
Timing Analysis and Optimization
for 3D Stacked Multi-Core Microprocessors

Young-Joon Lee and Sung Kyu Lim
Electrical and Computer Engineering, Georgia Institute of Technology

email: yjlee@gatech.edu

Abstract— In this paper we demonstrate the methodology for
designing and optimizing the LEON3 multi-core microprocessor
in 3D stacked ICs. Based on GDSII-level details, we compare
the 3D IC implementations as well as the traditional 2D IC
implementation. For 3D IC implementation, we compare three
partitioning styles: core-level, block-level, and gate-level. These
partitioning styles represent three most relevant 3D implementa-
tion choices. The design methodology for such partitioning styles
and their implications on the physical layout are discussed. Then
we propose two methods to perform timing optimizations for 3D
stacked ICs: timing scaling and timing budgeting. By analyzing
the timing constraints from each method and the effects on the
timing results and the layout, we show that each method has
different impacts on the overall design quality. Lastly, we discuss
additional 3D optimization opportunities.

I. INTRODUCTION

As the complexity and cost for continuing Moore’s law
in 2D ICs increases rapidly, 3D ICs attract more and more
attention from both academia and industry. To make 3D ICs
practical and profitable, much research has been done in
various fields—material, chemical, fabrication, integration [1],
etc—not to mention the electronic design automation (EDA).
In the EDA field, various algorithms for design steps such
as circuit partitioning, placement [2], routing [3], and timing
optimization have been proposed, yet many of them neglected
the impact of the through-silicon-vias (TSVs) on the physical
layout. Depending on fabrication technology, TSVs can be
so large that the aforementioned algorithms may not work as
intended.

Today’s 3D IC market is mostly encompassed by memory
chips [4] and image sensor chips [5], which are designed in
a full-custom fashion. In the near future, we expect to see
many-core processors on a 3D stacked IC or core-memory
stacked ICs. However, currently there is no fully-integrated
3D IC design EDA software that can perform the full design
flow from the register transfer level code to the GDSII layout.
Thus, if we want to design a complex digital system in a 3D
IC, we need to combine the existing tools with several tweaks
to make them work for 3D designs. In this work, we show how
we designed and optimized a multi-core microprocessor in 3D
ICs with different design options using existing 2D design
tools and our in-house tools. The major contributions of this
work are as follows:

This material is based upon work supported by the National Science
Foundation under CAREER Grant No. CCF-0546382, the SRC Interconnect
Focus Center (IFC), and Intel Corporation.

gate

TSV

7 .38

3.69

TS V

TSV PP (M1)

(a) side view of 3D IC (b) top view of TSV

5.0

local

via

die 0

die 3

2.0

TSV LP (M6)

TSV PP (M1)

face

back

Fig. 1. Target 3D structure. (a) Dies are flipped over and facing down. TSV
pin pad (PP) and landing pad (LP) are shown. (b) Our TSV occupies two
standard cell rows. Unit is µm.

• To the best of our knowledge, this is the first work to
compare 2D and 3D IC designs of a commercial-grade
multi-core processor based on GDSII layout designs. We
discuss the design methodology for each design option
and the implications on the layout.

• We show the impact of TSVs on the 3D designs in
terms of chip area, wirelength, and performance. For this
purpose, we run 3D analysis using existing 2D design
tools with some modifications.

• We propose two methods to perform timing optimizations
for 3D stacked ICs: timing scaling and timing budgeting.
Timing scaling method is to scale the input/output delay
timing constraints at each boundary point, while timing
budgeting method is to distribute the timing slack of a
path to each net on the path.

The remainder of the paper is organized as follows. First,
we present the target system in Section II. In Section III,
we discuss the three design options. Then, in Section IV we
present two kinds of 3D timing optimizations that are based on
different timing constraints. Experimental results are presented
in Section V, followed by discussions in Section VI. Finally,
we conclude in Section VII.

