
TP-GNN: A Graph Neural Network Framework for
Tier Partitioning in Monolithic 3D ICs

Yi-Chen Lu1, Sai Surya Kiran Pentapati1, Lingjun Zhu1, Kambiz Samadi2, and Sung Kyu Lim1

1School of ECE, Georgia Institute of Technology, Atlanta, GA
2Qualcomm Technologies, Inc., San Diego, CA

yclu@gatech.edu

Abstract—3D integration technology is one of the few options
that can keep Moore’s Law trajectory beyond conventional
scaling. Existing 3D physical design flows fail to benefit from the
full advantage that 3D integration provides. Particularly, current
3D partitioning algorithms do not comprehend technology and
design-related parameters properly, which results in sub-optimal
partitioning solutions. In this paper, we propose TP-GNN, an
unsupervised graph-learning-based tier partitioning framework,
to overcome this issue. Experimental results on 7 industrial
designs demonstrate that our framework significantly improves
the QoR of the state-of-the-art 3D implementation flows. Specif-
ically, in OpenPiton, a RISC-V-based multi-core system, we
observe 27.4%, 7.7% and 20.3% improvements in performance,
wirelength, and energy-per-cycle respectively.

I. INTRODUCTION

3D IC placement is recognized as a grand challenge to
build high-quality 3D ICs [4]. Since currently there is no
existing commercial 3D placer, state-of-the-art 3D implemen-
tation flows Shrunk2D [12] and Compact2D [8] leverage 2D
commercial placers to mimic 3D placements by performing
tier partitioning on projected 2D designs. Both [8, 12] adopt
the partitioning method named bin-based partitioning. The
method first divides the entire 2D design into multiple bins
on the x-y plane. Then, cells inside each bin are partitioned
into two tiers (z-direction) using an area-balanced min-cut
algorithm, which minimizes the inter-tier connections while
balancing the cell area in both tiers.

However, there are drawbacks in this partitioning approach
that limit the performance of the 3D full-chip designs, namely:
• Timing Degradation. The bin-based partitioning algo-

rithm fails to consider the global connections among bins.
It only iteratively partitions the sub-netlist within a single
bin, which inevitably leads to a severe timing degradation.

• Low 3D Integration Density. Min-cut partition is not
necessarily good for 3D integration as it might not realize
the full potential of the high integration density that
monolithic 3D (M3D) integration provides.

• Placement Quality Degradation. Hierarchy information
from RTL is completely ignored in the existing bin-based
algorithm. Therefore, extra cutsize will be introduced and
inter-tier vias will be inserted in sub-optimal locations,
which results in an acute placement quality degradation.

In this paper, we address all the drawbacks raised above.
We present TP-GNN, an unsupervised graph-learning-based
framework that performs tier partitioning using graph neural

networks (GNNs) and the weighted k-means clustering algo-
rithm [9]. Unlike previous works that neglect design-related
and technology-related parameters, we consider timing, hier-
archy, and library information in our algorithm. The goal of
this work is to advance the state-of-the-art 3D implementation
flows in order to build commercial sign-off quality M3D ICs
with much better power, performance, and area (PPA) metrics
compared with their couterpart 2D ICs.

Recently, GNNs have gained great traction across vari-
ous research areas [6]. In general, GNNs are based on a
message passing scheme, where the objective is to learn a
representation vector for each node by recursively aggregating
and transforming the features of its neighboring nodes. After
k iterations, a node will be represented by a vector which
captures the structural information and the attributes within
its k-hop neighborhood.

VLSI circuits can be naturally modeled as graphs. In this
work, we first devise a hierarchy-aware graph transformation
algorithm to convert the original netlist (hypergraph) into
an edge-contracted clique-based graph. Then, we leverage
GNNs to perform graph representation learning, where the
goal is to construct a node representation that captures the
design characteristics related to tier partitioning for each node.
After the graph learning, we utilize the weighted k-means
algorithm [5] to perform area-balanced partitioning based on
the learned representation for each cell.

