L))

Check for
updates

ECO-GNN: Signoff Power Prediction Using Graph Neural
Networks with Subgraph Approximation

YI-CHEN LU, Georgia Institute of Technology, USA
SIDDHARTHA NATH, Intel, USA
SAI PENTAPATI and SUNG KYU LIM, Georgia Institute of Technology, USA

Modern electronic design automation flows depend on both implementation and signoff tools to perform
timing-constrained power optimization through Engineering Change Orders (ECOs), which involve gate
sizing and threshold-voltage (V;,)-assignment of standard cells. However, the signoff ECO optimization is
highly time-consuming, and the power improvement is hard to predict in advance. Ever since the industrial
benchmarks released by the ISPD-2012 gate-sizing contest, active research has been conducted extensively to
improve the optimization process. Nonetheless, previous works were mostly based on heuristics or analytical
methods whose timing models were oversimplified and lacked of formal validations from commercial signoff
tools. In this article, we propose ECO-graph neural networks (GNN), a transferable graph-learning-based
framework, which harnesses GNNs to perform commercial-quality signoff power optimization through dis-
crete V;-assignment. One of the highlights of our framework is that it generates tool-accurate optimization
results instantly on unseen netlists that are not utilized in the training process. Furthermore, we propose a
subgraph approximation technique to improve training and inferencing time of the proposed GNN model.
We show that design instances with non-overlapping subgraphs can be optimized in parallel so as to improve
the inference time of the learning-based model. Finally, we implement a GNN-based explanation method to
interpret the optimization results achieved by our framework. Experimental results on 14 industrial designs,
including a RISC-V-based multi-core system and the renowned ISPD-2012 benchmarks, demonstrate that our
framework achieves up to 14X runtime improvement with similar signoff power optimization quality com-
pared with Synopsys PrimeTime, an industry-leading signoff tool.
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1 INTRODUCTION

Handheld and wearable devices are significantly proliferating in today’s semiconductor markets
and demand extremely low power dissipation while operating at voltages as low as 0.45 V. However,
in advanced technology nodes, power optimization has become much more complicated than op-
timizations on other design metrics such as wirelength and delay, which is due to the dominance
of leakage power and its complicated relation with the dynamic power [21]. It is well known
that leakage power increases exponentially with the scaling of threshold voltage (V;). Therefore,
low-voltage design in advanced technology nodes such as 7 nm and 5 nm and below require de-
sign implementation tools to aggressively optimize leakage power at various stages of commercial
physical design (PD) flows, which are often achieved by Engineering Change Orders (ECOs)
that involve gate-sizing and V;j-assignment. In this article, we specifically focus on improving the
power ECO at the signoff stage, which is more time-consuming than the power optimizations at
other PD stages, because it requires a precise calculation of the delay budget.

In modern chip design flows, ECOs are performed extensively from synthesis to signoff with an
aim to optimize power, performance and area (PPA) metrics. Every top semiconductor design
company runs multiple iterations of signoff ECO to achieve the target PPA. However, in advanced
technology nodes, power optimization has become much more complicated than optimizations
on other design metrics such as wirelength and timing, which is mainly due to the dominance of
leakage power and its complicated relation with the dynamic power [21]. Even though design im-
plementation tools have developed various power optimization techniques throughout the years,
designers still heavily rely on signoff tools to recover power at the signoff stage using ECO change-
lists. Nonetheless, since power ECO in signoff tools requires accurate timing budget calculation
(e.g., path-based timing analysis) during the optimization, it is extremely time-consuming and thus
bottlenecks the chip design process. Therefore, in this work, we aim to develop a learning-based
framework, ECO-graph neural network (GNN), that has the ability to perform signoff power
prediction to improve the chip design turnaround time.

Gate sizing and V;;-assignment are the two popular techniques to optimize design power con-
sumption. However, since gate-sizing requires further legalization and routing to validate the
design after the optimization, V;,-assignment is the preferred approach during signoff ECO, as
it causes minimum disturbance to the overall placed and routed layout. In Synopsys PrimeTime,
V;n-assignments during signoff ECO not only optimize the leakage power but also reduce the
dynamic power simultaneously [28]. Nonetheless, this optimization conducted by PrimeTime is
time-consuming, and the tool itself remains a blackbox for designers. Therefore, in this work, our
goal is to develop a fast, explainable signoff power optimization framework that has the ability to
perform commercial quality signoff power optimization instantly as well as the facility to explain
the achieved optimization results.

V;n-assignment refers to assigning an appropriate V;j, type for each design instance from a set
of standard cell libraries to perform power optimization without violating timing constraints [17].
Note that for a given design instance, all the available V;; types have the same footprint, and the
total number of the available types is limited to the discrete values of threshold voltages specified
by the technology. This optimization problem is proven to be NP-hard [18], which means the
optimality of a sizing solution is hard to be demonstrated and implies great opportunities to employ
machine learning techniques for solving this problem.

Modern commercial signoff tools perform signoff power ECO based on sophisticated in-house
timing models. The models precisely calculate the timing budget for every design instance to
help the signoff engines conduct timing-constrained power optimization. The optimization results
achieved by these tools are considered as golden QoR in the industry; however, there are two
significant drawbacks in the current industrial signoff flows, namely
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o Extremely long runtime. A signoff power ECO run often takes several days on an in-
dustrial scale design and requires human-in-the-loop for enhancement, which drastically
bottlenecks the chip development process.

e Obscure improvement. The power improvement is unknown in advance. Designers tend
to run multiple optimization configurations in parallel to select the best one in the end, which
consumes significant amount of computing resources.

e Partial netlist update. In many real-world scenarios, designers would only want to
perform the signoff power optimization on a few selected instances with positive slack
margin to prevent severe timing degradation. However, the improvements that can be
generated from these instances are often unclear until after spending significant amount of
time in ECO iterations.