II. TARGET SYSTEM

A. 3D Structure

Our target 3D structure is illustrated in Fig. 1. The overall
stack structure is shown on the left, where all four dies are
bonded in a face-to-back fashion. We assume via-first TSVs,
which occupy the device layer and Metal 1 and 6 (M1 and
M6). As shown on the right side in the stack diagram, when
a net spans more than two dies, it is routed through TSVs

TABLE I
ARCHITECTURE CONFIGURATION OF THE LEON3 DESIGN.

Instruction cache 16 KB, 2 way
Data cache 16 KB, 2 way
Register file 32 32-bit registers, 8 windows
Multiplier 32 x 32bits
Divider iterative

TABLE II
SUMMARY OF THE SYNTHESIS OF THE QUAD-CORE LEON3 DESIGN.

Technology 130nm
memory blocks 44
standard cells 82,461
nets 87,451
Average fanout 2.46
Total cell area (um2) 6,101,542
Target clock period (ns) 3.333
Slack (ns) 0

as well as local vias. Note that there is no TSV on Die 3.
The top view of a TSV is shown on the right. A TSV pin
pad (PP) on M1 or a landing pad (LP) on M6 occupies two
standard cell rows (denoted by the dotted lines), which is not
negligible considering that the area corresponds to about 16
minimum-size inverters.

Depending on the TSV dimensions, the capacitance (CTSV)
and the resistance (RTSV) of TSVs varies. Since the timing
values through these TSVs depend on the parasitic values, we
varied the values to see the impact on timing. TSV resistance
is dependent on ohmic resistance and contact resistance, the
contact resistance being more dominant. In this paper, we used
CTSV =25, 50fF and RTSV =1Ω for experiments.

B. Architecture

We use the LEON3 processor [6] to demonstrate our 3D
timing analysis and optimization. The LEON3 processor is a
32-bit processor compliant with the SPARC V8 architecture.
It contains an advanced 7-stage pipeline with a hardware mul-
tiplier and divider. The LEON3 design also has configurable
caches and local instruction and data scratch memories. It is
configurable as a multi-core processor on AMBA bus. For
this project we configured a quad-core processor with a single
configuration for all the cores, which is described in Table I.

Table II summarizes the synthesis results. We used Synop-
sys Design Compiler with the physical libraries for the target
technology. Memory macro blocks were generated using a
memory compiler for the target technology. The original HDL
source code was modified to include the memory blocks. The
synthesized circuit met the timing goal, excluding interconnect
delay.

The memory macro blocks in the core are summarized in
Table III. Total 11 memory macro blocks are used per each
core, which are as follows in decreasing size: two banks per
instruction and data caches, two dual port memory blocks for
a three-port register file, two banks per instruction/data cache
tags, and an address translation table. Since these macro blocks
are large, the location and orientation of them affect the overall
design quality much. Thus they should be placed carefully,

TABLE III
SUMMARY OF THE MEMORY MACRO BLOCKS.

Name Capacity (bits) Dimension (um) I/O pins
Instr./Data cache 2048x32 427.205x544.295 78
Register file 256x32 401.29x193.265 84
Instr./Data cache tag 256x40 269.035x178.805 91
Address translation 32x32 131.915x108.805 72

Core 0

Core 1

Core 2

Core 3

Core 0 Core 1

Core 2 Core 3

Core 1

Core 2 Core 3

busbus

Core 1

Core 2 Core 3

inst $

RF, TLB

data $

ALU

gates, $

gates, $

gates, $

gates, $

(a) 2D (b) 3D core

(c) 3D block (d) 3D gate

Fig. 2. Four design options. Blocks highlighted in orange denote Core 0. inst
$ and data $ denote instruction and data cache, while RF and TLB represent
register file and address translation buffer.

considering connections to other parts.

III. DESIGN OPTIONS

There are three 3D partitioning options that we examine
and compare to a traditional 2D design. Fig. 2 shows the four
design options. The following list summarizes them:
• 2D (2D): This is the traditional design on a single die.

The bus controller in the center connects the cores. No
TSV exists in this design option.

• 3D core-level partition (3D-core): Each core is placed
on each die, and the bus controller is placed on Die 1.
TSVs are used to connect cores on Die 0/2/3 to the bus
controller. Minimal number of TSVs is used.

