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In high-performance three-dimensional Integrated Circuits (3D ICs), clock networks consume a large portion
of the full-chip power. However, no previous 3D IC work has ever optimized 3D clock networks for both
power and performance simultaneously, which results in sub-optimal 3D designs. To overcome this issue,
in this article, we propose a GNN-based flip-flop clustering algorithm that merges single-bit flip-flops into
multi-bit flip-flops in an unsupervised manner, which jointly optimizes the power and performance metrics
of clock networks. Moreover, we integrate our algorithm into the state-of-the-art 3D physical design flow and
verify the integration, which leads to a better 3D full-chip design. Experimental results on eight industrial
benchmarks demonstrate that the algorithm achieves improvements up to 18% in total power and 8.2% in
performance over the state-of-the-art 3D flow.
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1 INTRODUCTION

Due to the lack of commercial three-dimensional (3D) physical design tools, existing 3D In-
tegrated Circuits (IC) implementation flows leverage pseudo-3D approaches [1] to build
commercial-quality 3D ICs from 2D commercial tools. Mainly, these 3D flows rely on 2D tools
to perform pseudo-3D placement and routing on projected 2D layouts. To improve the power con-
sumption of the final full-chip design, existing 3D flows merely focus on improving the switching
power, given that it can be straightforwardly achieved through wirelength reduction. However,
the clock and the internal cell power, which constitute a significant portion of the total power [2],
need to be optimized directly in the existing 3D design flows. In addition, due to the inferiority of
the tier partitioning algorithm named bin-based min-cut algorithm, which most of the previous
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works [3] adopt, severe timing degradation often appears in the final 3D full-chip designs due to
the ill-decided locations of registers. Therefore, a methodology that jointly improves the power
and performance of 3D ICs is urgently needed in this work.

Generally speaking, 3D design flows can be categorized into two categories: partitioning-first
and partitioning-last. Previous work [4], a partitioning-last design flow [1], has proposed a parti-
tion mitigation strategy to improve the power and performance of 3D ICs by partitioning clock
buffers and flip-flops (FFs) based on a clock tree hierarchy while moving cells on critical paths
within clusters to prevent skew degradation. However, this heuristic algorithm requires param-
eter tuning for each design benchmark and only shows marginal improvements after long tun-
ing iterations. In partitioning-first design flow, previous work [5] attempted to resolve the timing
degradation by enhancing placement constraints. Despite the performance improvement, the clock
and sequential power still need to be fully optimized to have more power saving than the 2D ICs
counterparts.

The clock and sequential power have lately become essential factors in the total power due to
the high clock frequency in the gigahertz range. A clock delivery network consists of a source and
multiple sinks (=FFs) [6]. The source is distributed from the center of the footprint with buffers
and inverters in the tree structure and, last, to the leaf nodes. Different types of FFs are designed to
support many functionalities, and their power estimations differ [7]. Therefore, the algorithm to
co-optimize the clock delivery network for timing and power is mandatory in 2D and 3D design.

In this article, we propose joint power and timing optimization for 3D ICs through FF clustering.
Merging single-bit FFs to multi-bit flip-flops (MBFF) is well known to help optimize clock power
and timing in 2D designs [8], which has become a must-use technique in industrial design flows.
MBFF provides power saving by sharing the same clock buffers with multiple sets of master—slave
latches. However, there exist a few drawbacks in existing 2D MBFF algorithms. By focusing only
on an arrival time constraint, another FF clustering approach [9] becomes applicable to industrial
designs, because the arrival time is not coupled between FFs. However, this clustering approach
only optimizes the clock network locally, because it only clusters neighboring flops whose arrival
constraints are not violated, severely limiting the total number of FFs available to be clustered.
Nonetheless, the most severe drawback of previous works [8, 9] is that after flop clustering, the
underlying placement is not accordingly improved with the new locations of flops. They rely on
the subsequent routing stages and optimizations to resolve the violations.

In this work, we advance the traditional MBFF algorithms through machine learning. Further-
more, we develop a novel learning-based flop clustering framework that improves both 2D and
3D ICs by jointly optimizing the performance and power metrics. Specifically, we propose a novel
clock network optimization technique called Multi-bit FF clustering (MBFC) that can be inte-
grated with any design implementation flow. Our approach is elegantly based on graph neural
networks (GNNs) and essential features that learn to find good clustering results by understand-
ing netlist characteristics. The main contributions of this work are listed as follows:

e We extend the state-of-the-art 3D design flows with the ability to perform effective FF clus-
tering to improve 3D QoR metrics.

e We propose a novel GNN-based approach with essential features to cluster the clock cells
from similarities instead of the traditional clustering algorithm.

e We further analyzed and quantified the impact of each feature on the final clustering results.

e The GNN-based flip-flop clustering algorithm reduces parameter tuning efforts in a practical
runtime.

e Our framework improves the final 3D full-chip design using an efficient multi-bit flip-flop
clustering algorithm. Additionally, the framework also supports the 2D IC design flow.
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Fig. 1. Our MBFC, which supports both 2D and 3D ICs.

e Experimental results demonstrate that our proposed algorithm outperforms the existing 3D
state-of-the-art flows with up to 18% and 8.2% improvements in the total power and perfor-
mance, respectively.

2 RELATED WORKS

In the state-of-the-art Shrunk2D (S2D) [3] flow, there are four main steps. First, for a given tech-
nology node, cells and wires are scaled down by a 1/2 along both the x and y dimensions. Sec-
ond, the design is synthesized with this scaled technology using a 2D Back-End-Of-Line. Third,
the design is partitioned into two dies. Last, Face-to-Face (F2F) pads are inserted, and tier-by-tier
routing is performed to finalize the 3D design.

