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Recently, GPU-accelerated placers such as DREAMPlace and Xplace have demonstrated their superiority

over traditional CPU-reliant placers by achieving orders of magnitude speed up in placement runtime. How-

ever, due to their limited focus in placement objectives (e.g., wirelength and density), the placement quality

achieved by DREAMPlace or Xplace is not comparable to that of commercial tools. In this article, to bridge

the gap between open source and commercial placers, we present a novel placement optimization frame-

work named GAN-Place that employs generative adversarial learning to transfer the placement quality of

the industry-leading commercial placer, Synopsys ICC2, to existing open source GPU-accelerated placers

(DREAMPlace and Xplace). Without the knowledge of the underlying proprietary algorithms or constraints

used by the commercial tools, our framework facilitates transfer learning to directly enhance the open source

placers by optimizing the proposed differentiable loss that denotes the “similarity” between DREAMPlace- or

Xplace-generated placements and those in commercial databases. Experimental results on seven industrial

designs not only show that our GAN-Place immediately improves the Power, Performance, and Area metrics

at the placement stage but also demonstrates that these improvements last firmly to the post-route stage,

where we observe improvements by up to 8.3% in wirelength, 7.4% in power, and 37.6% in Total Negative

Slack on a commercial CPU benchmark.
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1 INTRODUCTION

With the ever-increasing technology scaling driven by Moore’s Law, modern Very Large-Scale

Integration (VLSI) designs easily comprise millions, if not billions, of instances that must be
placed onto constrained layouts. Unfortunately, existing commercial Electronic Design Automa-
tion tools heavily rely on CPU-intensive heuristics or analytical objectives to solve the placement
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problem, which is often inadequate in generating high-quality placements within a reasonable
amount of runtime. To address this issue, open source GPU-acceleratable analytical placers,
DREAMPlace [11] and Xplace [13], are proposed to exploit the parallelization capabilities of GPU
kernels to significantly reduce placement runtime. Particularly, the original CPU-intensive objec-
tive functions are reformulated into GPU-acceleratable cuda kernels that leverage GPU-specific
blocks and threads to expedite analytical computations without sacrificing solution quality.

Despite the significant success achieved by DREAMPlace and Xplace, the placement solution
quality of these GPU-accelerated placers is still inferior to those of commercial tools. The key
reason is that these placers, as there CPU counterparts, the ePlace/RePlace family [3, 14], only have
limited placement objective focus on wirelength and density. Particularly, they cannot consume
many other essential constraints (e.g., timing, power) as commercial Physical Design (PD) tools,
leading to inferior placement quality in terms of full-chip Power, Performance, and Area (PPA)

metrics. This motivates us to ask the following question: Is there any way to advance DREAMPlace
toward commercial-quality without knowing the secret sauces of those black-boxed commercial
engines? In this article, we prove that the answer is yes, particularly via generative adversarial
learning [20].

In this work, we present the first-ever learning-driven placement optimization framework
named GAN-Place that can be directly integrated with any GPU-accelerated placer (e.g., DREAM-
Place or Xplace) to advance the placement quality toward commercial-quality using generative
adversarial learning. The key idea is that although we do not know the underlying algorithms
or constraints used by the tools, we can “quantify placement similarity” between tool-optimized
placements and DREAMPlace- or Xplace-generated placements using generative learning, and by
optimizing the differentiable similarity scores computed from the proposed discriminators, we
can narrow the distribution gap between open source and commercial placers. Our is a simple
yet highly effective, which is greatly motivated by the success of Generative Adversarial Net-

works (GANs) [5] in real-world applications, where signals in different domains (e.g., texts and
images) can be converted to each other by parameterizing target distributions using differentiable
frameworks.

Figure 1 presents a high-level overview of GAN-Place, where the underlying GPU-accelerated
placer is considered as a “generator” whose goal is to generate the placements that follow similar
distributions as the tool-optimized ones in the databases (which are optimized for different PPA ob-
jectives). To achieve this, two discriminators built upon Convolutional Neural Networks (CNN)

and Graph Neural Networks (GNN) are developed to quantify the placement similarity between
two types of placement (i.e., gpu placer-generated and tool-optimized). The goal of the discrimina-
tor is to make correct judgements by telling whether its input is coming from commercial databases
or DREAMPlace, whereas one of the objectives of DREAMPlace (in our GAN-Place settings) is to
“fool” the discriminator by generating similar (or realistic) placements as the ones in the database.
Specifically, the GNN-based discriminator is dedicated to encode netlist connectivity with cell lo-
cations as node attributes, and the CNN-based discriminator is dedicated to encode bin-density
maps resulted from the underlying cell locations.