• 3D block-level partition (3D-block): The processor core
is partitioned in core+memory style and stacked. On Die
1, all the core logics and the bus controller are placed,
while on Die 0/2/3 all the memory blocks are placed. A
moderate number of TSVs are used to connect the blocks
to the core logics.

• 3D gate-level partition (3D-gate): The whole circuit is
partitioned into four parts, and mapped onto four dies.
The memory blocks are also placed on four dies. This
design uses the largest number of TSVs.

In the following subsections we describe design flows of
the design options in detail.

A. 2D

For 2D IC design style, we follow a conventional 2D
design flow. Starting with the synthesized netlist, we perform
floorplanning, placement, routing and timing optimization.

Clock tree is out of our scope; an ideal clock is assumed.
In the floorplan step, we divide the whole chip area into four
core regions and a bus region, and decide the memory macro
block locations inside core regions. An identical macro block
placement is used for all cores, with proper rotations to face
cores towards the bus. In the center region the AMBA bus
controller logic is placed.

B. 3D-core

The main idea of this design option is to reuse existing 2D
core design and expand in 3D with minimum effort. In this
option, we place one core on each die. We use the same macro
block placement per core as in 2D case. The bus controller
logic is placed on Die 1 which connects the core on Die 1 as
well as the cores on Die 0, 2, and 3 using TSVs. All the TSVs
are manually placed outside the core region, in a clustered
fashion.

C. 3D-block

We divide a single core into logic cells and memory blocks.
Then all the logic cells are placed on Die 1, while the memory
blocks are placed on Die 0, 2, and 3. The reason for placing
logic cells on the Die 1 is to minimize the total distance
to memory blocks. Note that the ordering of logic cell die
and memory die is important, because the relationship is
asymmetric. For instance, if the memory blocks are on Die
0 and the logic cells are on Die 1, the TSVs that connects
memory blocks to logic cells are on Die 0, which means the
active device space on Die 0 is consumed by TSVs while no
active device space is needed on Die 1. On the other hand,
if the logic cells are on Die 0 and the memory blocks are on
Die 1, the TSVs will consume the active device space on the
logic cell die. Thus, with our configuration, TSV connections
to memory blocks on Die 2 and 3 occupy the active device
space on logic cell die (Die 1).

Due to the shape of the biggest memory blocks (instruction
and data cache banks), the core region is rectangular. All TSVs
are manually placed around the pins of memory blocks. Since
the pin pitch of memory blocks is smaller than the minimum
pitch of our TSV, we put the TSVs in multiple rows, trying to
reduce the distances between memory pins and TSVs. Since
connections between the core logics and the memory blocks on
Die 3 has to go through Die 2, we placed pass-through TSVs
on Die 2, avoiding contact to the memory blocks on Die 2.
Four of this four die stack are put together on x-y plane to
form the quad-core processor.

D. 3D-gate

Our last design option is based on gate-level partitioning.
First, the input netlist is partitioned into four parts. The
memory blocks in the netlist are very large compared to the
standard cells, thus we take care of them first. Per a core, each
die has a bank of either the instruction cache or the data cache,
and its cache tag. In addition, Die 0 has the address translation
table, whereas Die 1 and 2 have a bank of the register file each.
The location of these memory blocks are manually determined

considering pin locations as well as net connectivity. Then the
standard cells are placed in 3D by the recursive partitioning
technique [7].

IV. 3D TIMING ANALYSIS AND OPTIMIZATION

In this section we discuss the 3D timing analysis and
optimization techniques.

A. 3D Timing Analysis

Our 3D static timing analysis (STA) is performed using
Synopsys PrimeTime. First, we prepare the Verilog netlist
files of all four dies and the SPEF files containing extracted
parasitic values for all the nets of the dies. Then, we create a
top-level Verilog netlist that instantiates each die design and
connects the 3D nets using TSV connections. We also create
a top-level SPEF file that has parasitic models of the TSVs.
After that, we run PrimeTime to get the 3D timing analysis
results. The worst negative slack (WNS) and the total negative
slack (TNS) are reported to demonstrate the timing quality of
the design. Meanwhile, we generate timing constraints from
the timing analysis results to perform 3D timing optimization.

