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ABSTRACT
Current state-of-the-art Design Space Exploration (DSE) methods
in Physical Design (PD), including Bayesian optimization (BO) and
Ant Colony Optimization (ACO), mainly rely on black-boxed rather
than parametric (e.g., neural networks) approaches to improve
end-of-flow Power, Performance, and Area (PPA) metrics, which
often fail to generalize across unseen designs as netlist features
are not properly leveraged. To overcome this issue, in this paper,
we develop a Reinforcement Learning (RL) agent that leverages
Graph Neural Networks (GNNs) and Transformers to perform “fast”
DSE on unseen designs by sequentially encoding netlist features
across different PD stages. Particularly, an attention-based encoder-
decoder framework is devised for “conditional” parameter tuning,
and a PPA estimator is introduced to predict end-of-flow PPA met-
rics for RL reward estimation. Extensive studies across 7 industrial
designs under the TSMC 28nm technology node demonstrate that
the proposed framework FastTuner, significantly outperforms ex-
isting state-of-the-art DSE techniques in both optimization quality
and runtime. where we observe improvements up to 79.38% in Total
Negative Slack (TNS), 12.22% in total power, and 50x in runtime.

CCS CONCEPTS
• Hardware→ Physical design (EDA); • Computing method-
ologies→Machine learning.
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1 INTRODUCTION
Modern commercial Physical Design (PD) tools offer a wide range
of tunable parameters to configure underlying sophisticated opti-
mization engines subject to various design requirements. However,
with the increasing design complexity driven by Moore’s Law and
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the stringent time-to-market productization demand, traditional
PD parameter optimization methods, including the “auto-tuning”
approaches in most commercial tools, have become impractical due
to their significant runtime that takes from days to weeks. There-
fore, an efficient and generalizable Design Space Exploration (DSE)
technique is urgently needed to find the optimal parameter config-
uration that results in best-in-class Power, Performance, and Area
(PPA) metrics based on design features.

Numerous automated DSE techniques have arisen to tackle the
challenges posed by extensive PD design spaces. Two notable ex-
amples are [1], which leverages a generative adversarial network
(GAN) to enhance clock tree prediction, and [2], which introduces
a deep reinforcement learning approach for optimizing placement
parameters. However, both of these approaches are constrained to
addressing only specific stages within the PD workflow and require
a significant level of expertise to configure a near-optimal solution.

To address these limitations, there is a growing interest in devel-
oping alternative automated approaches for optimizing the entire
set of PD parameters. For instance, in [3], an ACO-based evolu-
tionary algorithm was employed to iteratively fine-tune parame-
ters in groups. Other for example [4] proposed a learning-assisted
autotuning framework that utilizes the XGBoost algorithm and
design-specific features extracted from the early stages of the FPGA
design flow to achieve design closure. Nevertheless, these heuristic
approaches are time-consuming and susceptible to getting trapped
in local optima.

On the other hand, recent state-of-the-art (SOTA) methods uti-
lize Bayesian-based techniques to optimize power, performance,
and area (PPA) objectives, for example, [5], [6], [7], and [8]. While
all these methods have shown their effectiveness, there is potential
for improvement. For example, these approaches still necessitate
a full P&R run to evaluate a single set of parameter combinations.
Moreover, in addition to capturing the correlations between pa-
rameters and PPA metrics, it’s important to harness the underlying
design features to accelerate the optimization of future designs.

In this paper, we present a fast RL online tuning approach based
on offline-trained PPA estimators that provide instantaneous re-
wards rather than time-consuming P&R feedback. Our RL tuner
utilizes GNN to capture the underlying design features, enabling
generalization to unseen designs. The FastTuner is built upon a
Transformer encoder-decoder architecture, providing users with
the flexibility to fine-tune specific parameter subsets and seam-
lessly integrate with existing tuning methods to achieve superior
performance. Our main contributions are as follows:
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• We propose a hybrid FastTuner framework that enables on-
line RL tuning using offline-trained PPA estimators, elimi-
nating the need for the time-consuming P&R process, thus
reducing the tuning process from hours to seconds.
• FastTuner facilitates transfer learning through GNN, en-
abling it to generalize across various design scenarios. A
pretrained Fast-Tuner can significantly improve optimiza-
tion results with just a few iterations of fine-tuning.
• Our framework utilizes an encoder-decoder Transformer
architecture, offering users the flexibility to selectively fine-
tune specific subsets of parameters and providing an inter-
face for seamless integration with other frameworks.
• Our methods consistently demonstrated superior results
compared to SOTA approaches by a significant margin across
7 industrial benchmarks and distinct optimization objectives.

2 MOTIVATIONS
2.1 Why RL for Parameter Optimization?
RL excels in learning a policy that maximizes long-term rewards
through a sequence of decisions. In contrast to other SOTA algo-
rithms, such as Bayesian optimization (BO), which suffers from
the curse of dimensionality as the number of parameters increases,
RL offers distinct advantages when dealing with a growing num-
ber of parameters. We frame the problem of parameter tuning as
a sequential decision-making task. As the number of parameters
increases, traditional methods often encounter a dimensionality
problem. However, in our RL-based approach, this expansion in the
parameter count merely adds a few decision time steps, which is
typical in RL tasks where tens to hundreds of such steps are com-
mon, making it effective for handling high-dimensional parameter
spaces.