The goal of this work is to demonstrate that the placement quality (or style) of a placer (e.g.,
commercial placer) can be transferred onto another placer without knowing the underlying al-
gorithms or constraints through generative adversarial learning. Particularly, we show that any
GPU-accelerated placer that serves as a differentiable placement engine can be elegantly consid-
ered as a generator that generates tool-alike placements of the underlying gate-level input netlists.
The greatest strength of GAN-Place is that it enables any differentiable placer to optimize the un-
derlying placement toward a commercial tool-verified (and optimized) direction without explicitly
knowing the black-boxed algorithms. Although DREAMPlace or Xplace leverages fundamentally
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Fig. 1. High-level overview of our GAN-Place framework that performs placement optimization using gen-
erative adversarial learning. Note that GAN-Place can be integrated with any GPU-accelerated placer to
improve placement quality. In this work, we particularly showcase the integration with DREAMPlace [11]
and Xplace [13].

different algorithms compared with the tools, in this work, we demonstrate that the placement
quality of these open source placers can be efficiently improved with the proposed framework
GAN-Place.

2 RELATED WORKS AND MOTIVATIONS

Analytical placers [2, 3, 7, 8, 14] have brought tremendous success to the semiconductor industry
since the early 2010s [10]. Nevertheless, recent advancements in ML Theory and its applications
have further pushed modern placers to an unprecedented frontier [9]. Based on the characteristics
of learning strategies, existing learning-driven frameworks for VLSI placement can be categorized
into the following streams:

— Supervised Placement Quality Prediction: These categories include the works who strive to
predict crucial placement-related metrics in early stages of the design flow, which typically
rely on pre-built databases with comprehensive data. A recent work [4] developed an en-
semble framework to predict post-place congestion and timing metrics based on a massive
database that contains millions of instances from 72 industrial designs. To extend the pre-
diction scope from single-stage to full-flow modeling [15, 18], developed learning-driven
flow-based graph modeling techniques using GNNs to predict end-of-flow PPA metrics for
each intermediate placement stage, allowing designers to perform efficient design space ex-
ploration.

— Unsupervised Placement Optimization: This category refers to the works who aim to develop
ML frameworks that directly perform placement optimization without a pre-built database.
In other words, they often directly consider ML models as optimization rather than pre-
diction frameworks. Reference [19] presented the PL-GNN framework that generates cell
clustering constraints as placement guidance using GNNs to advance commercial placers.
The key idea is to drive commercial placers to spend additional effort in placing the cells
belonging to the same ML-predicted cluster closer to each other to improve the overall PPA
metrics. However, the framework in Reference [19] is not “goal-directed” as the graph learn-
ing and the clustering steps are not end-to-end-differentiable, which prohibits GNN models
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from utilizing feedback from the achieved optimization results. To overcome this problem,
the authors of Reference [21] developed differentiable PPA-inspired ML loss functions to im-
prove the GNN learning process with direct optimization feedback, which includes timing,
power, and congestion evaluations of the clustering results.

— Reinforcement Learning (RL) Placement Optimization: RL is a promising paradigm that
has shown superior optimization results in high-dimensional control problems. The authors
of Reference [22] presented a seminal work that leveraged RL for macro placement to re-
place human labor, which significantly improves the chip design turn-around time. Another
work [1] utilized RL to efficiently tune the placement parameters of commercial placers
through thousands of iterations. Still another work [24] further combined simulated anneal-
ing and RL in a cyclic fashion to conduct iterative placement optimization. However, given
that RL algorithms typically demand significant training time, this article focuses on place-
ment optimization techniques that do not incur excessive overhead to enhance placement
quality.

In this work, we take a brand new perspective to solve the VLSI placement optimization prob-
lem using generative adversarial learning [5]. In the realm of PD, previous work [16] has shown
that the generative learning conducted by GAN can elegantly optimize the Clock Tree Synthe-

sis (CTS) process of commercial tools without knowing the algorithms inside the black-boxed
CTS engine. Motivated by Reference [16], in this article, we aim to leverage GAN-based mod-
els to demystify commercial black-boxed placers so as to improve open source placers: DREAM-
Place [12] and Xplace [13] toward commercial-quality. Particularly, we consider any vanilla open
source placer as a generator in a conventional GAN-based framework whose goal is to gener-
ate commercial-quality placements from an unplaced input netlist. To achieve this, we first build a
relevant database containing commercial-quality placements with different objectives (e.g., timing-
driven, power-driven, congestion-driven, etc.) using Synopsys ICC2, an industry-leading commer-
cial tool. We then develop a discriminator that serves as a teacher to improve DREAMPlace by
optimizing the similarity scores between DREAMPlace-generated placements and the ones in
the commercial database as shown in Figure 1. By minimizing the similarity loss, the underly-
ing cell locations of DREAMPlace- or Xplace-generated placements will be updated through gra-
dient descent, which effectively become more similar to the tool-generated placements in the
database.

3 GAN-PLACE OVERVIEW

It is widely acknowledged that generative adversarial learning is a promising paradigm that ef-
fectively captures complicated distributions using generative and discriminative models that have
“opposite” objectives. Generally speaking, the goal of the generator is to generate target distribu-
tion alike data from random (or non-meaningful) distributions, while the goal of the discriminator
is to distinguish the source of its inputs (i.e., from the generator or from the target distribution).
Note that both generator and discriminator can be realized by any differentiable system (i.e., not
necessarily neural networks). As aforementioned, in this article we consider DREAMPlace, a differ-
entiable placement system, as a generator whose goal is to generate placements that follow similar
distributions as the ones in a tool-optimized database.