B. 3D Timing Optimization

Considering that each die design is a subdesign of the entire
design, 3D IC designs are essentially hierarchical. Thus we
perform the 3D timing optimization in a hierarchical manner.
Compared to a non-hierarchical design flow, in a hierarchical
design flow the timing constraints on the boundary is important
because it is the key information that the timing optimization
engine uses. We work on the timing optimization of each die
with timing constraints on the die boundaries (TSV PP and LP
ports). We demonstrate two methods to generate the timing
constraints: timing scaling and timing budgeting.

1) Timing Scaling: Timing scaling method is to scale the
input/output delay timing constraints at each boundary point.
Consider a 3D path from a source F/F in a die through a
die boundary to a sink F/F in a neighbor die. After the 3D
timing analysis is done, we get the longest path delay from
the source to the sink (= TLPD) as well as the delay up to
the die boundary (= Tboundary). To achieve the target clock
period TCLK , ideally we need to make TLPD the same as
TCLK . Thus, we set the scaling factor SF = TCLK/TLPD.
Then we calculate the scaled boundary constraints as follows:

Tboundary,scaled = Tboundary × SF

The updated timing constraint file is used in the timing
optimization. By this method, all the 3D paths are constrained
so as to meet the target clock period. We implemented this
method in PrimeTime Tcl and Perl.

2) Timing Budgeting: Timing budgeting [8] is to distribute
the timing slack of a path to each net on the path. This method
analyzes the timing graph of the entire circuit to find out where
the critical paths are. Nets on non-critical paths can be given
a positive timing budget which can be used for other circuit
optimizations such as area and power minimization. On the
other hand, nets on critical paths are given negative timing

Perform initial placement and circuit extraction

Make top level netlist and TSV model
Initial 3D STA

Calculate scaling factor Run timing budgeting
Generate timing constraints Generate timing constraints
Timing optimization per die Timing optimization per die

Circuit extraction Circuit extraction

3D STA 3D STA

iteration iteration

(a) With timing scaling (b) With timing budgeting

Fig. 3. Design flow with timing scaling and timing budgeting.

TABLE IV
EXPERIMENTAL SETTINGS.

2D 3D-core 3D-block 3D-gate
Die size (µm2) 2900x2600 1500x1300 1709x1151 1500x1400
Total area (µm2) 7.54E6 7.80E6 7.87E6 8.40E6
Footprint (µm2) 7.54E6 1.95E6 1.97E6 2.10E6

budgets, which means the delays of the nets should be reduced
by timing optimization. We use Synopsys Design Compiler to
perform timing budgeting.

The overall design flow is shown in Fig. 3. With the
generated timing constraints, timing optimization is performed
by Encounter. We iterate the optimization loop several times.

V. EXPERIMENTAL RESULTS

Experimental settings are shown in Table IV. All 3D cases
use four dies. Target clock period was set to 3.333ns. For 2D
case, the chip area was chosen so that the initial utilization is
around 80%, whereas for 3D cases chip area was expanded
considering the TSV impact. The default RTSV and CTSV

were 1Ω and 25fF , respectively.

A. Initial Design Results

Fig. 4 shows the Cadence Encounter images of top-dies (Die
0) in the four design styles we study in this paper. Fig. 5 shows
zoom-in shots of the GDSII images using Cadence Virtuoso.
Table V shows the initial design results of the design options
before timing optimization. Due to the pre-place optimization,
the total number of placed instances differs for each design. In
3D-gate case the utilization is set to a lower value than other
cases, because when the utilization is set at the same level as
in other cases, after timing optimization the design had severe
congestion and too high utilization. The number of TSVs
is the smallest in 3D-core case, while 3D-block uses about
9.6 times more TSVs than 3D-core case. 3D-gate case uses
about 82% more TSVs than 3D-block case. As the designs
use more TSVs, the total wirelength decreases. In particular,
3D-gate case shows 22.6% shorter total wirelength than 2D
case. However, shorter total wirelengths do not always lead to
better timing results as we will see in Subsection V-B.