As an online tuning algorithm, our tuner enables continuous
learning with newly collected data points, reducing the reliance on
an extensive database or requiring only a relatively small one. Ad-
ditionally, our RL method can be seamlessly integrated with neural
networks to leverage design features and enhance transferability.

Although RL has demonstrated success in various domains, one
of the challenges in applying RL to physical design lies in the
slow turnaround time (TAT) of the reward signal, often requiring a
full P&R process. Taking inspiration from [9], we have created a
fast and transferable PPA estimator using GNN to provide instant
reward estimations, which allows us to accelerate RL updates by
performing planning on the PPA estimator, thereby circumventing
the time-consuming P&R process.

2.2 Why Transformer? Why GNN?
We have chosen the Transformer language model as our decision-
making agent as it stands out as the optimal choice for sequential
tuning. Firstly, our parameter optimization process involves a se-
quence of decisions, making a language model a natural fit since
it has the unique capability to capture critical information from
previous observations and actions, which is vital in our context.

Secondly, optimizing across multiple design stages requires care-
ful consideration of the intricate interdependencies among these
stages. Identifying these dependencies can be challenging, as they
vary in strength and direction, ranging from positive correlations

to orthogonality. Fortunately, the Transformer architecture pos-
sesses a self-attention mechanism, which automatically discerns
and quantifies correlations between parameters.

Lastly, by leveraging the Transformer encoder-decoder frame-
work, we extend our tuning approach to resemble a sentence com-
pletion task. In this setup, when provided with a subset of user-
specified parameters, our tuners autonomously complete the tuning
of the remaining parameter set with the optimal solution. This ca-
pability empowers users to efficiently fine-tune any selected subset
of parameters, enhancing the overall effectiveness of our approach.

The authors of the paper [10] present an unsupervised graph-
based learning framework for tier partitioning. This innovative
approach allows the algorithm to effectively understand technol-
ogy and design-related parameters. As discussed in the previous
section, while SOTA methods have demonstrated competitiveness
in optimizing physical design parameters, they often lack transfer-
ability, necessitating retraining from scratch when encountering
a new design. To overcome this limitation, we harness GNN to
leverage knowledge gained from prior optimized designs. This em-
powers our model to generalize across various design scenarios.

3 FASTTUNER METHODOLOGY
The goal of FastTuner is to automatically tune the parameters of
any physical stage in the shortest possible time, aiming to achieve
the best post-route PPA.

Figure 1 provides a high-level overview of our hybrid FastTuner
framework. In the offline training phase, PPA estimators are trained
using supervised learning on diverse parameter-netlist combina-
tions. During online tuning, FastTuner utilizes netlist embedding,
incorporating predetermined parameter embeddings as contextual
features. At each time step 𝑡 , FastTuner takes into account the con-
textual feature and all past actions (from 𝑎1 to 𝑎𝑡−1) attended by
the self-attention mechanism to sample a new action 𝑎𝑡 . Once all
parameters are sampled, they are forwarded to the PPA estimator
for reward estimation. FastTuner is updated using the RL algorithm
PPO, and the online tuning iterates until reward saturation. The
newly sampled parameter-netlist combinations are stored in the
sample buffer for offline PPA estimator improvement.

3.1 Reinforcement Learning Formulation
Our objective is to sequentially tune user-selected set of parameters
throughout the workflow to achieve optimal post-route PPA. This
problem falls under the category of combinatorial optimization
problems, and we have formalized it as a Markov decision pro-
cess (MDP) and solved it using RL. we formally describe our RL
formulations:
• 𝑆𝑡𝑎𝑡𝑒𝑠 (𝑠): In our context, a state at time step 𝑡 , denoted
as 𝑠𝑡 , includes two key components. First, it captures the
configuration of the parameters that have been tuned from
time steps 1 through 𝑡 − 1. These tuned parameters are auto-
matically considered by the self-attention model as hidden
input features. Second, the state also encompasses the spe-
cific design that is currently under optimization. We employ
GNN to encode the essential physical design characteristics.
• 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 (𝑎): An action 𝑎𝑡 denotes a valid value that can be
selected for the parameter being tuned at time step 𝑡 .
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Figure 1: High-level overview of our hybrid framework. FastTuner optimizes parameters sequentially online by leveraging the
pre-trained offline PPA estimator to provide reward feedback, preventing the need for time-consuming ICC2 feedback.
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Figure 2: The detailed architecture of our FastTuner includes the following main components: GNN, Transformer Encoder,
TransformerDecoder, and Parameter Tuners. The Transformer decoder utilizes graph and predetermined parameter embeddings
to sequentially decode parameters using customized parameter predictors.