Our discriminator leverages CNNs and GNNs to determine the origin of its input source that
alternates in each iteration of GAN training, where CNNs are responsible to encode cell bin-density
maps and GNNs are responsible to encode netlist connectivity. The rationale behind using GNNs
for netlist encoding is that netlists are essentially hypergraphs whose node connectivity is critical
to placers. The motivation behind using CNNs for bin-density map encoding is shown in Figure 2.
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Fig. 2. Comparison of cell density maps between DREAMPlace and Synopsys ICC2 under the same global
placement density target. It is observed that the commercial tool has extra intelligence on where to locally
aggregate or spread out cells to optimize crucial PPA metrics while satisfying the global density constraints.

Fig. 3. Difference in placement objectives between a vanilla GPU-accelerated (i.e., differentiable) placer and
GAN-Place at each placement iteration. The cell locations generated in GAN-Place are encouraged to follow
the ones in commercial database by optimizing the similarity scores.

We observe that under the same global density target, the commercial tool has extra intelligence on
locally aggregating or loosening cells to improve design PPA metrics globally, where DREAMPlace
naively strives to make every local bin to have the same local density target as the global density
target. This density variation is proven to be critical to the success of placement optimization in
Reference [21]. The observation shown in Figure 2 strongly motivates us to leverage bin-density
map as one the indicators of placement similarity, and CNNs thus become the second-to-none
choice to perform encoding on it as they are well known for grid signals (e.g., images) classification.

Figure 3 shows the key objective difference between the proposed framework GAN-Place and
the vanilla GPU-acceleratable (i.e., differentiable) placer. Aside from optimizing the wirelength

(WL) and density objectives as in the vanilla placer on the left, in each placement iteration, GAN-
Place further computes a differentiable similarity loss using GNN-based and CNN-based discrim-
inators. Note that the in our generative settings, the input design of GAN-Place and the designs
in the commercial database are not necessarily the same. That is, GAN-Place facilitates transfer
learning to perform placement optimization on unseen netlists, which is the greatest strength of
the proposed method.
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Table 1. Parameters We Leverage for Database Generation

ICC2 parameters type (values) description

set_qor_strategy enum (3) set optimization priority
low_power_effort enum (4) effort in low power optimization
congestion_effort enum (3) effort in congestion optimization

is_timing_driven bool (2) is timing-driven placement
is_power_driven bool (2) is power-driven placement

buffer_aware bool (2) buffering of high-fanout nets

coarse_density float ([0.7,0.9]) density of global placement
target_route_density float ([0.7,0.9]) density of early global routing

3.1 Commercial Database Construction

A high-quality placer is helpful to demonstrate the proposed placement optimization technique
using generative adversarial learning. In this article, we take Synopsys ICC2, an industry-leading
commercial tool, as our reference tool for database construction. Particularly, we sweep around
essential placement parameters offered by ICC2 as shown in Table 1. The combinations of these
parameters form a high-dimensional space, leading to a variety of placements that have distinct
PPA focus, including performance-driven placements, low-power placements, routability-driven
placements, and so on. Nonetheless, we want to emphasize that our framework GAN-Place is not
limited to any objective focus. It can be equipped with any database to transfer the placement
quality (or style) within onto the targeted placer (e.g., DREAMPlace or Xpalce). More importantly,
the designs in the database and the designs that the targeted placer is optimizing do not have to be
the same as GAN-Place facilitates transfer learning for placement optimization. The goal of this
work is to demonstrate that GAN-Place can perform efficient placement optimization on unseen
netlists using a tool-optimized database where the placements are not necessarily coming from
the same design.

4 GAN-PLACE ALGORITHMS

The key idea of GAN-Place is to transfer the placement quality (or more precisely, style) of one
placer onto another through generative adversarial learning. To achieve this, a discriminator built
upon GNNs and CNNs is developed to quantify similarity of placements between different placers.
Since the similarity scores have to be differentiable to update the underlying cell locations (so as to
improve DREAMPlace), a differentiable graph pooling methodology is adopted, and a differentiable
bin-density map transformation technique named Soft-Bin is proposed.

4.1 VLSI Netlist Encoding Using GNNs

Graph representation learning conducted by GNNs is an effective technique to encode netlist con-
nectivity and the underlying attributes into a meaningful graph- or node-level representations [17]
In the realm of PD, such encoded representations have been leveraged to successfully solve many
tasks that are once considered extremely hard to solve [23]. In this article, we specifically lever-
age GNNs to encode netlist graph G = (V ,E) of the underlying placement while considering
cell locations as initial attributes. The results graph-level vectors are further taken as the input
of the proceeding GNN-based discriminator network to decide the similarity between different
placements.