Furthermore, our tier partitioning framework TP-GNN is
generalizable to every design, since it learns the feature
representations by optimizing an unsupervised loss function
(unsupervised learning). Also, it does not assume anything
regarding the netlist structure or design characteristics. Instead,
it learns and adapts to various netlists using graph embedding
techniques. Finally, TP-GNN can be easily integrated with
existing 3D implementation flows to significantly improve the
quality of the final full-chip design. Note that in this paper
we assume a 2-tier M3D design for fair comparisons with the
state-of-the-art flows [8, 12], however, our framework can be
easily extended to construct multi-tier designs.

II. BACKGROUND

A. State-Of-The-Art 3D Implementation Flows

Shrunk2D [12] and Compact2D [8] are the state-of-the-art
RTL-to-GDSII 3D implementation flows. They both leverage
commercial tools for physical design implementations, where

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 14,2020 at 17:25:56 UTC from IEEE Xplore. Restrictions apply.

LEF scaling wire RC scaling

2D place/route

layout tiling GNN learning

tile partitioning GNN clustering

legalization

detailed routing

netlist, PDK

3D IC design

Shrunk-2D Compact-2D

Shrunk-2D

Compact-2D

our new

TP-GNN

Fig. 1: State-of-the-art pseudo-3D design flow for monolithic 3D ICs
including Shrunk-2D [12] and Compact-2D [8] vs. our new graph
neural network (GNN) flow that replaces their tier partitioning step.

the main difference lies in the approach of mimicking 3D
designs in the 2D stage. In Shrunk2D, standard cells are shrunk
into half of the original sizes for placement and routing (P&R),
whereas Compact2D scales the RC parasitics by a factor of
1/
√
2 instead of shrinking the cells. After 2D P&R, cells

are expanded (Shrunk2D) or projected (Compact2D) onto a
2D die with half of the original footprint. In the subsequent
partitioning stage, both flows adopt the bin-based partitioning
method as described in Section I to perform tier partitioning,
which highly degrades the quality of the final full-chip 3D
design. The remaining stages are similar, starting from the
legalization for both tiers to the timing closure for tape-out.
In the experiments, we take the Shrunk2D and the Compact2D
flows as baselines and demostrate the significant improvements
achieved by our TP-GNN framework.

B. Related 3D ICs Partitioning Works

A study of unbalanced area partitioning for M3D designs
is presented in [13], where a crucial conclusion is drawn that
the minimization of inter-tier via count is no longer critical to
obtain high-quality 3D ICs as in TSV-based designs. In [3], an
iterative partitioning tool for M3D designs is presented, where
a simulated annealing algorithm is introduced to optimize
a wire-cost function without limiting the usage of inter-tier
vias. In [4], a folding-based method is proposed to transform
2D layouts into 3D designs. Nonetheless, mainly due to the
insufficient utilization of commercial tools and the deficiency
in the partitioning methods, these works only show marginal
3D savings over the 2D counterparts.

III. TP-GNN ALGORITHMS

Figure 1 demonstrates the integration of our proposed tier
partitioning framework TP-GNN with the state-of-the-art 3D

Algorithm 1 Hierarchy-aware edge contraction algorithm.
Input: G(V,E): original clique-based graph.
Output: G′(V ′, E′): edge-contracted clique-based graph.

1: E ← SortEdgesByWeight(E) (in ascending order)
2: for e = (u, v) ∈ E do
3: if u, v not contracted and u, v in the same hierarchy then
4: contract (u, v) to form a new vertex v′ . in-place
5: v′x ← ux+vx

2
, v′y ←

uy+vy
2

. update location
6: for n ∈ {neighbors(u) ∪ neighbors(v)} do
7: edgeWeight(v′, n) = |v′x − nx|+ |v′y − ny|
8: G′(V ′, E′)← G(V,E)

design flows. As shown in the figure, the input to the TP-GNN
framework is a projected 2D design, where all the cells are
placed, routed, and projected onto a 2D die with half of the
2D counterpart’s footprint. The output of the framework is a
partitioned design, where each cell is assigned to a unique tier.