• 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑟 ): In our setup, rewards are set to zero for interme-
diate actions 𝑎1, 𝑎2, . . . , 𝑎𝑇−1, with the exception of the last
action, 𝑎𝑇 , which corresponds to the estimated PPA value
obtained after the entire P&R process.
• 𝑇𝑟𝑎 𝑗𝑒𝑐𝑡𝑜𝑟𝑦 (𝜏): A trajectory 𝜏 encompasses the complete
sequence of parameter selections from time step 𝑡 = 1 to
𝑡 = 𝑇 , along with the corresponding rewards received.

3.2 Overall Architecture
Figure 1 provides a high-level overview of our FastTuner framework.
We propose a hybrid tuning framework that combines both online
and offline techniques. We first train our PPA estimators offline on
different parameter-netlist combinations using supervised learning.
Specifically, we construct a training dataset comprising post-route
PPA results obtained from various parameter combinations across
different designs, utilizing ICC2.

In online tuning phase, FastTuner utilizes netlist embedding,
incorporating predetermined parameter embeddings as contextual
features. At each time step 𝑡 , FastTuner takes into account the
contextual feature and all past actions (𝑎1, . . . , 𝑎𝑡−1) attended by
the self-attention mechanism to sample a new action 𝑎𝑡 . Once all

parameters have been sequentially sampled, they are forwarded to
the PPA estimator for reward estimation. Subsequently, FastTuner is
updated using the RL algorithm PPO based on the obtained reward.
This online tuning process continues until the reward reaches a
saturation point. During each online tuning iteration, the newly
sampled parameter-netlist combination is appended to the sample
buffer for later offline improvement of the PPA estimators.

Our tuning framework consists of five main components, as
shown in Figure 2:

(1) PPA estimator: Responsible for providing real-time PPA esti-
mation as a reward.

(2) GNN: This component is responsible for encoding gate-level
netlists.

(3) Transformer Encoder: The Transformer encoder encodes the
user-predetermined parameters.

(4) Transformer Decoder: The Transformer decoder sequentially
tunes the user-selected parameters

(5) Parameter Tuners: In the final layer, we employ customized
modules for each parameter to decode the high-dimensional
feature into a probability distribution for action sampling.
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FastTuner utilizes GNN to encode the gate-level netlist and em-
ploys a Transformer encoder for predetermined parameters. The
Transformer decoder processes contextual features, including graph
embeddings and predetermined parameter embeddings, to sequen-
tially decode the remaining parameters. Each parameter is associ-
ated with a customized module tailored to its type. Transformer
layers are shared across all parameters, while dedicated prediction
layers for each parameter generate predicted values.

Below, we describe each main component in detail:

3.3 PPA Estimator
The architecture of the provided model comprises a simple feedfor-
ward neural network consisting of three linear layers. Each PPA
estimator accepts input in the form of concatenated parameter em-
beddings and graph-extracted features, resulting in a total of 60
dimensions. This input is then processed through two hidden layers
with 32 and 16 outputs, respectively, both utilizing Tanh activation
functions. Ultimately, the model generates a single output unit for
prediction. During training, the model is updated using the mean
squared error (MSE) loss, calculated between the ground truth PPA
value and the predicted PPA value.

3.4 Netlist Encoding with GNN
To enable our RL agent to generalize across various netlists, we
employ GNN to capture both the structural information of the
netlists (graph) and the node attributes of the cells (nodes) within
the design. Our graph learning process consists of three distinct
phases: (1) node-level embeddings (2) graph downsampling and (3)
graph-level readout. We initiate the node-level embedding phase
with initial node features, which are handcrafted using themetadata
associated with each cell, as outlined in Table 1. Subsequently, we
iteratively propagate messages from each node to its neighboring
nodes. The message-passing mechanism within our GNN is defined
as follows:

𝑓 𝑘−1
𝑁 (𝑢 ) = 𝑟𝑒𝑑𝑢𝑐𝑒_𝑚𝑒𝑎𝑛({𝑊 𝑎𝑔𝑔

𝑘
𝑓 𝑘−1𝑣 ,∀𝑣 ∈ 𝑁 (𝑢)}) (1)

𝑓 𝑘𝑢 = 𝜎 (𝑊 𝑝𝑟𝑜 𝑗

𝑘
· 𝑐𝑜𝑛𝑐𝑎𝑡 [𝑓 𝑘−1𝑢 , 𝑓 𝑘−1

𝑁 (𝑢 ) ]) (2)

In the equations above, we use the symbol 𝜎 to represent the
activation function, while 𝑁 (𝑢) refers to the set of neighboring
nodes connected to node 𝑢. The terms𝑊 𝑎𝑔𝑔

𝑘
and𝑊 𝑝𝑟𝑜 𝑗

𝑘
represent

learnable weights that correspond to the aggregation and projection
matrices, respectively. In each iteration, the aggregation function
operates on the embeddings of the neighboring nodes in 𝑁 (𝑢)
to produce an aggregated information representation denoted as
𝑓 𝑘−1
𝑁 (𝑢 ) . This aggregated message is then combined with the previous

embedding of node𝑢, represented as 𝑓 𝑘−1𝑢 , to update its embedding,
which we denote as 𝑓 𝑘𝑢 .