To apply GNNs for solving VLSI problems, a netlist transformation technique is required to
transform the netlist hypergraphs into normal graphs. A naive transformation that assigns a GNN
message passing edge between each cell on the same net will introduce O (n2) edges, which may
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Fig. 4. Illustration of GNN netlist transformation and graph pooling. First, following Reference [21], we
perform timing-aware netlist transformation by only taking timing arcs as GNN message passing edges.
Then, we perform attention graph pooling to construct the final graph-level vector that characterizes the
input placement. Note that the poolings are differentiable (i.e, learnable), meaning that the clustering results
(e.g., {a, c, e} is now a cluster) will change across training iterations. The obtained graph-level vector is fed
to downstream networks to quantify placement similarity.

damage the quality of graph learning as redundant edges limit the expressiveness of GNNs [25].
To overcome this issue, in this work, we adopt the netlist transformation technique proposed in
Reference [21] that for every net in the original netlist graph, only driver-to-load connections are
added in the transformed graph, and beyond that, artificial edges are introduced between every
start points and end points of timing paths.

Figure 4 illustrates the graph learning process of the proposed GAN-Place framework. Starting
from an input placement, we first perform timing-aware netlist transformation as in Reference [21].
The transformation only preserves timing arcs as GNN message passing edges. Then, following
from GraphSAGE [6], an inductive based message passing process is leveraged to transform the
initial features of each node into better representations through neighborhood aggregation as

hk−1
N eiдh (v ) = reduce_mean

(
{Waдд

k
hk−1

u , ∀u ∈ Neiдh(v )}
)
,

hk
v = σ

(
W

proj

k
· concat

[
hk−1

v ,hk−1
N eiдh (v )

] )
,

(1)

where k denotes the transformation level, σ denotes the sigmoid function, Neiдh(v ) denotes the

neighbors of node v , andW
aдд

k
andW

proj

k
denote the aggregation and projection matrices at the

kth layer of the GNN model. Note that Equation (1) is repeated for every cell in the design. In the
implementation, our GNN has three layers (K = 3), and each of them has a 32 hidden dimensions.
Hence, the final node embeddings {h3

v ,∀v ∈ V } has 32 dimensions.
At each level k of the node representation learning, a differentiable graph attention pooling

mechanism [26] is applied to coarsen the graph via a soft clustering assignment Ck , where nodes
belonging to the same cluster will be merged into a super-node through mean pooling, which can
be derived as

Hk+1 = CkHk , Ak+1 = Ak
TCkAk , (2)

where Hk = {hk
v ,∀v ∈ V }, Ak denotes the adjacency matrix at level k , and Ck ∈ R |V |k+1x |V |k

denotes the mapping of nodes between level k and level k + 1, where a node v may be merged
into a super-node or stay as itself. At the end of the entire graph representation learning, a mean
pooling is applied across the remaining nodes to obtain the final graph-level vector д, which
is taken as one of the indicators of placement similarity. A graphical illustration of the entire
graph learning process is shown in Figure 4. With the graph pooling strategy, netlist information
will be iteratively condensed into a graph-level vector д that characterizes the underlying input
placement G.
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Fig. 5. GNN-based discriminator that outputs “fake/real” decision using node representation learning based
on different input placement sources.

Finally, we want to emphasize that both GAN-Place generated placements and tool-optimized
placements go through the same graph learning process as shown in Figure 4. Let Dдnn denote
the discriminator network parameters that are related to graph representation learning, the graph
representation learning objective Lдnn can be derived using cross-entropy as

Lдnn =E(G,x,y )∼database

[
loд(Dдnn (G,x ,y))

]

+ E(G,x,y )∼DREAM

[
loд(1 − Dдnn (G,x ,y))

]
.

(3)

Equation (3) reflects the adversarial nature in our GAN-Place framework that depending on the
sources of input, we train the discriminator to make corresponding correct judgements. With
enough training iterations, our GNN module is able to extract the information that tells the key
difference between DREAMPlace-generated placement and the tool-optimized ones.

4.2 GNN-based Discriminator

Figure 5 demonstrates the adversarial learning conducted by GNNs in the proposed framework
GAN-Place. By applying node representation learning on the input placement, which is either
from the commercial database or from the differentiable placement engine, we train the GNN
model to differentiate various placement sources based on netlist connectivity and assigned cell
locations. Note that the goal of GAN-Place is to generate “realistic” placements that are similar to
the ones in the database so as to “fool” the discriminator to predict its generated placements as
coming from the database. Nonetheless, GNN alone is not enough to characterize and differentiate
different placements. For example, to truly encode the difference of the bin-density distribution as
shown in Figure 2, a more direct approach that quantifies the layout information is needed. Hence,
in this work, we leverage CNN-based networks to encode such information.

4.3 Soft-Bin: Differentiable Two-dimensional Bin-Density Map Transformation

So far, we have introduced how GAN-Place encodes netlist connectivity using GNNs by leveraging
a differentiable attention pooling mechanism with cell locations as initial node features. Now, we
present the details of how GAN-Place leverages bin-density maps to characterize and differentiate
different placements with CNNs, where the key motivation behind is illustrated in Figure 2.