The study of MBFF is presented in the literature [10]. In References [11, 12], the FF clustering
is performed by matching feasible regions of FFs from dynamic implied skew constraints. How-
ever, due to the high time complexity of such methods, the authors in Reference [13] proposed
the FF clustering approach using clock arrival time from linear programming (LP) to cluster the
FF. Reference [14] proposed the approach to design a low-power FIR filter using the MBFF tech-
nique. These studies are limited to a 2D IC design, and there are no existing works on applying
multi-bit flip-flops to optimize the full-chip 3D design.

3 OUR METHODOLOGIES

3.1 Overview

In this section, we present our MBFC flow as illustrated in Figure 1. The MBFC supports both 2D
and 3D ICs. For 3D IC design, we extend the S2D flow [3] to optimize the clock network power
and design performance.
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Table 1. Features Used to Construct Skew Constraint Graphs

features descriptions
x x location of flip-flop in design layout
y y location of flip-flop in design layout

worst_slack_launch | worst slack of flip-flop as launch
worst_slack_capture | worst slack of flip-flop as capture
worst_slack_through | worst slack through the flip-flop

clock skew group clock latency of sub tree

top tier Multi-bit FF top tier
— T T 2o
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Fig.2. Our GNN-based multi-bit FF clustering steps for 3D ICs. We use half-height cells in our post-clustering
optimization step as further illustrated in Figure 6.

In the 2D design flow, we perform FF clustering after the clock tree synthesis (CTS) stage
when the standard cells are placed and a clock tree has been constructed. The main reason to
perform the FF Clustering after the clock tree synthesis is to obtain accurate clock information
such as clock slack information and clock skew group defined as features, which are used in our
GNN-based FF Clustering in Table 1. In the 3D design flow, we perform the FF Clustering after the
tier partitioning stage. Before performing the FF Clustering in the 3D design flow, we implemented
additional steps outlined in Section 3.2 to obtain accurate timing and clock information for the 3D
design.

Since this is the first work to perform FF Clustering in 3D IC, we integrate the LP-based clus-
tering approach [13] into our full chip design flow, as baseline design. This integration allows us
to compare LP vs. GNN in a full-chip design environment instead of evaluating clock trees in iso-
lation as done in Reference [13]. Thus, our MBFC flow has three main steps: timing extraction,
GNN-based FF clustering, and post-clustering steps.

3.2 Initial Timing Information Extraction

In the first step, we extract the timing and clock information from the design. The required infor-
mation differs between LP-based and GNN-based FF clustering based on their inputs. In 2D design,
we extract the necessary information directly from the design after the CTS stage, with the esti-
mated routing information obtained from the global routing. In 3D, the clock tree has been built in
the CTS stage of S2D’s Pseudo-3D [3]. However, we only obtain 3D placement after the tier parti-
tioning stage, which only contains cell information such as FFs, clock buffers, and combinational
logic cells but not routing. Therefore, we perform full-chip routing to extract the clock tree and
timing information. The full-chip routing combines the top and bottom dies into a single design us-
ing a 3D Back-End-Of-Line with a double metal stack, as in the “Initial 3D Placement” and “Initial
3D routing” stages in Figure 2. As a result, both top and bottom cells are overlapped, but their pins
are of different metal layers. The top cells have pins at the top metal layer, while the bottom cells

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 76. Pub. date: September 2023.



GNN-based MBFC and Post-clustering Design Optimization 76:5

[50,90]

w,, (80801 40 40 FFoo1 2 3 4 5 6

1 0.86 0.4 0.65 0.3 0.02

[20,80]

1
2| 0.86 1 0.3 0.3 06 0.2

50 50 3104 03 1 0.7 04 0.5
41065 03 07 1 0.5 01
5103 06 04 05 1 0.8

20,301 6 | 002 02 05 01 08 1
’ [80,30] 50 50
[50,10]
(a) SCG Graph (b) Graph Neural Network (c) Similarity Matrix

Fig. 3. GNN-based FF clustering illustration. (a) SCG, (b) graph neural network (GNN) for training, and (c)
similarity matrix.

have pins at the bottom. After that, we perform the global and detailed routing, including both the
clock and signal nets, with a fixed cell placement. Once the routing is completed, we extract the
necessary information from the fully routed 3D design using the Cadence Innovus tool.

3.3 GNN-based FF Clustering

GNN-based FF clustering consists of three main steps: GNN Model, GNN learning, and GNN FF
clustering. The goal of GNN-based FF clustering is to find the similarity between every pair of
FFs under a GNN-transformed high-dimensional space. Given comprehensive features, including
clock metrics and timing path information, we perform the feature ranking to select only essential
features as initial features. Once we obtain the initial features for each design instance (=node),
we leverage GNN to perform node representation learning to transform the initial features into
high-dimensional representations by aggregating and distilling the netlist information through a
message-passing process. And, last, we cluster similar pairs of FF from the similarity matrix derived
from high-dimensional representations in GNN.

The key idea of using GNN to perform FF clustering is that if there exists a pair of FFs that
should better be merged into a two-bit FF, then the representations between these two FFs should
be more similar in the high-dimensional space (GNN-transformed) than in the low-dimensional
space (manually defined).

3.4 GNN Model

In the first step of GNN-based FF clustering, we construct the Skew Constraint Graph (SCG) [15]
from the netlist of the design benchmark. The SCG contains a node as a FF, and we add an edge
if a timing path exists between two FFs. Therefore, we only extract the FFs from the netlist and
omit other logical cells. An example of the SCG graph is illustrated in Figure 3(a). We assign the
weight of each edge in the graph as the Manhattan distance between nodes. Therefore, the message
passing process is scaled based on the different weights of the edges, which are determined by their
distance. Next, we extend Reference [16] to handle the SCG graph as a graph network structure.
In the conventional netlist, there is no separated subgraph. However, the SCG graph contains a
subgraph where the FFs form local connections only among the small group of flip-flops. As a
result, we select the largest connected subgraph as a training network.