The wirelength distributions of the design options are shown
in Fig. 6. Compared to 2D case, 3D-core shows less number

Fig. 5. Left: TSVs and gates. Right: routing to TSVs. (Cadence Virtuoso
GDSII shots)

1 10 100 1000 104
1

10

100

1000

104

1 10 100 1000 104
1

10

100

1000

104

1 10 100 1000 104
1

10

100

1000

104

(a) 2D (b) 3D-core

(d) 3D-gate(c) 3D-block

1 10 100 1000 104
1

10

100

1000

104

Fig. 6. Wirelength distribution of design options before timing optimization.
The x-axis is wirelength in µm and the y-axis is net count.

of nets around 1, 000µm because the distances between cores
and the bus controller have been reduced by TSVs. Compared
to 3D-core case, in 3D-block case there are more nets with
very short wirelengths (< 4µm), yet there are still several nets
with long wirelengths. Compared to other cases, the overall
distribution of 3D-gate has been shifted towards left, and there
are no net with a very long wirelength. The nets in 3D-gate
case generally have shorter wirelengths than other cases.

-8

-6

-4

-2

0

0 1 2 3 4

W
NS

 (n
s)

Iterations

3D-core
3D-block
3D-gate

Fig. 7. WNS values of 3D-core, 3D-block, and 3D-gate cases with timing
budgeting when CTSV = 25fF .

(a) 2D

(c) 3D-block

(b) 3D-core
(c) 3D-gate

Fig. 4. Top-die layouts of the four design styles drawn in scale. (Cadence Encounter shots)

TABLE V
INITIAL LAYOUT RESULTS FOR THE DESIGN OPTIONS. UTILIZATION MEANS AREA UTILIZATION INCLUDING STANDARD CELLS AND MEMORY BLOCKS ,

AND WIRELENGTH MEANS TOTAL WIRELENGTH.

2D 3D-core 3D-block 3D-gate
Die 0 Die 1 Die 2 Die 3 total Die 0 Die 1 Die 2 Die 3 total Die 0 Die 1 Die 2 Die 3 total

instances 84,562 21,093 24,368 21,672 21,048 88,181 8 86,618 28 8 86,662 26,179 18,630 20,711 28,271 93,791
Utilization (%) 80.97 78.15 79.85 78.39 78.15 78.64 94.61 48.46 73.58 94.61 77.81 70.29 78.32 78.11 67.62 73.59
TSVs 0 112 222 111 0 445 624 3,040 624 0 4,288 2,345 2,388 3,089 0 7,822
Wirelength (m) 6.405 1.476 1.587 1.462 1.483 6.008 0.027 5.087 0.074 0.027 5.215 1.352 0.963 0.981 1.663 4.959

B. Timing Optimization

Fig. 7 shows how the WNS value of 3D-core, 3D-block,
and 3D-gate changes during the timing optimization iterations.
The biggest reduction of WNS was observed in the first
optimization. In 3D-core case, WNS converged fast after the
first iteration, while in 3D-block and 3D-gate cases WNS kept
decreasing during the four iterations.

Table VI shows the results of our 3D timing optimization.
Comparing the results to the ones in Table V, we can see
that the total wirelengths increased by 2.4%, 12.9%, and
47.7% in 3D-core, 3D-block, and 3D-gate cases with timing
budgeting. Compared to the increase of 1.6% in 2D case,
the wirelength increase is severe in 3D-gate case. Also the
utilization values increased after the optimization, due to the
gate sizing and buffer insertion by the optimization engine to
meet the timing goal. From the WNS values, we can see that
3D-core design can operate 13% faster than 2D design. Other
designs are slower than 2D, especially 3D-gate case. In terms
of TNS, 3D-core is better than 3D-block. In 3D-gate case,
although average utilization was around 80%, the designs had
very densely packed placement regions around center, which
prevented further timing optimizations. In sum, 3D-core with
timing budgeting resulted in the best quality circuit in terms