It should first be mentioned that most common bin-density calculation method using the sim-
ple formula of dividing the total cell area in a bin by the total bin area is not differentiable, as
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ALGORITHM 1: Soft-Bin Transformation.

Input: G = (V ,E): input netlist, {Xv ,Yv ∀v ∈ V }: cell locations of the input placement,W : with
of floorplan, H : height of floorplan, b_width: bin width, b_heiдht : bin height.

Output: M ∈ R |V |x |V | : differentiable two-dimensional bin-density map.
1: M[∗][∗]← 0 � initialize M to 0

2: bin_area = b_width ∗ b_heiдht
3: num_w ← f loor ( W

b_width
)

4: num_h ← f loor ( H
b_heiдht

)

5: for i = 0; i < num_w ; ++i do

6: for j = 0; j < num_h; ++j do

7: V ′ ← f ilter {i ∗ num_w ≤ Xv < (i + 1) ∗ num_w∀v ∈ V }
8: V ′ ← f ilter {j ∗ num_h ≤ Yv < (j + 1) ∗ num_h∀v ∈ V ′}
9: for v ∈ V ′ do

10: b ← M[i][j]
11: neiдh_bins ← get adjacent or diagonal bins of b
12: dist_vec ← [] � distance vector of cell v to each bin
13: dist_vec .push_back (‖bx −vx ,by −vy ‖2)
14: for nb ∈ neiдh_bins do

15: dist_vec .push_back (‖nbx −vx ,nby −vy ‖2)
16: end for

17: prob_vec ← so f tmax
(
dist_vec−1

)

18: area_vec ← areav ∗ prob_vec � expected values
19: update M by area_vec � add area of each bin to M
20: end for

21: end for

22: end for

23: M ← M
bin_ar ea

� convert expected area to expected density

the act of assigning a cell to a particular bin is deterministic. Although such computation is “ex-
act” and accurate, a probabilistic calculation method is needed to compute gradients based on cell
(x , y) locations so as to improve the underlying placement through gradient descent. To achieve
this, we develop a differentiable bin-density transformation technique named Soft-Bin as shown
in Algorithm 1.

The key idea behind Algorithm 1 is that instead of deterministically assigning each cell to an
exact bin purely based on its location, we can probabilistically distribute the area of a cell onto
its neighboring bins, which can be achieved by any activation function that maps real values into
probabilities. In this article, we use softmax for such computation. The beauty of our probabilistic
bin-density calculation approach is that it enables the underlying cell locations to be updated along
with any operation (i.e., maximization or minimization) of the computed density. That is, with
the proposed Soft-Bin technique, cell locations can be directly updated using gradient descent by
optimizing the similarity loss computed from the CNN-based discriminator.

The proposed Soft-Bin algorithm works as follows. In Lines 1–4, we initialize the bin density
mapM based on the specifications from inputs. The cells corresponding to each bin can be obtained
using Lines 7 and 8. Now, as shown in Lines 10–15, for each cell that deterministically belongs to
a target bin b, we first identify its neighboring bins (adjacent or diagonal) neiдh_bins and then
compute a distance vector dist_vec that denotes the Euclidean distance between the target cell to
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Fig. 6. Illustration of our CNN-based discriminator using the Soft-Bin transformation technique that trans-
forms cell locations to differentiable bin-density maps. The goal of DREAMPlace is to generate placements
that have similar bin-density maps as the ones in the database.

each bin (including b and neiдh_bins). Finally, we transform the distance vector dist_vec into a
probability vector prob_vec using the softmax function as shown in Line 16, and the “expected”
area contribution can be calculated using Line 17. After updating the bin-density map M by the
expected area contribution of each cell in the design, we obtain the final density of each bin using
Line 19.

4.4 CNN-based Discriminator

With the proposed Soft-Bin technique for differentiable bin-density map transformation, we now
describe the adversarial learning conducted by the CNN-based discriminator as shown in Figure 6.
Note that the key motivation for using CNNs to encode and differentiate different placements is
originated from Figure 2, where we clearly observe that the commercial tool is having additional
intelligence on locally spreading or coarsening cells for PPA optimization that DREAMPlace is
lacking of. Therefore, to advance DREAMPlace toward commercial quality, we aim to improve the
DREAMPlace generated locations by following the bin-density distributions as the ones generated
by the commercial tool.

As shown in Figure 6, we use the proposed Soft-Bin technique to transform the DREAMPlace
generated placement into a differentiable “soft” bin-density map, while using exact (i.e., determin-
istic) computation to obtain the bin-density map from the commercial database, as it does not
need to be differentiable. By considering the input density maps as grid signals, CNNs are used to
perform convolution to extract key information that can be used to decide whether the input is
coming from DREAMPlace or the database.

4.5 End-to-End GAN-Place Training

Figure 7 shows the detailed architecture of the CNN-based and the GNN-based discriminators.
Note that placements originating from GAN-Place do not have to be the same as the ones from
the commercial database, since our framework does not explicitly take design information such as
number of cells or number of nets as features (i.e., not memorizing). Instead, GAN-Place learns to
parameterize placement distributions in terms of netlist connectivity and the achieved bin-density
maps. All the computations involved are “size-independent,” meaning that netlists in different sizes
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Fig. 7. Detailed architecture of GAN-Place that leverages CNN-based and GNN-based discriminators to
quantify placement similarity between different placement sources.

will be encoded to vectors in the same dimensions, which is true for both CNN-based and GNN-
based discriminator networks.