Figure 2 shows the visualization of our framework. Given a
projected 2D design as shown in Figure 2(a), we transform
the netlist hypergraph into an edge-contracted clique-based
graph as shown in Figure 2(b) by devising a hierarchy-aware
edge contraction algorithm. After the contraction, we leverage
GNNs to perform instance-based graph representation learning
as shown in Figure 2(c), where features within K-hop neigh-
bors (K = 2) of the target node are sampled and aggregated
to learn accurate representations for the downstream clustering
stage. The detailed algorithms of our framework are described
in the following sub-sections.

A. Hierarchy-Aware Edge Contraction

Starting from a projected 2D design, we first transform
the original netlist (a directed hypergraph) into an undirected
clique-based graph G, where a net that originally contains
k cells forms a k-clique in G, and each edge e = (u, v)
is assigned a weight representing the Manhattan distance
between cell u and cell v in the projected 2D placement.
Then, we apply a hierarchy-aware edge contraction algorithm
(Algorithm 1) on this graph G, where pairs of nodes within
the same hierarchy are contracted into supernodes based on
the ascending order of edge weights (lines 1-4). When a
supernode v′ is obtained, we update the edge weights between
its neighbors and its center of gravity (lines 5-7). Note that
the term “hierarchy” refers to the “module” defined in the
synthesized netlist (RTL).

The goal of Algorithm 1 is to prevent the severe placement
quality degradation occurred in Shrunk2D and Compact2D,
which can be accounted by two reasons. First, cells within the
same hierarchy are highly connected with each other. If the
hierarchy information is ignored in the partitioning algorithm,
inter-tier vias will be inserted in sub-optimal locations that
introduce redundant cuts. Second, previous works fail to
consider the actual cell distance in the 2D placement while
performing partitioning. Cells that are nearby and connected
should have a higher chance to remain in the same tier
compared with other distant cells; otherwise, designs will
suffer from severe 3D routing overhead. Finally, Algorithm 1

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 14,2020 at 17:25:56 UTC from IEEE Xplore. Restrictions apply.

(6,5) (10,6) (30,8)

(24, 16)

(30,24)

(31,28)(24, 28)

(5,20)

(5,30)

(10,25)

a

b

c

d

e

f

g

h

i

j

20

10

21

5

7

19

19
23

24

22

1614

17

14

12
10 5

a

b

c

d

e

f

g

h

i

j
k=1

k=2

g

(a) (b) (c)

Fig. 2: TP-GNN visualization. (a) Input netlist with two design hierarchies: {a, b, d, f, h} and {c, e, g, i, j}. Numbers represent cell locations.
(b) Hierarchy-aware edge contractions on the transformed clique-based graph. Edge weights represent the Manhattan distance. (c) For target
node g, sampling and aggregating features from its k-hop neighbors.

TABLE I: Initial features of a node in the edge-contracted graph G′.
Note that a node may represent multiple cells in the design.

features descriptions
hierarchy ”module” defined in the synthesized netlist
sum slack sum of worst slacks of all cells
sum slew sum of maximum pin slew of all cells
sum delay sum of worst delay of all cells
dist2source length of shortest path to clock source on G′

1-hop degree number of 1-hop neighbors on G′

2-hop degree number of 2-hop neighbors on G′

can be performed recursively to condense the graph and to
benefit from the run time and memory requirement of the
later graph learning. However, a denser graph does not always
achieve better PPA. In the experiments, we perform 2 runs of
Algorithm 1 for each design implemented by our framework.

B. GNN Feature Aggregator

After obtaining the edge-contracted clique-based graph G′

from Algorithm 1, we leverage GNN to perform graph
learning. The goal of this stage is to learn accurate node
representations that capture the characteristics of the design
regarding tier partitioning. These learned representations are
further utilized to determine the tier assignment in the later
clustering stage.