3.4.1 Feature Selection. Initial features are essential for the best result of GNN. Therefore,
we consider 13 relevant features for each FF, including location in X, Y, and Z (= tier location),
clock information such as clock latency for both launch and capture, clock skew for all three
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Table 2. Candidate Features for Evaluation in Our GNN Learning

no features descriptions
1| die loc die location (0 = top, 1 = bot)
2| x x location of flip-flop in design layout
3|y y location of flip-flop in design layout
4 | slack launch worst slack of flip-flop as launch
5 | slack capture worst slack of flip-flop as capture
6 | slack through worst slack through the flip-flop
7 | clock capture latency | capture clock latency
8 | skew launch worst skew of flip-flop as launch
9 | skew capture worst skew of flip-flop as capture
10 | skew through worst skew through the flip-flop
11 | clock launch latency | launch clock latency
12 | clock level level of flip-flop in clock tree hierarchy
13 | clock skew group clock latency of sub tree
Feature Importance Bl High importance
0.12

] Medium importance

0.10 D Low importance

0.08
0.06
0.04

0.02

0.00 Features

1 2 3 4 5 6 7 8 9 1011 1213

Fig. 4. Feature importance of the features shown in Table 2 using Random Forest classifier.

conditions: launch, capture, and through the FF, clock level, and clock skew group. The details
of each comprehensive feature are listed in Table 2. Next, we utilize the Random forest [17] to
effectively rank the feature importance of candidate features and select the best subset for GNN
learning.

Specifically, we use the target variable as a pair number of FFs. A pair of merging FFs has
the same pair number, starting from 1 to the maximum number of pairs possible. We obtain the
pair number from the SCG graph training with all comprehensive features and perform the FF
clustering. Therefore, we have a clustering pair for each FF. We train the Random forest classifier
with comprehensive input features and pair numbers and then extract the feature importance as
illustrated in Figure 4. The graph shows the average feature importance from all benchmarks for
13 features.

3.4.2 Initial Node Features. With feature importance in the previous section, we select particu-
lar features with feature importance more than the average. Therefore, we define the initial feature
of each node (FF) in the GNN graph, as shown in Table 1. The features contain the location of FFs
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(x,y) and slacks for all timing paths. All six features have high feature importance compared to
other features. The first two features are the location of the FF, which contributes to the wire-
length. The following three features, slack information of FFs, is timing path information that
contains three values: worst timing slack with FF as launch FF, capture FF, and through FF. This
detailed slack information allows us to group the FFs with similar slacks, ensuring that the addi-
tional useful clock skew required to close the timing is minimal and that the additional skew will
not cause further hold or setup violations on related paths. The clock skew group’s last feature is
the clock latency of the subtree. A subtree in the context of a clock delivery network refers to a
group of clock sinks that are connected to a common parent node in the clock tree. Sinks within
the same subtree have the same clock skew group.

3.5 GNN Learning

Once we construct the GNN model with node and edge representation with initial features, we
proceed into the GNN learning step, where we aggregate the neighbor information from low-
dimensional space into high-dimensional space. Below, we illustrate the transformation process in
detail.

3.5.1  Neighborhood Encoding. With the initial node features presented above, we perform node
representation learning using GNNs. Based on the skew constraint graph shown in Figure 3(a)
(more on the SCG generation is discussed in Section 3.9.1), we leverage GNNs to transform the ini-
tial features we define for each node (i.e., FF) into a high-dimensional representation by capturing
neighboring information.

This aggregation process is performed iteratively. Our GNN model will act as a “graph filter”
that visits every node in the design to aggregate the information of its local neighborhood. In
general, GNN consists of a set of neron layers, where each layer is dedicated to performing the
aggregation of a specific hop of the neighborhood. For a node v € V, the representations at level
k are obtained as follows:

1
RS =o|hS 00— > hE, 1)
Sk u€Ng(v)

where o is the sigmoid function, h¥ denotes the representation vector of node v at level k, Ny (v)
denotes the neighbors sampled at k-hop that is subject to the sampling size sx, and ;. denotes the
trainable parameters of neighborhood feature aggregation at level k, which is realized by a neural
layer. Note that the concept of “level” corresponds to the concept of “hop,” where h? is the initial
features of node v, and hX=K is the final representation after aggregating the information within
the K-hop neighborhood of v.

3.5.2  Unsupervised Loss Function. In this article, we construct a loss function that will en-
courage nodes connected on the constrained graph to have similar representations in the high-
dimensional space while minimizing the similarity between nodes not connected on the graph.
Following from Reference [18], the loss function is constructed as follows:

M
Lhy) == ) log(a(hlhu)) = > En,-Neg(o) log(o(~hT hn))), ()
ueN(v) i=1

where N(v) denotes the direct one-hop neighborhood of the target node v, Neg(v) represents the
negative sampled nodes in the perspective node v, and M represents the negative sampling size.
Note that the negative sampling is achieved by performing random sampling on the nodes that
are beyond the local neighborhood of the target node v, and we aim to minimize the similarity
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Fig. 5. Training loss on different design benchmark: RocketCore, A7, and OpenPiton.

between the negatively sampled nodes and the target node. Finally, note that Equation (2) is an
unsupervised loss function, which means the proposed clustering methodology does not require
a huge dataset to be pre-generated and is generalizable to any netlist as it does not assume any
pre-defined netlist structure.

3.5.3 Training Parameters. We specify the number of epochs, where data of each node(=FF)
aggregates to K neighbors for one time, of all design benchmarks to 200. The k value in Equation (1)
is chosen to be two based on the empirical experiments [19]. The high number of k will degrade
the quality of most GNNs. Therefore, the batch size is set to 256. Next, we run the gradient decent
algorithm to reduce the loss on a built network in Figure 3(b) with the above setting. And, we
observe that the loss value converges quickly for all designs despite the size of the SCG graph. As
a result, the runtime of GNN training is short and more practical for large industrial designs, as
shown in Figure 5.