The key difference between the proposed GAN-Place and a vanilla GPU-accelerated (differen-
tiable) placer is shown in Figure 3. Beyond the conventional placement objectives that are wire-
length and density, we consider the underlying placement engine in our GAN-Place framework
as a generator to maximize the probability of the generated placement being classified as “tool-
optimized” by the GNN-based and CNN-based discriminators. The similarity loss Lsim computed
by the entire discriminator (GNN based and CNN based) can be obtained as

Lsim =E(G,x,y )∼database

[
loд(Dдnn (G,x ,y))

]

+ E(G,x,y )∼DREAM

[
loд(1 − Dдnn (G,x ,y))

]

+ E(G,x,y )∼database
[
loд(Dcnn (G, exact_map (x ,y)))

]

+ E(G,x,y )∼DREAM
[
loд(1 − Dcnn (G, So f t-Bin(x ,y)))

]
,

(4)

whereDдnn andDcnn denote the GNN-based and CNN-based discriminators, respectively; (G,x ,y)
denotes the sampled (either from the database or from DREAMPlace) netlist graph with annotated
cell locations; exact_map denotes the deterministic bin-density map; and So f t − Bin denotes the
proposed transformation technique. Finally, the similarity loss Lsim will be jointly optimized with
the original wirelength and density objectives (LW L and Ldensity ) in any vanilla GPU-accelerated
placer (e.g., DREAMPlace or Xplace) as

L = LW L + λ1Ldensity + λ2Lsim , (5)

where LW L and Ldensity denote the wirelength and density objectives computed from the vanilla
DREAMPlace and {λ} denote the hyper-parameters for loss weighting. At each placement
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Fig. 8. Illustration of integrating open source placers into an industrial design flow using Synopsys ICC2,
where the global placement stage is replaced with proceeding stages remain the same.

optimization, DREAMPlace will optimize Equation (5) to improve the underlying placement
toward commercial-quality.

4.6 Full-Flow Integration

Figure 8 shows a graphical illustration of integrating the proposed framework GAN-Place into
an industrial design flow implemented by Synopsys ICC2. To perform fair comparisons between
vanilla placers (e.g., DREAMPlace and Xplace) and the proposed GAN-Place, we use the same ICC2
parameters and seeds to implement the rest of the design flow after global placement to remove
run-to-run variation. In the experiments, we demonstrate that GAN-Place efficiently improves
both DREAMPlace [11] and Xplace [13] in critical PPA metrics at each major stage of the PD flow.
Note that in this work, we not only demonstrate that GAN-Place immediately improves the PPA
metrics measured at the placement stage but also show that the improvements last firmly to the
post-route stage.

5 EXPERIMENTAL RESULTS

In this article, we validate GAN-Place with three commercial CPU benchmarks and five Open-
Core benchmarks using the TSMC 28-nm technology node. The commercial database is generated
by randomly sampling the parameters listed in Table 1 using Synopsys ICC2, where per bench-
mark, 100 placements are generated with different PPA objectives. In the experiments, we not
only demonstrate that GAN-Place significantly improves vanilla DREAMPlace in single-design
optimization but also show that it achieves superior optimization results on unseen designs that
are not in the database.

5.1 Single-design Optimization Results on DREAMPlace [11]

In this experiment, we perform “single-design” optimization to demonstrate the considerable
placement quality enhancements offered by the proposed GAN-Place framework by taking
DREAMPlace [11] as a generator. The term "single-design" implies that the design that GAN-
Place optimizes is same as the design in the target database. Our objective in this experiment is
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Table 2. Eight Benchmarks Used in This Work and Their
Attributes in TSMC 28 nm

Design Name # Nets # FFs # Cells # macros

AES 90,905 10,688 113,168 0
CPU-1 206,224 22,366 202,791 21
CPU-2 542,391 47,522 537,085 29
CPU-3 194657 33,085 121,682 16
DMA 10,898 2,062 10,215 0
LDPC 42,018 2,048 39,377 0
ECG 85,058 14,018 84,127 0
VGA 56,279 17,054 56,194 0

Table 3. Single-Design Optimization Results on DREAMPlace [11]

design PD
vanilla DREAMPlace [11] GAN-Place enhanced (ours)

(# cells) stage
wns TNS # total total wns TNS # total total
(ns) (ns) vios WL (um) power (mW) (ns) (ns) vios WL (um) power (mW)

CPU-1

global place −2.05 −13498 19558 374130 200.1 −1.42 −10175 18038 3532961 190.8

(202K)

place opt −1.74 −6197 13018 4034908 194.7 −1.45 −5975 12605 3765982 175.3
clock opt −0.30 −45.89 681 4163129 144.4 −0.26 −33.42 489 3920346 136.5
route opt −0.26 −22.4 464 4166459 144.3 −0.17 −19.03 412 4035806 (−3.0%) 139.3 (−3.5%)