The objective of graph downsampling is to create a condensed
graph embedding that captures the essential characteristics of the
original graph. This process involves utilizing graph attention pool-
ing after each graph convolution layer to selectively retain nodes
with the highest attention scores. To derive a holistic representa-
tion of the entire graph (netlist), we execute a readout operation
(global mean aggregation), to consolidate the node-level embedding
obtained from the preceding stages.

Table 1: Initial handcrafted features of each node in our
netlist graph.

features descriptions
wst slack worst slack of cell
wst output slew maximum transition of output pin
wst input slew maximum transition of input pin
drv net power switching power of driving net
int power cell internal power
leakage cell leakage power

Our GNN framework comprises three graph convolution layers
followed by a fully-connected (FC) layer, all of which share the same
hidden dimension. In our implementation, we set the dimension
of the graph convolution layers to 32, and the final FC layer to 16.
Consequently, the resulting graph embeddings are represented in a
16-dimensional space.

3.5 Transformer Encoder and Decoder
Instead of conventional parameter tuning techniques involving the
adjustment of a predefined set of parameters, we have adopted a
more flexible approach inspired by sentence completion tasks. In
this setup, when provided with a subset of user-defined parameters,
our tuning mechanism autonomously takes charge of optimizing
the remaining parameter set to achieve the best solution.

The predefined parameters are used as input context and undergo
embedding by the Transformer encoder. The encoder leverages the
Transformer’s attention mechanism to grasp contextual meaning
and generate contextual features through self-attention. In contrast
to a directional Long Short-Term Memory (LSTM) network, the
Transformer encoder processes the entire information sequence
simultaneously. This capability allows the model to capture the full
context of the predefined parameters. Following this, the contextual
features are passed to the Transformer decoder, which guides the
finalization of the tuning process based on the provided context.

By utilizing both the graph features and predetermined parame-
ters as contextual information, the Transformer decoder performs
autoregressive tuning of the parameters. In each time step, the
decoder’s self-attention mechanism not only considers contextual
features but also naturally attends to all previously predicted pa-
rameters, ranging from 𝑝1 to 𝑝𝑡−1. Consequently, it captures the
intricate interdependencies among parameters, illustrating how
the earlier stages of physical design influence the tuning of subse-
quent parameters. The decision-making process at time step 𝑡 can
be expressed as follows: 𝑝𝑡 ∼ 𝜋𝜃 (𝑝𝑡 |𝑝1, .., 𝑝𝑡−1, 𝑠𝑡 ).

3.6 Parameter Tuner
In a typical language model decoder, a final softmax layer is em-
ployed to model the distribution of the prediction space and gen-
erate final predictions for each time step. However, when the pa-
rameters to be predicted at each time step belong to different value
spaces, employing a single softmax layer can introduce challenges.
Mixing binary, discrete, and continuous parameters within a unified
action space can lead to a high-dimensional, sparse space that is
challenging to train effectively.

To overcome this challenge, we have devised a tailored predic-
tion approach for each parameter within our Transformer tuner.
While the Transformer layers are shared across all parameters, each
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parameter possesses its own dedicated prediction layer responsi-
ble for generating its predicted values. This design affords us the
flexibility to predict discrete and continuous parameters with ease.

For discrete parameters such as "route.global.effort_level," which
can take on five distinct values ("minimum", "low", "medium", "high",
and "ultra"), we employ a softmax layer with five outputs to predict
the probability of each value. Conversely, for continuous parameters
such as "ccd.max_prepone," we employ a fully-connected layer
that predicts both the mean and standard deviation of a normal
distribution.

3.7 Training Methodology
We update our FastTuner to optimize the expected reward (PPA) by
employing the SOTA Proximal Policy Optimization (PPO) algorithm.
PPO stands out as a robust RL algorithm that facilitates policy
updates while mitigating substantial deviations from the previous
policy, which could potentially lead to suboptimal performance or
divergence issues. PPO achieves efficient policy optimization by
performing multiple update steps for each sample while adhering
to a clipped objective function. The PPO clipped surrogate objective
that we aim to maximize can be expressed as follows:

LCLIP (𝜃 ) = E
[
min

(
𝜌 (𝜃 )𝐴, 𝑐𝑙𝑖𝑝 (𝜌 (𝜃 ), 1 − 𝜖, 1 + 𝜖)𝐴

)]
(3)

The objective is to maximize the expected value of the advantage-
weighted probability ratio. In other words, PPO encourages actions
that have a positive advantage (actions that perform better than
expected) and discourages actions that have a negative advantage
(actions that perform worse than expected). 𝐴 refers to the ad-
vantage function, defined as the difference between the observed
rewards 𝑅 and the expected returns.

𝜌 (𝜃 ) represents the likelihood of taking a current action under
the new policy compared to the old policy, which helps determine
howmuch the policy should be adjusted. The clipped PPO objective
introduces a crucial constraint using the min and clip functions to
ensure that policy updates are controlled within a specified range,
typically denoted as [1−𝜖, 1+𝜖]. 𝜖 is set to 0.2 by convention. These
constraints are vital for preventing excessively large policy updates
that could destabilize the training process.