3.6 GNN FF Clustering

In the last step of GNN-based FF clustering algorithm, we obtain the GNN model with high-
dimensional representation. Each node contains 32 high-dimension features from feature encoding,
which better represents the relationship of FF than the initial features. The last stage is the cluster-
ing stage, where a pair of FFs is merged based on the similarity of their GNN features. We utilize
cosine similarity, which is given by

Cosine similarity = € [-1.0,1.0] VA,B e R" (3)

A
|Al - |B|
With the Cosine similarity matrix, as shown in Figure 3(c), we sort the maximum entries and ignore
the entries along the leading diagonal as they correspond to self-correlation. Next, we iterate the
sorted entries and check the FF merging constraints.

We calculate the pairwise similarity matrix using the 32 embedded features derived from GNN.
The entry in row i and column j of the similarity matrix indicate the similarity between node i and
node j, with a value € (—1.0, 1.0). We ignore the diagonal entries, since they indicate similarity to
themselves and are always equal 1.

Using the similarity matrix, we perform the GNN FF Clustering algorithm as outlined in
Algorithm 1. At the start, the merging list contains all the FFs in the design. In Algorithm 1, we
first pick an FF (rand_FF) from the merging list and find another FF (comp_FF) to merge with,

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 76. Pub. date: September 2023.



GNN-based MBFC and Post-clustering Design Optimization 76:9

ALGORITHM 1: GNN FF Clustering Algorithm.
Result: Merge_pair : Pairs of FF to be merged
FF_info[name] « [location, nets, type];
FF_list < FlipFlops;

Sim_Mat < SimilarityMatrix;

Merge_pair = 0;

while FF_list not empty do

rand_FF < Random pick FFs;

FF_list.pop(rand_FF);

min_dist « inf;

max_sim < — inf;

merge FF « —1;

for comp_FF in FF_list do

D « Dist(rand_FF, comp_FF);

T_flag « validate(rand_FF, comp_FF);

i = name2index(rand_FF)

j = name2index(comp_FF)

if Sim_mat[i][j] > max_sim & T_flag & D < Max_range then
merge_FF < comp_FF;
max_sim « Sim_mat[i][j];

end

end

if merge_FF # —1 then

FF_pair = (rand_FF, merge_FF);

Merge_pair.push(FF_pair);

FF_list.pop(merge_FF);

end
end

subject to the following conditions. Next, we calculate the Euclidean distance between rand_FF
and comp_FF. We then verify that the two FFs are of the same type and have the same clock
nets to maintain the correctness of the netlist. The FF with the highest similarity to rand_FF and
within the maximum search range is selected to merge with rand_FF and is removed from the
merging list. If there is no pair of FFs to merge with rand_FF, then we drop it and pick another
FF. This process is repeated until all FFs have been checked. Once we complete the GNN-based
flip-flop clustering in Algorithm 1, we merge pairs of FFs into multi-bit FFs and modify both the
netlist and placement accordingly.

We use two-bit FF of four different types: D-Q FF, D-QN FF, D-Q FF with reset pin, and D-QN
FF with reset pin, shown in Table 3. These provide hard constraints for merging two FFs and
apply to both LP and GNN-based FF clustering to ensure correctness. In addition, we maintain the
correctness of the netlist by validating if the clock and reset nets match for merging the FF pair
candidates.

3.7 Post-clustering Optimization

This section presents the optimization stage for fixing the timing paths of the modified netlist
with multi-bit FFs. In 3D design, we extend the approach presented in Reference [5] to perform
placement legalization and CTS with both dies simultaneously in a single design. The first step
is to scale cells into half their height, as shown in Figure 6(a). The order of row alignment differs
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Table 3. Area and Power Comparison between Single-bit FF and Multi-bit (= 2-bit)
FF of the Commercial 28-nm Technology We Use in Our Experiment

Pins Single-bit FF Two-bit FF
R ON Area Power Per-bit Area Per-bit Power
(um?) (nW) (um?) (W)
N N 2.73 2.30 2.35 1.82
N Y 2.75 2.01 2.35 1.99
Y N 3.40 2.63 3.00 1.99
Y Y 3.24 2.98 2.84 2.27
“R” denotes if flip-flop has reset pin and “QN” if output is inverted.
not 4
flipped  flipped NF '-":J
j-" 5 ‘ 3
Bot
o
Top NF w
. Top =
l - B s F 2
(a) Half-height Cell (b) Row Allignment (c) 3D Placement

Fig. 6. Cell height management in our flow. (a) Half-height cells; (b) row alignment, timing closure, and
legalization; and (c) height restoration after tier partitioning for the final 3D IC design. The reason for half-
height is to use a commercial 2D IC timing closure tool for 3D IC designs.

from Reference [5] as the row orientation for both dies is identical as in Figure 6(b). Finally, the
cells are shifted to match row alignments, as shown in Figure 6(b). With the above settings, we
perform the incremental placement to correct the multi-bit FF location, as illustrated in Figure 2.
Then, the remaining steps of the physical design flow (CTS, Signal Routing, and Timing Closure)
were performed to finalize the design. To convert this mixed-die design into a 3D design, we split
the dies and shifted the even-order rows before restoring the cells to their original size. Finally, the
3D placement is obtained as in Figure 2, as the cell height is restored in Figure 6(c). In 2D design,
we perform post-clustering steps as mentioned above, with original technology nodes after the
clock tree synthesis stage.