CPU-2
global place −432.97 −5634543 48869 12382802 25142.4 −428.41 −5216911 44382 11067230 24647.2

(537K)
place opt −608.91 −7218793 40780 12654907 13244.1 −606.4 −6867935 39059 11318429 11820.07
clock opt −0.20 −61.48 1726 17769476 488.1 −0.18 −45.12 1477 16317518 452.3
route opt −0.17 −45.83 1405 17765081 490.5 −0.13 −29.07 906 16150284 (−10.2%) 441.5 (−10.0%)

CPU-3
global place −2.13 −8437.48 11730 1711937 149.2 −1.88 −7763.08 10963 1637906 140.6

(121K)
place opt −0.54 −164.78 2466 1439469 155.8 −0.48 −135.48 1948 1387534 150.9
clock opt −0.51 −37.68 414 1588135 141.9 −0.54 −33.45 350 1462754 138.0
route opt −0.49 −41.21 1207 1582822 143.0 −0.33 −36.56 972 1540096 (−2.7%) 139.1 (−2.7%)

LDPC
global place −1.14 −1411.74 2184 1289738 225.8 −1.06 −1322.54 2076 1182512 216.3

(46K)
place opt −0.25 −292.49 2192 1454863 255.5 −0.20 −221.88 1911 1416226 251.3
clock opt −0.20 −156.62 1897 1857624 255.4 −0.14 −92.70 1693 1713233 249.5
route opt −0.24 −198.72 1976 1878969 261.8 −0.15 −112.06 1783 1819348 (−3.2%) 256.9 (−1.9%)

GAN-Place optimizes the same design as in the database.

to establish the efficacy of employing generative adversarial learning for placement optimization.
Subsequent sections will provide evidence of transfer learning experiments that further support
our claims. Table 3 demonstrates the detailed optimization results, where we clearly observe that
GAN-Place consistently outperforms vanilla DREAMPlace at each major PD stage across all four
industrial and OpenCore benchmarks. Although the same design is used in the database during
training, we still believe the achieved results are highly remarkable as GAN-Place is NOT using any
“memorization” technique such as explicit net-matching, cell-alignment, and so on. The superior
results are purely achieved by optimizing placement similarity scores via generative adversarial
learning. Figure 9 further shows the bin-density map comparison between GAN-Place and ICC2
on the design CPU-2 that shows the largest PPA improvements. We observe that although the
underlying placements are visually different, the achieved bin-density maps are arguably similar,
which demonstrates the effectiveness of the proposed CNN-based discriminator.

5.2 Transfer Learning on Unseen Designs Using DREAMPlace [11] and Xplace [13]

Due to the intrinsic characteristics of the PD implementation process, wherein almost each
realization necessitates a long runtime for completion in industrial design flows, the employment
of transfer learning is the most favored approach in leveraging ML models to optimize critical
PPA metrics. In this article, we refer transfer learning as the paradigm that aims to harness the
knowledge acquired from training designs into unseen ones to perform PPA optimization. As

ACM Trans. Des. Autom. Electron. Syst., Vol. 29, No. 2, Article 32. Publication date: February 2024.



32:14 Y.-C. Lu et al.

Fig. 9. Visualization of the proposed Soft-Bin technique in placements of ICC2 default placer, vanilla DREAM-
Place, and the proposed GAN-Place on the AES benchmark. We observe GAN-Place produces a visually more
similar bin-density map distribution to ICC2 than the vanilla DREAMPlace.

Table 4. Transfer Learning Optimization Results on DREAMPlace [11] and Xplace [13]

design global place vanilla DREAMPlace+GAN vanilla Xplace+GAN ICC2 default
(# cells) metrics DREAMPlace (ours) Xplace [13] (ours) placer

AES

WL (um) 1946366 1755417 (−9.8%) 1410691 1315794 (−6.7%) 1393520

(111K)

WNS (ns) −0.32 −0.31 −0.17 −0.14 −0.05
TNS (ns) −139.36 −125.01 −39.06 −33.95 −10.38

# vios 3012 2830 1736 1649 928
power (mW) 605.4 597.8 571.8 565.9 558.8

runtime (min) < 1 8 < 1 8 26

DMA

WL (um) 196988 189688 (−3.7%) 188629 176664 (−12.5%) 165069

(11K)

WNS (ns) −0.19 −0.17 −0.18 −0.16 −0.12
TNS (ns) −35.06 −29.61 −15.91 −13.34 −6.48

# vios 488 442 268 242 192
power (mW) 31.1 30.9 31.0 30.8 30.9

runtime (min) < 1 5 < 1 5 19

ECG

WL (um) 1527118 1423859 (−6.8%) 1031059 965658 (−6.3%) 883419

(85K)

WNS (ns) −2.24 −1.86 −1.18 −0.95 −1.03
TNS (ns) −6783.55 −6309.96 −1402.53 −1264.36 −728.90