Before the actual learning process, we determine an ini-
tial feature vector for each node as shown in Table I. The
features span from a node’s structural information and its
design attributes. Unlike previous works that ignore timing
information during tier partitioning, we prevent the severe
timing degradation by considering four timing related features
as shown in Table I. Note that these initial node representations
are insufficient to perform tier partitioning. To learn better
representations, we train GNNs to sample and aggregate the
neighboring features for each node. The GNN model will
capture the local structural information as well as the node
attributes that are related to tier partitioning. Inspired by [6],
our feature aggregator aggregates the k-hop neighborhood

features of a node v as follows:

fkv = σ

fk−1v + θk ·
1

sk

∑
u∈SNk(v)

fk−1u

 , (1)

where σ is the sigmoid function, fkv denotes the representation
vector of node v at level k, SNk(v) denotes the neighbors
sampled at k-hop, sk denotes the corresponding sampling
size, and θk represents the parameters of the neural network
(NN) at k-hop (each hop has its own NN). Note that the
concept of ”level” is corresponding to the concept of ”hop”,
where f0v is the initial features defined in Table I for node
v, and fk=K

v is the final representation after aggregation
the information within the K-hop neighborhood of v. The
aggregator (Equation 1) can be considered as a ”graph filter”,
since it performs instance-based learning that aggregates a
node’s neighboring information iteratively. In the experiments,
we set K = 2 and each neural network (θ1, θ2) has an output
dimension of 128.

C. Unsupervised GNN Learning

In this work, we leverage unsupervised learning to train
the TP-GNN framework. Therefore, our framework is gen-
eralizable, since it does not require any pre-training before
using. Here, we introduce an unsupervised instance-based loss
function L(yv), which takes yv = fKv , the final representation
vector of node v, as the input and calculates the cross-entropy
between v and its neighboring nodes N(v) (not necessary in
K-hop) as:

L(yv) = −
∑

u∈N(v)

log(σ(y>v yu))

−
M∑
i=1

Eni∼Neg(v) log(σ(−y>v yni
)),

(2)

where Neg(v) denotes the negative sampling distribution of
node v, and M denotes the negative sampling size. In practice,
rather than taking N(v) as the full k-hop neighborhood of
node v, which causes overfitting and damages computational
efficiency, we perform a random walk starting from node v

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 14,2020 at 17:25:56 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 TP-GNN training methodology.
We use default values of α = 0.001,K = 2, NRW = 5, LRW =
5,M = 30, s1 = 30, s2 = 20, β1 = 0.9, β2 = 0.999.

Input: G′(V ′, E′): edge-contracted clique-based graph. {f0}: initial
features. α: learning rate, K: depth of neighborhood, NRW : #
random walks starting from a node, LRW : length of a walk, M :
negative sampling size, {sk, ∀k ∈ {1, ...,K}}: k-hop neighbor-
hood sampling size, σ: sigmoid function, {θk, ∀k ∈ {1, ...,K}}:
parameters of NN at hop k, {β1, β2}: Adam parameters.

Output: {y}: learned node representations.
1: for v ∈ V ′ do . random walks on each node
2: N(v)← {} . initialization of neighboring nodes
3: for n← 1 to NRW do
4: cur v ← v
5: for l← 1 to LRW do
6: next v ← Sample a 1-hop neighbor of cur v
7: if next v is not v then
8: add next v to N(v)

9: cur v ← next v
10: while {θk} do not converge do . train to converge
11: f0

v ←
f0v
‖f0v‖2

, ∀v ∈ V ′
12: for k ← 1 to K do . aggregate neighborhood features
13: for v ∈ V ′ do
14: Sk ← Sample sk neighbors at k-hop neighborhood
15: fkv = σ

(
fk−1
v + θk · 1

sk

∑
u∈Sk

fk−1
u

)
16: fkv ←

fkv
‖fkv ‖2

, ∀v ∈ V ′

17: yv ← fKv , ∀v ∈ V ′
18: for v ∈ V ′ do . minimize unsupervised loss
19: for u ∈ N(v) do
20: Neg(v)← Sample M samples from {V ′−N(v)}\v
21: neg loss←

