?
Pseudo-3D placers focus on minimizing the MIV usage post an
initial 2D placement to achieve a shorter total wirelength. The min-
cut based approach can result in few longer critical nets in the
process of minimizing the overall wirelength. However, efficient

true 3D placement optimizes each net in the design to reduce overall
wirelength. Though this approach does not result in the shortest
wirelength, optimizing individual nets results in shorter critical nets.
Even though the average path length is higher, the maximum path
length is smaller, leading to smaller critical net delays and higher
effective frequencies. In Table 5, we observe a huge improvement
in effective frequency of ART-3D designs over other flows.3

8 CONCLUSION
In this paper, we present ART-3D, a high quality 3D P&R flow, in-
volving RL-enhanced true 3D placement. To the best of our knowl-
edge this is the first work applying RL to 3D placement optimization.
Our work improves the true 3D placer performance by up to 12%,
making ART-3D outperform 2D and state-of-the-art 3D flows. Our
3D flow offers efficient methodology to design high-frequency cir-
cuits. The frequency and power improvement offered by ART-3D
can help build high performance industry-standard 3D designs.
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