of timing.
Fig. 8 shows the timing critical path after timing optimiza-

tion for the 3D-gate design. The path starts on Die 2, goes
down to Die 1, comes back to Die 2, goes down deeper to
Die 1 and 0 and comes back to Die 1 and 2, then goes up to
Die 3 and comes back to Die 2, goes down to Die 1 and comes
back to Die 2, then goes up to Die 3 where the path ends. This
path snakes through the entire stack, involving many TSVs.
Looking at the path from (1) to (8), we can see that the path
goes through the dies back and forth. And the path from (8)
to (10) as well as the path from (22) to (24) could be shorter
if the gates at (9) and (23) are placed closer to (8) and (22),
although it may affect other nets that are connected to this
path. Since we know that this path is the critical path, we
could move these gates and TSVs to make the entire path
shorter. Also we may decrease the delay of the entire path by
making the path encompass less number of dies thus using
less number of TSVs. This demonstrates the need for a real
3D-aware placer for TSVs.

C. Impact of TSV parasitics

To see the impact of TSV parasitics on timing, we op-
timized the 3D designs with different CTSV . For all three
design options, the utilization and the total wirelength slightly

TABLE VI
TIMING OPTIMIZATION RESULTS WHEN CTSV = 25fF .

2D 3D-core 3D-block 3D-gate
scaling budgeting scaling budgeting scaling budgeting

inserted buffers 9,177 8,758 8,516 11,310 11,223 13,557 13,528
Utilization (%) 85.59 83.22 83.14 82.88 82.98 80.07 79.56
Wirelength (m) 6.51 6.176 6.15 5.728 5.89 7.346 7.323
WNS (ns) -0.357 -0.478 -0.310 -0.659 -0.543 -1.694 -1.884
TNS (ns) -344 -169 -182 -237 -194 -2522 -2691

(a) Die 0 (b) Die 1

(c) Die 2 (d) Die 3
(1)

(11)

(1)

(2)

(5)

(11)

(3)

(8)
(10)

(14)

(25)
(27) (26)

(15)

(9)

(4)
(12)

(13)

(6)

(18)
(19) (20)

(21)
(30)

(31)
(7)

(16)

(17)(22)
(24)(28)

(29)

(23)

Fig. 8. Layout snapshots of dies for 3D-gate, with timing critical path
highlighted in white. Numbers in bright yellow represent the path sequence.
Small blue squares are TSV PPs on M1, and orange squares are TSV LPs on
M6.

increased with higher CTSV . This is because the optimization
engine tends to insert more buffers and upsize gates with
higher CTSV . The WNS of 3D-block when CTSV is 25fF
was lower than when CTSV is 0fF . Checking on the timing
constraints, we found that when CTSV is 0fF , the timing
constraints were not tight enough, thus the optimization engine
did not perform enough optimization. The WNS and the TNS
of 3D-gate degraded quickly with increased CTSV . That is
because the TSV count is rather high in 3D-gate case, thus
more timing paths are affected by increased CTSV . Also the
TNS of 3D-block degrades with higher CTSV . In contrast, 3D-
core case was not so much affected by CTSV variation. We
may conclude that when the TSV count is high, the overall
timing quality is more likely to be affected by TSV parasitics.

VI. DISCUSSIONS

From this study, we found the following noteworthy points.
• Even though the speed of convergence with timing bud-

geting method was slower than timing scaling, it led
to better timing results. When the 3D timing path goes

76

78

80

82

84

0 25 50

Ut
iliz

at
ion

 (%
)

TSV capacitance (fF)

3D-core
3D-block
3D-gate

5

6

7

8

0 25 50

To
ta

l w
ire

len
gt

h
(m

)

TSV capacitance (fF)

-2.5

-2

-1.5

-1

-0.5

0

0 25 50

W
NS

 (n
s)

TSV capacitance (fF)

-3100

-2100

-1100

-100

0 25 50

TN
S

(n
s)

TSV capacitance (fF)

Fig. 9. The impact of TSV parasitics on various metrics. CTSV = 0fF
means ignoring the parasitics of TSVs. Timing budgeting was used for
optimization.

through many gates, we need more accurate ways of
generating timing constraints than merely scaling the
timing constraints obtained from 3D STA.