∑
ni∈Neg(v) log(σ(−y>v yni))

22: gv ← ∇θ[log(σ(y>v yu)) + neg loss]
23: {θk} ← Adam(α, {θk}, gv, β1, β2)

to generate N(v) that represents the passed by nodes. Also,
in Equation 2, the negative sampling technique improves the
efficiency of GNN learning, where an underlying idea is
that the GNN model should not only improve the similarity
between a node v and its true contexts N(v), but also enhance
the disparity of v to the false samples Neg(v) (nodes that are
not occurred in the random walk).

D. GNN Training Methodology
To update the parameters of our framework, we introduce a

gradient descent optimizer Adam [7] to minimize L (Equa-
tion 2). The detailed training methodology is described in
Algorithm 2. In lines 1-9, we perform random walks on every
node v ∈ V ′ to generate the neighborhood structures. Then,
starting from the initial features (Table I), we aggregate the
neighborhood features for each node through Equation 1 (lines
11-17). Finally, in lines 18-23, we leverage Adam to update the
parameters of the GNNs through the introduced unsupervised
loss function (Equation 2). After the learning process, the
learned node representations {y} ∈ R128 are fed to the later
clustering stage to determine the tier assignment for each cell.

E. Weighted k-means Clustering
The final stage of the proposed framework is the clustering

process, where we leverage the weighted k-means clustering

Algorithm 3 Weighted k-means Clustering.
We use default value of k = 2.
Input: G′(V ′, E′): edge-contracted clique-based graph, {w}: node

weights, {y}: node representations, k: number of clusters.
Output: {C1, ..., Ck}: k clusters.

1: Select k initial centroids {c1, ..., ck} randomly
2: repeat
3: {C1, ..., Ck} = argmin

C

∑k
i=1

∑
v∈Ci

w(v)‖yv − ci‖2

4: ci =
∑

v∈Ci
yvw(v)∑

v∈Ci
w(v)

, ∀i = 1, ..., k

5: until {C1, ..., Ck} no longer change

algorithm [5] to partition the edge-contracted clique-based
graph G′ = (V ′, E′). The goal at this stage is to determine
the tier assignment for each node v ∈ V ′ based on its learned
representation yv from Algorithm 2. In this work, we introduce
a weight to each node v ∈ V ′ which denotes the total area
of the gates that it represents. Note that a node may represent
multiple gates in the actual netlist, and gates corresponding
to the same node will be assigned to the same tier. Given the
learned node representations {y} and the weights {w}, the
algorithm clusters the nodes V ′ into k weight-balanced groups
based on the similarity of {y}. Assume V ′ is classified into k
clusters {C1, ..., Ck}, the loss function is derived as

Lkmean =

k∑
i=1

∑
v∈Ci

w(v) · ‖yv − ci‖2, (3)

where ci =
∑

v∈Ci
yvw(v)∑

v∈Ci
w(v) denotes the weighted centroid

of cluster Ci. To update Equation 3, we adopt an iterative
minimization technique as illustrated in Algorithm 3. Strating
from an initial centroids {c1, ..., ck}, for each iteration, we
determine the clusters {C1, ..., Ck} by assigning each node
to the centroid that has the minimum weighted distance (line
3). After the assignments, we update the centroids based on
the newly obtained clusters (line 4). The clustering process is
complete when the assignments no longer change. Note that
our method can easily support multi-tier partitioning by clus-
tering the nodes into multiple groups. In the implementation,
we set k = 2 to perform fair comparison with the state-of-the-
art flows: Shrunk2D [12] and Compact2D [8].