Algorithm 1 illustrates the offline and online training process of
our FastTuner framework. In the offline phase, denoted as "(Offline),"
we initialize a PPA estimator and train it using supervised learning
with a datasetD containing diverse parameter-netlist combinations
and their corresponding ground truth PPA metrics. This phase
iteratively improves the PPA estimator by updating its parameters
based on the Mean Squared Error (MSE) loss between predicted
and actual PPA values.

In the online phase, denoted as "(Online)," FastTuner leverages
the trained PPA estimator and GNN for netlist embeddings. It em-
ploys a Transformer-based architecture with an encoder-decoder
structure. FastTuner utilizes both predetermined parameter em-
beddings and netlist embeddings as context and applies the self-
attention mechanism to make sequential decisions for tuning pa-
rameters. At each time step, it samples a new parameter action.
Once all parameters are sampled, it calculates a reward using the
PPA estimator. The algorithm updates the FastTuner’s parameters
using the PPO algorithm until the reward stabilizes. Additionally,

Algorithm 1: FastTuner training flow.
Input:
1: P𝑎𝑙𝑙 : {𝑝1 . . . , 𝑝𝑛 }: all parameters
2: P𝑓 𝑖𝑥𝑒𝑑 : {𝑝1 . . . 𝑝𝑘 }: parameters predetermined by the user
3: P𝑡𝑢𝑛𝑒𝑑 : {𝑝𝑘+1 . . . 𝑝𝑛 }: parameters to be tuned
4: GNN for gate-level netlists
5: Dataset D = { (𝑃1,𝐺1, 𝑦1 ), . . . (𝑃𝑁 ,𝐺𝑁 , 𝑦𝑁 ) } which contains

parameter-netlist combinations and their ground truth PPAs
Output: parameters P∗

𝑡𝑢𝑛𝑒𝑑
: {𝑝∗

𝑘+1 . . . 𝑝
∗
𝑛 } that optimize the given

objectives
(Offline)
1: Initialize the PPA_Estimator with weights 𝜃𝑃𝑃𝐴
2: while 𝜃𝑃𝑃𝐴 hasn’t converge do
3: sample a batch of data P,G, y from D
4: y

′ ← 𝑃𝑃𝐴_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 (P,G)
5: Compute MSE loss: 𝐽 (𝜃 ) ← 1

2𝑀 ∥y − y′ ∥22 (M: batch size)
6: Update parameters: 𝜃𝑃𝑃𝐴 ← 𝜃𝑃𝑃𝐴 − 𝛼 · ∇ 𝐽 (𝜃 )
7: end while
(Online)
8: Initialize the FastTuner with weights 𝜃𝑇𝑢𝑛𝑒𝑟

9: while reward hasn’t saturated do
10: g← 𝐺𝑁𝑁 (𝐺 )
11: m← 𝐹𝑎𝑠𝑡𝑇𝑢𝑛𝑒𝑟_𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑝1, . . . , 𝑝𝑘 )
12: for 𝑖 = 𝑘 + 1 . . .𝑛 do
13: 𝑝′

𝑖
∼ 𝐹𝑎𝑠𝑡𝑇𝑢𝑛𝑒𝑟_𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑝′

𝑖
|𝑝′

𝑘+1, . . . , 𝑝
′
𝑖−1,𝑚,𝑔)

14: Compute reward: 𝑟 ← 𝑃𝑃𝐴_𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 (𝑝1, . . . , 𝑝𝑘 ,
𝑝′
𝑘+1, . . . , 𝑝

′
𝑛, 𝑔)

15: Update 𝜃𝑇𝑢𝑛𝑒𝑟 by maximizing Eq. 3 using gradient ascent
16: end for
17: end while

the newly sampled parameter-netlist combinations are stored for
offline improvement of the PPA estimator in future iterations.

4 EXPERIMENTAL RESULTS
4.1 Experiment Setup
Our framework is implemented in Python, leveraging deep learning
libraries PyTorch and PyTorch Geometric. To assess our results,
we conduct a comparative analysis against SOTA methods, namely
ACO and BO. This evaluation involves exploring the parameter
space of the physical design tool across seven industrial bench-
marks. All these benchmarks are designed based on TSMC 28nm
technology nodes, and the physical design process is executed using
Synopsys IC Compiler II (ICC2).

For parameter optimization, we select over 20 tool parameters,
as presented in Table 2, and tune them on various benchmarks
to optimize diverse objectives including power, TNS, WNS, and
PDP. These parameters exhibit different data types, encompassing
discrete, floating-point, and integer values.

4.2 PPA Estimator Training Results
Te expedite RL tuning, we explore supervised learning to train PPA
estimators. Our goal is to train PPA estimators capable of gener-
alizing across various designs, predicting post-route PPA values
based on specific parameter configurations. To accomplish this, it
is crucial to establish a representative dataset. To construct this,
we conducted numerous P&R runs, each involving varying pairs
of netlists and parameters with randomly generated combinations.
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Table 2: Parameters we tune and their ranges, which includes
all PD stage’s parameter from placement, CTS, and routing.