3.8 Handling Multiple-bit Flip-flop Clustering

In Section 3.6, we present GNN-based FF clustering of a pair of FFs into a two-bit FF. However,
multiple-bit FFs exist, such as 4, 8, and 16 bits. Therefore, we provide the additional steps for our
GNN-based algorithm to support multiple-bit FFs. From the similarity matrix in Figure 7(a), there
are six FFs in the SCG graph, where each FF has pairwise similarity to other FFs. We highlight
the pairwise element where the value exceeds the threshold (0.5). The maximum bit size of the six
FFs is 4. This is because multi-bit FFs are available in sizes that are powers of two, such as 2, 4, 8,
and 16. We define k as the number of bits in the multiple-bit FF. Next, we check each FF; from the
ith row and check if there are k — 1 entries in the similarity matrix with a value greater than the
threshold (0.5), where k is the maximum number of bit size of multi-bit FF that FF; will be grouped
with. After we obtain the set of FFs for each row, we generate the pairwise combinations of the
given set and check if all elements in the combination meet the requirement (>0.5) in terms of their
pairwise distance. If any pairwise element in the pairwise combination for each row does not meet
the requirement, then we remove them from the candidate list for k-bit clustering. Moreover, if
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Fig. 7. Multiple-bit flip-flop clustering steps for GNN-based algorithm. (a) Cosine silimarity matrix. (b) Han-
dling overlaping pairs. (c) Final cluster for 4-bit FF.

there exist more than two rows where the requirement is met, and they contain the same subset of
FFs, then we calculate the sum pairwise to select the highest similarity sum as a cluster. As a result,
our GNN-based FF clustering supports more than a 2-bit FF. However, in this article, due to the
limitations of commercial process design kit (PDK), we could not perform the clustering with
more than 2 bits. Nevertheless, our GNN approach could perform better clustering choices from the
better representation of FFs in the higher-dimensional space than the initial low-dimension feature.

3.9 LP-based FF Clustering

Since Reference [13] only performs the clock tree synthesis, we integrate and extend the FF cluster-
ing algorithm into our 3D design flow with the followings. However, we also perform the compar-
ison with the original [13] at the CTS stage in the experimental result. The LP-based FF Clustering
consists of three main steps: (1) We extract all timing path constraints from the design layout and
generate the SCG. (2) We use LP formulation with constraints to solve for a clock arrival time of a
FF. (3) We perform the FF clustering based on overlapped (=matching) arrival time and additional
merging criteria.

3.9.1 Timing Path Constraint. Given a design layout, we extract the RC parasitic to generate
timing path constraints for both setup and hold. For each path constraint, two FFs (launching and
capturing FFs) are connected through a chain of combinational logic cells. With setup and hold
constraints, we reformulate the differences in clock latency between launching and capturing FF
in terms of skew as follows:

_llaunch_cap < tiqunch — tcapture < Ucap_launchs (4)
_ ymin co hold
llaunchicap = tcomp + tlaunch -t s (5)
— max cQ setu
Ucap_launch = T- tCO’"P - tlaunch —t p’ (6)
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where tcap 1aunch and ligunch_cap refer to the upper and lower bounds of the skew constraint of

each path, respectively. t;’z,’;zp and t7o", refer to the combinational delay of each path for hold

and setup constraints, respectively. tlfz%nch denotes the clock-to-Q delay for the launching FF, and
tsetup and t"°! are the setup and hold times, respectively. With Equation (4), we calculate upper
and lower bound skew constraints in the design to generate the SCG, as shown in Figure 3(a). Each
node represents a FF, while the edges represent the skew constraint of a FF pair.

3.9.2 LP Formulation. Next, we utilize the LP formulation to solve the optimal arrival time of
each flip-flop using the objective function in Reference [13]. The following equations show the
objective function and constraints of the LP problem:

min ) fP)P 4 fxp)ue, ™
ieV

xfb < x;‘b,Vi eV, (8)

—lij < xf? =% <up V(L) €, (9)

where f (xll byt and f (x;‘b )“? are two piecewise functions to maximize the range of arrival time.
[xfb, x;‘b] denotes a range of clock arrival time with lower bound and upper bound. [;; and uj;
denote the lower bound and upper bound of skew constraint for path i to j, as defined in Equa-
tions (5) and (6), respectively. Equation (8) is to ensure that the lower bound is less than the upper
bound. Equation (9) is the skew constraint defined at an edge of the SCG graph (Equation (4)). This
objective function maximizes the bound of the arrival time range of all FFs using wrapper piece-
wise functions. Thus, this increases the number of pairs to be merged in the clustering stage. From
the SCG graph, we need to satisfy each edge representing the arrival time constraint between a
pair of FF as defined in Equation (4).

We consider the hold constraint in Equation (9) in addition to Reference [13] to avoid additional
buffer insertion. Moreover, we performed an analysis to fine-tune the piecewise linear model for
the maximum range of arrival time and set the number of slopes to three at 1, 2, and 3 ns with the
slope equation as in Reference [9].

3.9.3  Clustering Constraints. Since our MBFC design flow performs full-chip routing for both
clock and signal nets in a 3D metal stack, we modified the merging criteria from Reference [13]
by adjusting the maximum search bound D, 4. This allows each flip-flop to search for matching
candidates, as shown in Figure 9(a). In Reference [13], the matching criteria use the overlapped
arrival time range of each flip-flop in Figure 8(c), which is solved from the LP formation. Utilizing
the maximum search bound enables more FFs to be merged in some designs where the timing
constraints are strict, and no available pairs can be merged without violating the timing. We fine-
tune the maximum search distance for the best result for a fair comparison. Other merging criteria
are defined in Table 3.

3.10 Clustering before Tier Partitioning: An Alternative

Another option to conduct FF clustering within the S2D [3] framework is to perform FF clustering
before the tier partitioning stage. This overall approach is illustrated in Figure 10. This algorithm
begins right after the post-placement stage, where placement and timing are optimized before
constructing a clock tree (CTS). During this stage, the timing analysis is estimated without actual
routing. This framework supports any post-placement FF clustering algorithm into 2D and 3D
designs. In this work, we utilize the LP-based FF clustering in Section 3.9.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 76. Pub. date: September 2023.



GNN-based MBFC and Post-clustering Design Optimization 76:13

I D a Combina.tional D Qb
tIaunch LOg|C tcapture
’—>CK - ’7>CK

t

comp

[

Clock Port

(a) Timing path constraint

)(ub2 Xub4 ub
X2, X, :I: Xub
:I: Xb :|:
X ¢ X
xo - °
Xt 2 X,

Reference Clock Point

(b) SCG Graph (c) CIk. Arr. time bound of each FFs.