IV. EXPERIMENTAL RESULTS

In this section, we perform thorough experiments to demon-
strate the achievements of TP-GNN framework. We validate
our framework on 7 industrial designs, including two RISC-V-
based multi-core systems OpenPiton [2] and RocketCore [1],
NOVA, LDPC, TATE, JPEG from OpenCores.org, and NET-
CARD from ISPD 2012 benchmark [11]. All the 7 benchmarks
are synthesized under TSMC 28nm technology node using Syn-
opsys Design Compiler 2015. We leverage Cadence Innovus
Implementation System v18.1 to perform P&R, and utilize
Synopsys PrimeTime 2018 for signoff analysis. Finally, the TP-
GNN framework is implemented in Python3 with Tensorflow
library, and the training time is measured on a machine with
2.40 GHz CPU and a NVIDIA RTX 2070 graphics card.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 14,2020 at 17:25:56 UTC from IEEE Xplore. Restrictions apply.

−40 −30 −20 −10 0 10 20 30 40
Embedding dimension 1

−30

−20

−10

0

10

20

30
Em

be
dd

in
g
di
m
en

sio
n
2

Node Representations from GNN (OpenPiton)

Tier 0
Tier 1

Fig. 3: t-SNE visualizations of the learned node representations from
GNN. Each dot represents a cell in the design and is colored by its
final tier assignment from Algorithm 3.

Note that for all 3D designs implemented by Shrunk2D and
Compact2D, we have performed bin sweeping to find the
optimal bin size for fair comparisons.

A. GNN-related Results

First, to evaluate the graph learning, we leverage t-
distributed stochastic neighboring embedding [10] (t-SNE)
technique to visualize the learned node representations {y} ∈
R128 from Algorithm 2 in R2 with OpenPiton [2]. The visual-
ization result is shown in Figure 3, where we observe that the
learned representations form two observable linear separable
clusters. Based on the embedded locations in R2, we further
color each dot (cell) by its tier assignment from the weighted
k-means algorithm (Algorithm 3) and demonstrate that the
algorithm efficiently identify the two observable clusters. Now,
we conclude that our TP-GNN framework is capable of trans-
forming the initial features into meaningful high-dimension
representations. In the later experiments, we demonstrate the
superior achievements of TP-GNN in a complete design flow.

B. Maximum Performance Comparison

In this experiment, we perform maximum performance
comparison between 2D, Shrunk2D, and TP-GNN flows on
two RISC-V-based designs: OpenPiton [2] (# macros: 28) and
RocketCore [1] (# macros: 6). Note that for designs with
extensive memory macros such as OpenPiton and RocketCore,
Shrunk2D significantly outperforms Compact2D. Therefore,
we have taken the best-case scenario (Shrunk2D) of the
existing state-of-the-art flows to perform the comparison. The
results are shown in Table II, where we observe that our
TP-GNN flow significantly outperforms the Shrunk2D flow
across the two designs. The savings in timing-related metrics
are noteworthy, where the critical path wirelength saving is
52% in average and the effective frequency is 27.4% better
in OpenPiton. Also, even with a higher target frequency, TP-
GNN consistently large wirelength saving. Figure 4 further
shows the GDS layout comparison, where we observe that
TP-GNN introduces fewer cross-macro wires than Shrunk2D.

TABLE II: Performance, area, and energy comparison of Shrunk-2D
(S2D) [12] and TP-GNN flows on RISC-V-based designs using F2F
stacking. ∆ denotes the percentage difference between TP-GNN and
S2D.

Metrics 2D S2D TP-GNN (∆)
OpenPiton [2]

eff. freq. (MHz) 289 270 344 (27.4%)
WL (m) 6.33 4.91 4.56 (-7.7%)

energy/cycle (pJ) 343.94 339.73 270.52 (-20.3%)
footprint (mm2) 1.22 0.61 0.61

MIVs 0 76,083 99,423 (30.7%)
critical path WL (um) 542.6 579.3 291.7 (-49.6%)
partitioning time (min) - 9 26

RocketCore [1]
eff. freq. (MHz) 832 921 964 (4.6%)

WL (m) 1.78 1.62 1.51 (-6.8%)
energy/cycle (pJ) 125.67 107.20 101.37 (-5.4%)
footprint (mm2) 0.28 0.14 0.14

MIVs 0 38,627 22,738 (-41.1%)
critical path WL (um) 314.2 289.4 128.9 (-55.5%)
partitioning time (min) - 5 22

TP-GNN: bottom tier S2D: bottom tier

TP-GNN: top tier S2D: top tier

Fig. 4: GDS layouts of OpenPiton [2] using TP-GNN vs. Shrunk-
2D [12] flow. TP-GNN flow achieves 7.7% better wirelength.