Parameter type dims or ranges
place.coarse.target_routing_density float [0.7, 0.9]

place.coarse.max_density float [0.7, 0.9]
place_opt.initial_place.buffering_aware bool 2
place_opt.initial_drc.global_route_based int [0, 1]

placement.aspect_ratio float [0.5, 1.5]
ccd.max_prepone float [-50 ps, 50 ps]
ccd.max_postpone float [-50 ps, 50 ps]
ccd.timing_effort enum 3
cts.max_skew float [0.01, 0.2]
cts.max_fanout float [50, 250]

cts.max_buffer_density float [0.3, 0.8]
cts.max_latency float [0, 1]

route.common.rc_driven_setup_effort_level enum 4
route.global.effort_level enum 5

route.global.crosstalk_driven bool 2
route.global.timing_driven bool 2

route.global.timing_driven_effort_level enum 2
route.track.crosstalk_driven bool 2
route.track.timing_driven bool 2

route.detail.optimize_wire_via_effort_level enum 4
route.detail.timing_driven bool 2

route_opt.flow.enable_power bool 2
route_opt.flow.enable_irdrivenopt bool 2

Table 3: Prediction results of our PPA estimator on the vali-
dation sets of seven designs. "CC" denotes the Pearson corre-
lation coefficient.

designs TNS CC Power CC WNS CC
AES 0.97 0.95 0.94
DMA 0.91 0.93 0.90
LDPC 0.95 0.94 0.93
ECG 0.94 0.95 0.90
VGA 0.95 0.92 0.91

Commercial CPU 0.92 0.93 0.90
Rocket 0.90 0.91 0.90

In total, our dataset comprises data collected from more than 3500
runs spanning seven distinct designs.

During the training process, for each design, we divided the
dataset into an 80:20 train-test split, where 80% of the data was allo-
cated for training, and the remaining 20% was reserved for testing.
We trained three separate estimators, each focused on predicting
TNS, power, andWNS. In the case of PDP estimation, we based it on
both the power and WNS models. Figure 3 displays the validation
results for the AES design across three distinct objectives, high-
lighting the high correlation our model has achieved across these
objectives. Table 3 presents the Pearson correlation coefficients for
various designs and different objectives. It’s important to note that
our primary goal is to estimate rewards for the RL agent, and as
such, we prioritize achieving high correlation over merely minimiz-
ing errors. Our achievement of this high correlation indicates that
our estimators provide effective reward estimations, distinguishing
between good and bad outcomes.

To assess tuning performance with the PPA estimator, we trained
two separate FastTuners on the AES benchmark—one using the
PPA estimator and the other using real ICC2 feedback, as shown
in Table 4. It’s worth noting that, while the PPA estimator may

Table 4: FastTuner with ICC2 vs. the PPA estimator. We
trained two FastTuners: one with the PPA estimator and
one with ICC2. We compare runtime and PPA results.

PPA estimator imp. % ICC2 imp. %
power (105 uW) 5.94 11.48 5.92 11.77

tns (ns) -28.74 71.62 -28.71 71.64
training iteration 70 - 30 -

time 6 min - 60 hrs -

demand more training iterations, each iteration is completed within
a matter of seconds. In contrast, obtaining reward feedback from
real ICC2 evaluations takes several hours per iteration. Remarkably,
we found that the optimization results from both approaches are
nearly identical. Consequently, our RL tuning process has been
dramatically reduced from hundreds of hours to just a few minutes.

4.3 Transfer Learning Results
The core idea behind transfer learning is to utilize a pre-trained
model from one domain to another, enabling zero-shot transfer
or faster convergence in unfamiliar domains. In our approach, we
initially employed the same FastTuner model for RL training on
specific designs. After completing this training, we loaded the pre-
trained FastTuner model’s weights on "unseen" designs. The learn-
ing curve depicted in Figure 4 illustrates the advantages of transfer
learning compared to training from scratch. Through transfer learn-
ing, FastTuner rapidly converges to optimization results that are
comparable to those achieved by training a new FastTuner from
scratch in half the time. This is attributed to the model’s ability
to generalize using GNN netlist encoding, allowing it to leverage
previous training experiences for faster adaptation across various
designs.

As shown in Table 5, we trained our FastTuner on four designs:
DMA, AES, ECG, and a Commercial CPU, and validated its per-
formance on three distinct, previously unseen designs. Zero-shot
FastTuner inference refers to direct inference on unseen designs
using the pre-trained FastTuner without any additional training.
Remarkably, our FastTuner achieved results comparable to the
SOTA even without further training. Additionally, FastTuner can
be further fine-tuned for new designs to achieve optimal results, as
presented in the next section.

4.4 Overall PPA and Runtime Comparison
In Figure 5, we present the learning curve of our FastTuner for
various optimization objectives using the DMA benchmark. The
learning process starts from scratch and is based on the estimated
rewards provided by our PPA estimators. These curves show the
progression of reward improvement estimated by the PPA estimator
(y-axis) as learning proceeds (x-axis). In each training iteration, Fast-
Tuner proposes a parameter setting and undergoes an RL update.
The final PPA results are evaluated using ICC2. We observe that
FastTuner effectively learns across all objectives, initially exploring
the parameter space with oscillations, and subsequently converg-
ing nearly asymptotically toward optimal values. After tuning, we
evaluate the result through a full P&R using Synopsys ICC2.