• The impact of the TSV parasitics on design quality is
significant; TSV parasitics affected the overall quality of
the design in terms of area utilization, wirelength, and
timing.

• It is possible to perform timing optimization with exist-
ing 2D CAD tools by providing timing constraints on
the boundaries of design hierarchy, however we cannot
exploit the full benefit of 3D structure. The 2D EDA tool
does not see the whole 3D picture, thus various pow-
erful optimization techniques such as net transformation
and restructuring cannot be performed. This shortcoming
could get worse when more dies are stacked together,
thus true 3D EDA tool development is required to enable
higher level of integration.

• The placement of gates and TSVs should be 3D-timing-
aware. In this study we performed the standard cell
placement for 3D-gate case using non-timing-aware,
wirelength driven 3D placer. However, due to the TSV
parasitics the optimization engine inserted many buffers
as well as increased gate sizes. Thus the placement had
too densely packed regions, leading to premature gate
sizing and buffer insertion.

VII. CONCLUSIONS

In this paper, we presented the timing analysis and optimiza-
tion of a quad-core microprocessor in 3D ICs. Three different
partitioning options for 3D ICs were explored in layout level
and timing results were analyzed. Current commercial 2D
EDA tools cannot fully utilize benefits of 3D, which calls
for the development of 3D-aware design tools. Our timing
optimization did not lead to an optimal design, because the
partitioner and placer were not 3D-timing-aware, and opti-
mization was not aggressive enough.

TSV parasitics affected the overall quality of the design in
terms of utilization, wirelength, and timing. With high TSV
parasitics, it is better not to use too many TSVs, because of
buffering cost and timing degradation by TSVs. Furthermore,
the target circuit size also correlates to the benefit of 3D IC,
because the relative size of the capacitance of a TSV and a
metal wire matters. In large circuits, we have better chance
of improving the delay along timing paths with long wires by
adopting 3D connections. Conversely, with small and simple
circuits, it would not be beneficial to implement a 3D design.
Our future works include further timing optimizations with
buffer insertion and wire/driver sizing for timing critical 3D
nets.

REFERENCES

[1] S. J. K. et al., “Wafer-level 3D integration technology,” IBM Journal of
Research and Development, vol. 52, no. 6, pp. 583–597, 2008.

[2] J. Minz, E. Wong, M. Pathak, and S. K. Lim, “Placement and Routing
for 3D System-On-Package Designs,” IEEE Transactions on Components
and Packaging Technologies, vol. 29, no. 3, pp. 644–657, 2006.

[3] M. Pathak and S. K. Lim, “Thermal-aware Steiner Routing for 3D Stacked
ICs,” in Proc. IEEE Int. Conf. on Computer-Aided Design, 2007, pp. 205–
211.

[4] S.-M. J. et al., “Three Dimensionally Stacked NAND Flash Memory
Technology Using Stacking Single Crystal Si Layers on ILD and TANOS
Structure for Beyond 30nm Node,” in International Electron Device
Meeting, 2006, pp. 37–40.

[5] V. S. et al., “Megapixel CMOS Image Sensor Fabricated in Three-
Dimensional Integrated Circuit Technology,” in IEEE International Solid-
States Circuits Conf., 2005.

[6] A. G. AB., “Leon3 Processor.” [Online]. Available:
http://www.gaisler.com/

[7] M. Pathak, Y.-J. Lee, T. Moon, and S. K. Lim, “Through Silicon Via
Management during 3D Physical Design: When to Add and How Many?”
in Proc. IEEE Int. Conf. on Computer-Aided Design, 2010, to appear.

[8] R. Nair, C. L. Berman, P. S. Hauge, and E. J. Yoffa, “Generation of
performance constraints for layout,” IEEE Transactions on Computer-
Aided Design, vol. 8, pp. 860–874, Aug. 1989.