Fig. 8. First three steps of Multi-bit flip-flop Clustering. (a) Extract timing path constraints from layout. (b)
Generate SCG graph. (c) Arrival Time Result of each FFs.
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Fig. 9. Last two steps of Multi-bit flip-flop Clustering. (a) Input layout from Post-Placement optimization
stage. (b) Layout after clustering step. (c) Layout after placement legalization.

The algorithm analyzes the timing and merges single-bit FFs into MBFFs. The output from the
algorithm provides legalized placement with an updated netlist containing MBFFs. Next, we per-
form clock tree synthesis, signal routing, and timing closure stages with the default S2D flow. The
cells are then resized to their original size and partitioned into two dies. Last, the inter-tier vias
are inserted, and tier-by-tier routing is performed.

In Multi-bit FF Clustering before Tier partitioning flow (MBFC-BT), the tier location is
not assigned. Thus, the clustering only considers the design as a 2D placement in Figure 9. From
Figure 9(a), the original placement of post-placement optimization is a starting point with the
orange and gray rectangles as FFs and combinational cells, respectively. First, we randomly pick
the FF in the layout and find the nearest-neighbor FFs to merge within a bound distance (d_bound)
if the clock and reset net match. Suppose Close-by FFs have intersect-bound clock arrival time.
They are merged and displaced at the mid-point of the pair, as illustrated in Figure 9(b). Finally,
we performed incremental placement to legalize newly merged MBFF placement and minimize
data-path wirelength, and the outcome is shown in Figure 9(c).

3.10.1 lterative Clustering Consideration. We present the baseline approach of our MBFC-BT.
The purpose is to consider the impact of previous flip-flop Clustering iterations. For each
iteration, the timing path extraction, SCG generation, arrival time solver, FF clustering, and
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Fig. 10. Our MBFC-BT flow.

legalization are performed with additional criteria in the clustering stage. Instead of choosing
all possible clustering pairs to be merged, only the best candidate pairs (N% of all possible pairs)
are selected based on the amount of overlap bound of clock arrival time. In other words, all
possible pairs are sorted in descending order of overlap, and only N% of pairs are selected, where
N is specified by the user. The stop condition of this algorithm is when no clustering pairs are
possible, and the remaining steps in Shrunk-2D [3] are performed. The experiment result is in
Section 5.3.

4 IMPACT OF GNN-BASED FF CLUSTERING
4.1 Experimental Setup

In our experiments, we compare the impact of our MBFC algorithm on Power-Performance-
Area (PPA), clock Metrics, and full-chip timing. We utilize a commercial 28-nm PDK with six metal
layers for 2D IC design and with 12 metal layers (six metals for each die) for 3D IC design (3D).
The 3D design contains two dies with six metal layers, and uses F2F vias as inter-tier connections.
The F2F via size, pitch, resistance, and capacitance are set to 0.5 ym, 1 ym, 1.0 Q, and 0.05 fF,
respectively. We use eight circuits (pure-logic and processor RTLs) as benchmarks to evaluate the
performance of our algorithm. The details of these eight benchmarks are given in Table 4. We
set the clock frequency of each benchmark circuit to the maximum clock frequency of 2D design
with the Worst Negative Slack (WNS) within 10% of the clock period. All the 3D footprints of
a specific RTL are identical in terms of footprint and placement of memory macros. The results
of the ARM Cortex-A7 and Cortex-A53 designs are normalized with respect to the 2D design to

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 76. Pub. date: September 2023.



GNN-based MBFC and Post-clustering Design Optimization 76:15

Table 4. Benchmark Statistics

Design # Cells # FF purpose
VGA 34,104 | 17,051 (50.0%) training
TATE 212,996 | 31,409 (14.7%) cell dominated
NOVA 138,383 | 29,078 (21.0%) FF dominated
JPEG 240,155 | 37,540 (15.6%) large circuits
RocketCore 120,565 | 16,429 (13.6%) | small processor
A7 208,491 | 22,366 (10.7%) | industrial processor
OpenPiton [20] | 186,485 | 53,358 (28.6%) | RISC-V processor
A53 528,488 | 47,527 (8.9%) | industrial processor

Table 5. The Metrics Definition for Both PPA and Clock Metrics

PPA Metrics Description Clock Metrics Description

WL Total wirelength in the design Clk. WL Total clock wirelength in the design

Pwr. Total power consumed in the design | FF # Number of total flip-flops in the design

WNS. Worst negative slack CIk. Pwr. Total clock power (Clock Net & Clock Buffers)
TNS. Total negative slack Clk. Lat Worst clock Latency

PDP. Power delay product (mW”ns) Clk. Skew. Worst clock skew

EDP. Energy delay product (mW*ns2) FF Pwr. Total sequential power

protect sensitive information due to non-disclosure agreements. We define the metric definition
for PPA and Clock metric comparison in Table 5.

The two-bit FFs cells used in this article are provided from the PDK. Due to the limited access
to the back-end library, we could not generate higher multi-bit FFs such as 4 or 8. Therefore, we
only leverage commercial-quality two-bit FFs with a different type to experiment.

The 2D and 3D design options in this experiment are listed as follows.

e 2D: Monolithic 2D IC with six metal layers

e 3D: The state-of-the-art 3D design [3]

e LP: Two-dimensional design using the state-of-the-art clock clustering algorithm using
clock arrival time [13].

e LP_opt: Since no previous works have implemented a final full-chip design with MBFFs,
we implement the multi-bit flip-flop clustering 3D design using the linear programming
(MBFC_LP) clustering approach outlined in Section 3.9.

e 2D_LP_opt: Two-dimensional design using our linear programming (MBFC_LP) clustering
approach outlined in Section 3.9.

e 2D_GNN: Two-dimensional design using our GNN-based FF clustering algorithm
(MBFC_GNN)

o GNN (This work): Three-dimensional design using our GNN-based FF clustering algorithm
(MBFC_GNN).