C. Iso-Performance Comparison

In this experiment, we validate TP-GNN on 6 memory-
free designs, where we perform iso-performance comparison
between TP-GNN flow and the two state-of-the-art flows. The
results are shown in Table III, where we observe that TP-GNN
consistently outperforms Shrunk2D and Compact2D in QoR
with only a little runtime overhead in the tier partitioning.

D. Why Does GNN Work Better?

Across the two experiments (Table II, Table III), we observe
that TP-GNN framework significantly improves the perfor-
mance (timing) from the state-of-the-art flows in consistent.
The main reason is that the original bin-based partitioning

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 14,2020 at 17:25:56 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Iso-performance comparison of Shrunk-2D (S2D),
Compact-2D (C2D), and TP-GNN flows. ∆S and ∆C respectively
denotes the percentage difference between TP-GNN vs. S2D and
C2D. We report the time spend on tier partitioning in minutes.

Metrics 2D S2D C2D TP-GNN (∆S , ∆C)
LDPC (1.8GHz) (# cells: 43,381)

WL (m) 1.78 1.61 1.57 1.42 (-11.8.%, -9.6%)
power (mW) 362.5 301.4 292.5 271.4 (-10.0%, -7.2%)

MIV 0 8,955 9,237 7,454 (-25.6%, -27.9%)
WNS (ps) 34 26 20 16 (-38.5%, -20.0%)

partition-time - 2 2 14
NOVA (1.08GHz) (# cells: 131,737)

WL (m) 2.33 2.30 2.28 2.17 (-5.7%, -4.8%)
power (mW) 479 220.2 216.9 211.0 (-4.6%, -2.7%)

MIV 0 16,672 16,935 15,813 (-5.2%, -6.6%)
WNS (ps) 47 28 25 19 (-32.1%, -24.0%)

partition-time - 5 5 20
TATE (1.37GHz) (# cells: 211,911)

WL (m) 1.99 1.97 1.95 1.92 (-2.5%, -1.5%)
power (mW) 395.7 398.4 398.6 396.5 (-0.4%, -0.5%)

MIV 0 56,467 56,820 59,727 (5.8%, 5.2%)
WNS (ps) 36 87 76 31 (-64.4%, -59.2%)

partition-time - 8 8 22
JPEG (1.53GHz) (# cells: 219,534)

WL (m) 2.43 2.09 2.12 1.94 (-7.2%, -8.5%)
power (mW) 704.5 674.2 675.9 665.1 (-1.3%, -1.6%)

MIV 0 27,839 28,231 27,154 (-2.5%, -3.8%)
WNS (ps) 68 49 41 23 (-53.1%, -43.9%)

partition-time - 8 8 24
NETCARD (1.0GHz) (# cells: 316,137)

WL (m) 7.82 6.83 6.87 6.11 (-10.5%, -11.1%)
power (mW) 651.7 639.8 639.2 598.9 (-6.4%, -6.3%)

MIV 0 43,823 43,754 39,987 (-8.8%, -8.6%)
WNS (ps) 56 51 49 26 (-49.0%, -46.9%)

partition-time - 14 14 42

method ignores the global connections among bins. It only
partitions the sub-netlist within a bin. Therefore, critical nets
in the projected 2D designs are partitioned randomly. In TP-
GNN framework, we solve this issue by introducing timing
related features to the graph learning, which encourages cells
on critical nets to be partitioned into same tier.