# vios 10862 9854 5678 5131 3801
power (mW) 195.7 193.9 173.5 171.6 169.9

runtime (min) < 1 8 < 1 8 32

VGA

WL (um) 2202288 2043376 (−7.2%) 2023368 1895024 (−6.4%) 1756611

(56K)

WNS (ns) −1.61 −1.33 −1.32 −1.29 −1.28
TNS (ns) −10001.56 −9803.32 −8092.88 −7295.62 −5165.15

# vios 16251 15973 15981 15942 15970
power (mW) 257 255 256 253 249

runtime (min) < 1 6 < 1 6 25

The “DREAMPlace+GAN” and “Xplace+GAN” columns are achieved by using different designs in the target database

(i.e., each underlying design is unseen during GAN optimization). All metrics are reported by Synopsys ICC2.

aforementioned, the proposed GAN-Place framework does not require the target database
contains the exact same design as the one being optimized by the GPU-accelerated placer. In
the experiment, we demonstrate the enablement of transfer learning ability of GAN-Place using
non-macro designs.

Table 4 demonstrates our transfer learning optimization results. Note that each design is
unseen during the optimization. The target database is built by other non-macro designs in the
benchmarks as shown in Table 2. We clearly observe that the proposed GAN-Place framework
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Fig. 10. Stage-by-stage wirelength and power metrics on AES. Note that each implementation starts from a
different global placement, but all rely the exact same script to complete the full-chip design flow.

immediately improves each critical PPA metric at the global placement stage across every
benchmark. Figure 10 further demonstrates the full-flow impact on wirelength and power, where
we clearly observe that GAN-Place significantly improves not only the global placement metrics
but also the post-route ones.

5.3 Discussion of Optimization Results

We believe the tremendous success of the proposed framework, GAN-Place, has three major im-
plications: (1) “Placement style” can be transferred from one placer to another. This argument is
supported by Table 3, which show that by using single-design optimization, GAN-Place can sig-
nificantly improve the vanilla GPU placer on industrial benchmarks in consistent. (2) “Placement
style” is more related to a placer itself than the designs being placed. This argument is validated
by Table 4, where we observe that placement quality can not only be transferred in the same de-
signs but also in completely different ones. (3) Without knowing the underlying algorithms or
constraints, the “placement style” of a black-boxed placer can still be parameterized through gen-
erative adversarial learning.

Furthermore, in the experiments, we observe that GAN-Place not only improves the wirelength
significantly but also introduces notable improvements in power. We think this is because by fol-
lowing the placement distribution of ICC2 in terms of cell locations, GAN-Place will introduce less
buffers and logic fixing than the vanilla DREAMPlace during many optimization steps throughout
the flow, which effectively results in less power consumption. Finally, we would like to emphasize
that the runtime difference between the vanilla DREAMPlace and the proposed GAN-Place is no
more than 10 minutes across all benchmarks, which is practically negligible compared with the
global placement runtime of ICC2.

5.4 Why Use Generative Adversarial Learning to Advance VLSI Placement?

The placement problem in PD has been a central focus of extensive scientific investigation for
several decades. A multitude of research groups have devoted considerable resources to this area,
necessitating continuous innovation in methodological approaches. This persistent development
is essential to address the emerging complexities inherent in design paradigms that arise as a
consequence of advancing technology scaling. Over the years, heuristic-based and analytical
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placement methodologies have substantially advanced the VLSI placement domain; however, lim-
ited research has been conducted on the analysis of placement distributions across various place-
ment algorithms and the subsequent utilization of such information for optimizing placement qual-
ity. In this study, we highlight the significance and applicability of such information for enhancing
placement quality in an efficient manner, employing generative adversarial learning techniques.

Notably, the primary advantage of GAN-based learning lies in its ability to perform optimiza-
tion without necessitating explicit objectives. This allows us to concentrate solely on the acquisi-
tion of high-quality designs for constructing the database. In our specific context, despite lacking
knowledge of the proprietary algorithms employed by commercial tools, we successfully enhance
the placement performance of open source placers to approach commercial-quality standards. We
achieve this by guiding them to emulate the placement distribution in terms of netlist connectivity
and bin-density maps, using the tool-verified, high-quality placements present in our database.

6 CONCLUSION

In this article, we have presented GAN-Place, which, as far as we know, is the first-ever learning-
driven framework that improves an open source placer toward commercial-quality using gener-
ative adversarial learning. We showcase that GAN-Place can be easily integrated with state-of-
the-art open source GPU-accelerated placers DREAMPlace and Xplace to significantly improves
the achieved placement quality. In the experiments, we demonstrate that GAN-Place not only im-
proves the optimization results in single-design optimization but also facilitates transfer learning
to perform optimization on unseen designs. The main assumption of this work is that “placement
style (quality)” is born with a placer itself, which can be parameterized and transferred to another
placer through generative adversarial learning. We have provided comprehensive experiments and
analyses to prove this assumption empirically. We believe this work shall open the gate for future
endeavor on advancing PD using generative adversarial learning.
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