The results are presented in Table 6. The "FastTuner" column
represents tuning all parameters without specifying fixed parame-
ters beforehand. All results are optimized using the PPA estimator
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Figure 3: Correlation analysis of our PPA estimator’s predictions on the AES benchmark. For each targeted objective, we plot the
scatter distribution between the estimated values (x-axis) and the ground truth values (y-axis). The high correlation indicates
that our estimator is capable of providing a representative reward estimation.

350k
0 10 20 30 40 50 0 10

-20

-40

-60

-80

-100

-120

20 30 40 50

360k
370k
380k
390k
400k
410k
420k

power optimization tns optimization

p
o

w
e

r 
p

e
n

a
lt
y
 (

u
W

)

tn
s
 r

e
w

a
rd

 (
n

s
)

iterationiteration

from scratch

transfer

from scratch

transfer

(a) (b)

Figure 4: Transfer learning on VGA using a pre-trained Fast-
Tuner model, achieving comparable optimization results at
a significantly faster convergence rate.

Table 5: Zero-shot FastTuner inference results. We trained
FastTuner with four circuits (CPU, AES, DMA, and ECG) first
and used it without any further training to solve the three
unseen circuits shown in this table.

metrics
tool

aco [3] bo [5]
FastTuner

auto zero-shot
LDPC (#cells: 39K, #nets: 41K, #IO: 4.1K)

power (105 uW) 2.82 2.66 2.58 2.60
tns (ns) -150.20 -65.21 -74.77 -66.68
wns (ns) -0.22 -0.11 -0.10 -0.12

pdp (105W * ns) 2.56 2.35 2.31 2.33
VGA (#cells: 52K, #nets: 52K, #IO: 184)

power (105 uW) 4.01 3.81 3.68 3.70
tns (ns) -88.26 -50.69 -36.54 -46.20
wns (ns) -0.38 -0.20 -0.16 -0.20

pdp (105W * ns) 2.89 2.68 2.64 2.66
Rocket Core (#cells: 120K, #nets: 120K, #IO: 379)

power (mW) 250.80 233.48 229.29 233.40
tns (ns) -66.81 -32.45 -21.47 -34.20
wns (ns) -0.16 -0.09 -0.07 -0.09

pdp (mW * ns) 140.00 127.28 124.17 127.20

and assessed through real Synopsys ICC2 evaluations. The results
demonstrate that our approach consistently outperforms ACO and
BO across all seven benchmarks, showcasing a significant improve-
ment percentage. Notably, our method requires just a single ICC2
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Figure 5: The learning curves for FastTuner with respect to
four different objectives.

run for result evaluation, whereas other methods necessitate nu-
merous tool runs that can span from hours to days. In contrast, our
approach is nearly instantaneous, taking only seconds to minutes,
thanks to the real-time rewards provided by PPA estimators.

4.5 Tuning a Subset of Parameters
Our encoder-decoder framework provides users with the flexibility
to selectively fine-tune specific parameter subsets. This enables
users to retain predetermined parameter subsets they find satis-
factory and fine-tune the remainder. The advantages are twofold.
Firstly, there is no need to train multiple models for different param-
eter subsets. Secondly, it offers a versatile interface for integration
with other tuning methods. To evaluate the performance of our
selective tuning approach, we trained our FastTuner under two dis-
tinct scenarios: (1) Fine-tuning from the CTS stage onwards while
using default parameters for those preceding CTS. (2) Fine-tuning
from the route stage onwards while using default parameters for
those preceding route.

99

FastTuner: Transferable Physical Design Parameter Optimization using Fast Reinforcement Learning ISPD '24, March 12–15, 2024, Taipei, Taiwan



ISPD ’24, March 12–15, 2024, Taipei, Taiwan Hao-Hsiang Hsiao, Yi-Chen Lu, Pruek Vanna-Iampikul, and Sung Kyu Lim

Table 6: PPA and runtime comparison between FastTuner and SOTA [3, 5] methods. TSMC 28nm is used. The ’imp (%)’ column
indicates the improvement over commercial auto setting in PPA metrics and over SOTA methods in runtime. FastTuner
(all) means FastTuner tunes the parameters for all physical design stages, namely, placement, CTS, and routing. FastTuner
(CTS+route) means the placement parameters are tuned by ICC2, and CTS and routing parameters by FastTuner. FastTuner
uses ICC2 once at the end to collect the final PPA data for verification.

metrics tool auto aco [3] bo [5] FastTuner imp. % FastTuner imp. % FastTuner imp. %
(all) (CTS+route) (route)

Commercial CPU (#cells: 212K, #nets: 216K, #IO: 3.2k)
power (105 uW) 1.54 1.46 1.42 1.39 10.01% 1.40 9.09% 1.47 4.85%

tns (ns) -70.20 -41.92 -37.66 -18.34 73.87% -26.85 61.75% -45.29 35.49%
wns (ns) -0.22 -0.15 -0.09 -0.08 63.58% -0.09 58.04% -0.16 25.63%

pdp (105uW * ns) 1.73 1.53 1.43 1.34 22.26% 1.40 19.08% 1.59 8.11%
runtime (#tool runs/ hours) 1/5.3 65/344.5 50/265 1/5.3 - 1/5.3 - 1/5.3 -