Furthermore, we observe that TP-GNN framework achieves
great wirelength savings, which can be explained by two
reasons. First, Algorithm 1 prevents nearby and connected
cells from being partitioned into different tiers, which reduces
the significant 3D routing overhead occurred in Shrunk2D
and Compact2D flows. Second, with the structural features
introduced in Table I and the message passing characteristics
of the graph learning, cells that are logically connected would
have similar node representations. Therefore, unlike bin-based
partitioning method that partitions long nets randomly, our
framework partitions long nets based on the netlist structure.

Note that TP-GNN runtime is measured from the beginning
of Algorithm 1 to the end of Algorithm 3. The runtime of
our GNN-based tier partitioning algorithm basically involves
training our GNN using unsupervised learning. Therefore, we
do not report training vs. inferencing time separately as our
GNN learns while traversing the nodes in netlist graphs and
collecting features from their neighbors. The time complexity
of our TP-GNN is linear in terms of the netlist size. This

is because our GNN model visits all the nodes in the netlist
graph and spends a constant amount of time collecting features
from the neighbors. The total number of neighbors for a given
node under consideration is constant as we limit our neighbor
search within a fixed hop count.

V. CONCLUSION

In this paper, we propose TP-GNN, a novel tier partitioning
framework based on graph neural network. First, we propose
a hierarchy-aware edge contraction algorithm to reduce the
severe 3D routing overhead occurred in the bin-based parti-
tioning algorithm. Then, we map the classical tier partitioning
problem into a clustering problem and solve it with advanced
machine learning techniques. The graph representation learn-
ing provides the freedom for designers to deal with various
partitioning objectives, and the unsupervised learning promises
the generality.

VI. ACKNOWLEDGMENTS

This work is supported by the National Science Foundation
under Grant No. CNS 16-24731 and the industry members of
the Center for Advanced Electronics in Machine Learning.

REFERENCES

[1] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, et al. The rocket
chip generator. EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-17, 2016.

[2] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang, et al. Openpiton: An open
source manycore research framework. In ACM SIGARCH Computer
Architecture News. ACM, 2016.

[3] G. Berhault, M. Brocard, S. Thuries, F. Galea, and L. Zaourar. 3dip:
An iterative partitioning tool for monolithic 3d ic. In 2016 IEEE
International 3D Systems Integration Conference (3DIC). IEEE, 2016.

[4] O. Billoint, H. Sarhan, I. Rayane, M. Vinet, P. Batude, C. Fenouillet-
Beranger, O. Rozeau, G. Cibrario, F. Deprat, A. Fustier, et al. A com-
prehensive study of monolithic 3d cell on cell design using commercial
2d tool. In 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2015.

[5] R. C. De Amorim and B. Mirkin. Minkowski metric, feature weight-
ing and anomalous cluster initializing in k-means clustering. Pattern
Recognition, 2012.

[6] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning
on large graphs. In Advances in Neural Information Processing Systems,
2017.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[8] B. W. Ku, K. Chang, and S. K. Lim. Compact-2d: A physical design
methodology to build commercial-quality face-to-face-bonded 3d ics. In
Proceedings of the 2018 International Symposium on Physical Design.
ACM, 2018.

[9] S. Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2), 1982.

[10] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579–2605, 2008.

[11] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke, and C. Zhuo.
The ispd-2012 discrete cell sizing contest and benchmark suite. In
Proceedings of the 2012 ACM international symposium on International
Symposium on Physical Design, pages 161–164. ACM, 2012.

[12] S. Panth, K. Samadi, Y. Du, and S. K. Lim. Shrunk-2-d: A physical
design methodology to build commercial-quality monolithic 3-d ics.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 36(10), 2017.

[13] H. Sarhan, S. Thuries, O. Billoint, and F. Clermidy. An unbalanced area
ratio study for high performance monolithic 3d integrated circuits. In
2015 IEEE Computer Society Annual Symposium on VLSI.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on October 14,2020 at 17:25:56 UTC from IEEE Xplore. Restrictions apply.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