4.2 GNN-related Results

In this section, we evaluate graph learning by constructing t-distributed stochastic neighboring
embedding (t-SNE) to visualize the FF representations from 32 dimensions to 2 dimensions. For
example, in Figure 11, we demonstrate the node representation of FFs in the RocketCore design
with 10 clusters based on the similarity representation from embedded dimensions. Furthermore,
we observe that similar FFs form groups of clusters, each denoted by a different color. The clear
separation of each cluster reflects the effectiveness of our GNN framework in translating initial
features to meaningful embedded features that serve as a basis for selecting the pairs to merge into
MBFFs.
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Fig. 11. t-SNE visualizations of the learned node representations from GNN for RocketCore design. Each dot
represents a FF. FF color is assigned based on the similarity of its representation.

Table 6. 2D IC Clock Metrics Comparison

Pure-logic Design

TATE (1.8 GHz) NOVA (500 MHz) JPEG (1.55 GHz)

Metrics 2D | LP [ 2D GNN | 2D | LP [ 2D GNN | 2D | LP | 2D _GNN
Clk. WL. (mm) | 118 | 86 86 104 | 83 95 139 | 97 99
FF # |31K| 17K 17K 20K [ 19K | 25K 37K | 20K 20K
Clk.Pwr. (mW) |46.7 | 33.7 33.6 85 | 6.5 7.4 492 | 347 35.4
FF Pwr. (mW) | 192 | 160 161 35.1]30.5| 329 |205.1]| 173 174
CIk. Lat. (ps) | 334 352 309 285 | 350 326 420 | 438 405
Clk.Skew (ps) | 44 | 31 25 191 | 173 191 118 | 119 87
WNS. (ps) | 8 | 8 8 0] o0 10 44 | 32 46

Processor Design

RocketCore (1 GHz) AT7* OpenPiton (450 MHz)

Options 2D [ LP [2D GNN | 2D | LP [2D GNN| 2D | LP | 2D _GNN
Clk. WL  (mm) | 66 | 49 49 1 |076] 0.76 390 | 367 372
FF # | 16K | 9K 9K 1 |055] 056 53K | 45K 48K
Clk.Pwr. (mW)| 156|117 11.9 1 |078] 0.76 74 | 7 7.3
FF Pwr. (mW) | 56.8 483 483 1 |081] 082 26.9 | 24.6 25.8
CIk. Lat. (ps) | 322 346 338 1 099 1.00 469 | 572 467
Clk.Skew (ps) | 84 | 125 104 1 122 133 374 | 369 331
WNS. (ps) | 81 | 94 84 1 |088] 098 171 | 276 159

(1) 2D: Cadence Innovus using 1-bit FFs; (2) LP: State-of-the-art LP-based FF clustering [13]; and (3) GNN: our
GNN-based FF clustering. The highlighted entries indicate the best result among all designs.

4.3 Comparison with Existing Work

We validate our GNN-based FF clustering approach with state-of-the-art FF clustering (LP) [13]
on six design benchmarks. Furthermore, since the state-of-the-art design evaluates the result after
the CTS stage, we compare the clock metrics such as clock wirelength, clock-related power, and
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Table 7. Clock Metrics Comparison

Pure-logic Design

] TATE (1.8 GHz) NOVA (500 MHz) JPEG (1.55 GHz)

Metrics 2D | 3D |LP opt|GNN| 2D | 3D |LP_opt|GNN| 2D | 3D |LP_opt| GNN
Clk. WL.  (mm) | 118 104 85 78 103 90 76 69 141 120 96 86
FF # 31K | 31K 18K 16K | 29K | 29K 17K 16K | 37K | 37K 21K 19K
Clk Pwr. (mW) | 47.07 | 44.23 | 34.45 | 31.87 | 8.68 | 7.96 6.33 5.93 |50.54|47.96| 38.39 | 33.56
FF Pwr. (mW) | 192.8 | 190 161 157 |35.33]35.03 29.9 29.19 | 206 | 203 1754 | 171.4
CIk. Lat. (ps) 331 279 303 287 286 | 267 308 240 414 | 369 412 385
CIk. Skew  (ps) 48 47 79 65 193 173 195 188 129 127 187 123
‘WNS. (ps) 22 60 46 39 27 86 15 23 48 89 70 51

Processor Design

Metrics RocketCore (1 GHz) A7* OpenPiton (450 MHz)
Clk. WL (mm) 66 56 48 44 1 0.82 0.73 0.68 | 390 | 434 362 344
FF # 16K | 16K 10K 9K 1 1.00 0.58 0.55 | 53K | 53K 49K 47K
Clk. Pwr (mW)|16.17|14.97 | 1239 | 11.29 1 0.87 0.76 0.75 7.7 7.4 6.95 6.94
FF Pwr. (mW) | 57.21 | 56.32 | 48.06 | 47.53 1 0.98 0.83 0.82 |27.26 | 26.04 | 24.66 | 2431
CIk. Lat. (ps) 350 | 290 314 306 1 0.90 0.85 0.80 | 454 | 509 449 447
CIk. Skew  (ps) 116 115 167 126 1 1.66 1.10 1.29 | 373 | 225 258 247
WNS. (ps) 78 92 89 84 1 1.08 0.50 0.41 | 473 88 17 19

(1) 2D: commercial 2D IC with 1-bit FF (Cadence Innovus); (2) 3D: 3D IC with 1-bit FF [3]; (3) LP_opt: 3D IC with 2-bit
FF using LP approach in Section 3.9; and (4) GNN: 3D IC with 2-bit FF using GNN (this work). The highlighted entries
indicate the best result among 3D designs.

clock delay between LP [13] and our GNN-based FF clustering approach. From Table 6, it can be
seen that both LP- and GNN-based approaches improve clock wirelength, clock net power, and FF
power over the single-bit FF design (2D). Second, our GNN achieves comparable clock wirelength,
clock power, and FF power to LP with an average saving of 18.2%, 17.3%, and 13.8% to 2D design,
respectively.