AES (#cells: 112K, #nets: 112K, #IO: 390)
power (105 uW) 6.71 6.32 6.31 5.94 11.48% 6.29 6.23% 6.39 4.82%

tns (ns) -101.25 -55.85 -43.56 -28.74 71.62% -35.64 64.80% -58.61 42.12%
wns (ns) -0.08 -0.05 -0.05 -0.03 62.77% -0.04 44.85% -0.05 31.94%

pdp (105uW * ns) 1.51 1.40 1.26 1.20 20.30% 1.26 16.56% 1.43 5.08%
runtime (#tool runs/ hours) 1/2 55/110 45/108 1/2 - 1/2 - 1/2 -

DMA (#cells: 13K, #nets: 14K, #IO: 961)
power (105 uW) 1.52 1.43 1.40 1.37 10.16% 1.39 8.36% 1.41 7.25%

tns (ns) -96.67 -52.24 -29.13 -25.74 73.38% -40.52 58.08% -56.93 41.11%
wns (ns) -0.21 -0.11 -0.13 -0.12 42.86% -0.14 33.33% -0.15 28.57%

pdp (105uW * ns) 5.08 4.66 4.49 4.25 17.32% 4.50 11.39% 4.68 7.88%
runtime (#tool runs/ hours) 1/0.4 30/12 30/12 1/0.4 - 1/0.4 - 1/0.4 -

ECG (#cells: 83K, #nets: 84K, #IO: 1.7K)
power (105 uW) 6.21 5.83 5.66 5.56 10.49% 5.58 10.09% 5.85 5.75%

tns (ns) -100.80 -54.37 -41.28 -20.30 79.86% -30.98 69.27% -46.26 54.11%
wns (ns) -0.20 -0.11 -0.12 -0.08 60.35% -0.10 50.00% -0.12 38.36%

pdp (105uW * ns) 2.44 2.25 2.05 1.94 20.40% 1.97 19.42% 2.26 7.23%
runtime (tool runs/ hours) 1/1.7 40/68 35/59.5 1/1.7 - 1/1.7 - 1/1.7 -

LDPC (#cells: 39K, #nets: 41K, #IO: 4.1K)
power (105 uW) 2.82 2.66 2.58 2.50 11.35% 2.64 6.21% 2.69 4.64%

tns (ns) -150.20 -65.21 -74.77 -32.52 78.35% -48.21 67.90% -91.48 39.10%
wns (ns) -0.22 -0.11 -0.10 -0.08 64.38% -0.12 47.29% -0.14 36.98%

pdp (105uW * ns) 2.56 2.35 2.31 1.99 22.45% 2.12 17.05% 2.38 6.84%
runtime (#tool runs/ hours) 1/1.2 40/48 35/42 1/1.2 - 1/1.2 - 1/1.2 -

VGA (#cells: 52K, #nets: 52K, #IO: 184)
power (105 uW) 4.01 3.81 3.68 3.52 12.22% 3.60 10.22% 3.81 4.92%

tns (ns) -88.26 -50.69 -36.54 -18.20 79.38% -28.35 67.88% -59.06 33.08%
wns (ns) -0.38 -0.20 -0.16 -0.15 60.60% -0.17 54.42% -0.20 47.04%

pdp (105uW * ns) 2.89 2.68 2.64 2.27 21.50% 2.35 18.69% 2.64 8.70%
runtime (#tool runs/ hours) 1/1 50/50 40/40 1/1 - 1/1 - 1/1 -

Rocket Core (#cells: 120K, #nets: 120K, #IO: 379)
power (mW) 250.80 233.48 229.29 228.04 9.07% 235.22 6.21% 238.19 5.03%

tns (ns) -66.81 -32.45 -21.47 -19.05 71.48% -24.15 63.85% -36.41 45.50%
wns (ns) -0.16 -0.09 -0.07 -0.06 60.45% -0.07 58.10% -0.09 43.21%

pdp (mW * ns) 140.00 127.28 124.17 113.02 19.27% 115.60 17.43% 130.78 6.59%
runtime (#tool runs/ hours) 1/4 65/260 50/200 1/4 - 1/4 - 1/4 -

The results are presented in Table 6. We observed that our Fast-
Tuner delivers competitive results when fine-tuning subsets of
parameters. Furthermore, we noted a phenomenon where the more
parameters we were able to tune, the better the final results, sug-
gesting that a greater degree of parameter tuning flexibility leads
to improvement.

5 CONCLUSION
In summary, we introduce the FastTuner framework, which sig-
nificantly reduces tuning times from hours to seconds by utilizing

RL with PPA estimators. FastTuner also leverages transfer learning
via GNN, enabling effective generalization across various designs.
Across multiple industrial benchmarks and optimization objectives,
FastTuner consistently outperforms SOTA by a substantial margin,
demonstrating its effectiveness and robustness.
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