The benefit of GNN-based FF clustering is that it provides better clock latency and skew in
most designs except A7 and NOVA designs. The main reason is that the GNN approach groups a
pair of FF based on similarity, considering more design features such as slack parameters and other
features such as location and clock latency. As a result, GNN provides better clock tree performance
with comparable power to the state-of-the-art approach.

4.4 Clock Metrics Comparison

In this experiment, we validate our GNN on all six design benchmarks by comparing clock metrics
on all design options. The LP_opt implementation is based on Section 3.9. From Table 7, we first
observe that multi-bit FFs improve clock wirelength, clock net power, and FF power for both LP_opt
and GNN-based approaches.

4.4.1 Clock Wirelength and FF Cells. We observe that the 3D design obtains slightly better wire-
length than the 2D design from a smaller footprint and shorter interconnect. Furthermore, LP_opt
and GNN further improve the clock wirelength by merging single-bit FFs, which results in fewer
clock pins in the clock tree network. However, the GNN obtained the best clock wirelength in all six
design benchmarks due to more clustering pairs. This is because the GNN FF clustering algorithm
is based on similarity, which clusters FFs that are farther apart, not just nearest-neighboring FFs.

4.4.2 Clock Power. The clock and FF power in 3D are slightly improved from the 2D design
due to the shorter clock wirelength. However, the average clock power and FF power saving from
2D design are 7.31% and 2%, respectively. The MBFF design for both LP_opt and GNN further
improves clock power and FF power from shorter clock wirelength and FF power saving from
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Table 8. Full-chip PPA Comparison

Pure-Logic Design

. TATE (1.8 GHz) NOVA (500 MHz) JPEG (1.55 GHz)

Metrics 2D | 3D [LP_opt|GNN| 2D | 3D |LP_opt|GNN| 2D | 3D |LP_opt|GNN
eff. freq (MHz) | 1737 | 1611 | 1662 | 1682 | 493 | 479 | 496 | 494 | 1443 | 1362 | 1398 | 1436
# cells 211K | 210K | 197K | 195K | 140K | 139K | 129K | 127K | 258K | 252K | 245K | 242K
WL. (m) 2.24 | 1.82 | 2.07 | 204 | 226|176 | 1.99 | 1.98 | 263 | 2.23 | 246 | 247
Pwr. (mW) 349.1(337.0| 307.0 [296.0 | 60.5 | 57.9 | 52.0 | 50.6 |541.0 |497.0| 506.0 | 483.0
WNS. (ps) 20 | 65 46 39 | 27 | 86 15 23 | 48 | 89 70 51
TNS. (ns) 042 | 58 | 997 | 56 | 04 | 33 | 0.08 1 27 | 108 53 40

PDP. (mW™ns) | 200 | 209 184 175 | 122 | 120 104 102 | 375 | 364 361 336

Processor Design

RocketCore (1 GHz) A7* OpenPiton (450 MHz)
eff. freq (MHz) | 928 | 916 918 923 | 1.00 | 0.99 1.06 1.07 | 371 | 433 447 446
# cells 122K | 122K | 116K | 114K | 1.00 | 1.00 0.96 0.96 | 195K | 194K | 190K | 188K
WL. (m) 2.04 | 1.46 1.7 1.68 | 1.00 | 0.71 0.77 0.77 | 6.71 | 5.2 5..47 5.42
Pwr. (mW) 155.3|143.0| 1382 |134.2| 1.0 | 0.89 0.86 0.9 97.3 | 87.3 84.4 84.1
WNS. (ps) 78 92 89 84 1.00 | 1.08 0.50 0.41 | 473 88 17 19
TNS. (ns) 19 50.7 22 22 1.00 | 9.44 0.60 0.25 | 299 | 0.66 0.22 0.29

PDP. (mW'ns) | 167 | 156 150 145 1 0.9 0.8 0.8 | 262 | 201 189 188

(1) 2D: commercial 2D IC with 1-bit FF (Cadence Innovus); (2) 3D: 3D IC with 1-bit FF [3]; (3) LP_opt: 3D IC with 2-bit
FF using LP in Section 3.9; and (4) GNN: 3D IC with 2-bit FF using GNN (this work). The highlighted entries indicate
the best result among 3D designs.

smaller internal power of MBFF. The GNN obtain 10.10% better clock net power and 5.20% lower
FF power than LP_opt from more clustering pairs.

4.4.3 Clock Performance. The performance parameters contain clock latency, skew, and the
worst negative slack. We first observe that the 3D design obtains better clock latency and skew than
the 2D design. The clock latency in 3D design is smaller than in 2D, because the clock wirelength
is shorter than in 2D design. However, the smaller skew in 3D design is due to ignoring the 3D
overhead, which results in worse WNS than the 2D design. In MBFF designs, we observe that the
clock latency and clock skew increases from 3D design. The main reason is that the MBFF design
considers 3D overhead by performing placement and routing with a 3D metal stack by extending
the Snap-3D flow [5]. The main difference between the LP_opt and GNN approach is that our
GNN achieves, on average, 7.2% improvement in clock latency and 6.3% improvement in clock
skew compared to the LP_opt approach, while maintaining comparable worst negative slack. In
conclusion, GNN provides better clock tree performance and power efficiency compared to the
LP_opt approach.

4.5 Full-chip PPA Comparisons
From Table 8, we analyze the impact of our GNN algorithm on PPA.

4.5.1 Total Wirelength. We first observe that 3D design has better wirelength than 2D design
due to its small footprint. However, the MBFF designs obtain longer wirelength than the 3D design.
The main reason is that once a pair of FFs is merged into a two-bit FF, the data path wirelength
becomes longer due to less flexibility in placement. As a result, the GNN obtains 10.65% longer
wirelength than 3D design but shorter than 2D design.

4.5.2  Total Power. We observe that MBFF designs obtain better power than 2D and 3D designs.
The GNN obtains 7% better power than t