In this work, we overcome the above issues by presenting ECO-GNN, which is a graph-learning-
based framework that leverages GNNs to perform V;j-assignments for fast signoff power opti-
mization [15]. Specifically, we present two approaches to overcome the issues. First, we present a
classification-based technique to predict the final V;;-assignment of each design instance that will
be made by PrimeTime during the ECO using the information of the entire netlist. Second, we fur-
ther propose a “subgraph approximation” technique to demonstrate the ability of our framework
on predicting the actual power savings of targeted design instances. In summary, after perform-
ing supervised learning on several designs with the assignment ground-truths given by Synopsys
PrimeTime, our framework has the ability to perform tool-accurate signoff power optimization
on unseen designs instantly without degrading the performance or introducing new design rule
violations (DRYVs). To validate our framework, we consider Synopsys PrimeTime as our baseline,
and demonstrate that ECO-GNN achieves comparable optimization results with up to 14X runtime
improvement on the ISPD-2012 benchmarks [19] and other real-world designs, including a RISC-V
based multi-core system.

The goal of this work is to provide designers a fast and accurate signoff power optimization
framework with high fidelity as the industry-standard commercial tool, Synopsys PrimeTime. The
key contributions of this article are summarized as follows:

(1) Our first major finding is that ECO-GNN learns the behaviour of Synopsys PrimeTime effec-
tively and generates comparable optimization results at inference time.

(2) Our second major finding is that ECO-GNN generally shows better power saving but worse
timing saving compared with Synopsys PrimeTime. This indicates that ECO-GNN algorithms
are more effective in power optimization.

(3) Unlike commercial tools or previous works (see Section 2) that require multiple iterations to
assign appropriate V;;, types, our framework ECO-GNN only needs one-pass to determine
the final V;j, type for every design instance.

(4) Rather than treating our learning-driven framework as a blackbox, we implement a GNN-
based explanation method [32] to quantitatively interpret the V;;-assignment predictions
made by our framework. Given a target node, the method identifies the influential local
sub-graph that has high contribution to its V;;-assignment. We believe this interpretability
would help designers understand the complicated characteristics of discrete sizing during
signoff ECO.

(5) After demonstrating the effectiveness of using GNNs to model using whole netlist infor-
mation, we propose a subgraph approximation technique to speed up the training and
inferencing time of the proposed GNN model using local graph structures of targeted
instances without sacrificing the accuracy.
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In this article, we explore both classification and regression approaches to predict ECO
power optimization results, with an ultimate goal of helping designers reduce the chip
design turnaround time. We demonstrate that the proposed framework can not only predict
the end V;,-assignment of each design instance with high F1-score but also deliver accurate
estimations of the power saving from the optimization.

We demonstrate that the proposed subgraph approximation technique can not only be
utilized to solve the regression problem of predicting actual power saving but also be
leveraged to improve the classification accuracy of the prediction of V;;-assignment.

To the best of our knowledge, this is the first work that formulates signoff power optimiza-
tion problem into a graph learning problem and validates the proposed framework using
an industrial-leading commercial tool under an advanced technology node.

2 RELATED WORKS AND MOTIVATIONS

The literature in V;,-assignment for power optimization has been researched extensively through-
out the past decade. Early works mainly focus on using analytical and heuristic (i.e., non-analytical)
methods to improve the optimization; however, these methods demonstrate poor generalization
results across different technologies and designs. Recently, machine learning—- (ML) based ap-
proaches emerge as promising alternatives to tackle the problem, which often demonstrate better
optimization results in much lesser runtime. In the following list, we summarize previous works
into these three categories:

Non-Analytical Methods: First, we introduce the heuristic-based algorithms. This category
contains methods that leverage greedy-based [8, 17, 22], simulated annealing [7, 23], or dy-
namic programming [12, 14] algorithms to find feasible solutions. However, there are a few
major drawbacks in these algorithms. First, these algorithms often demonstrate poor con-
vergence results, which is because they often assume the design global optimum of power
optimization can be achieved by iterative finding the local optimum of cell-based power
saving. Second, these approaches are highly sensitive to heuristics and are often design or
technology specific. Therefore, they are hard to be extended to never-seen designs or various
technologies.
Analytical Methods: Another popular category is the analytical-based approach. Algorithms
in this category often formulate the power optimization problem into a convex optimiza-
tion [24, 27] or a Lagrangian optimization problem [12, 20, 25, 26] whose objective is to max-
imize the power reduction through discrete sizing under certain timing constraints. These
methods are considered to yield better and more reliable optimization results than the non-
analytical methods. However, solving an optimization problem using numerical approaches
is extremely time-consuming. Given that a real-world design can easily introduce tens of
thousands of variables, these approaches are limited for real-world usage.
Machine Learning: It is widely acknowledged that ML has emerged as a promising approach
to solve the V;,-assignment problem with huge benefits in runtime saving, which is critical
for productivity. The authors of Reference [2] leverage linear regression to find feasible so-
lutions based on path slack estimation. Another work [21] utilizes support vector machine
with lazy timing analysis to further enhance the optimization quality. However, these studies
neglect that the final gate-type of each design instance highly depends on the characteris-
tics of its neighbors. Therefore, they are not sufficient to perform the power optimization
accurately without spending significant amount of time in feature engineering.

To leverage the netlist graph information in solving the power optimization problem, re-
cently, the authors of References [11, 15, 16, 29] propose graph learning-based frameworks
to predict the leakage power saving of each design instance based on its local neighborhood
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information. These approaches demonstrate significant accuracy improvement compared
with the above traditional ML-based approach while achieving similar runtime saving.
Hence, it is proven that the sizing result of a targeted cell highly depends on the features of
its neighbors. However, these GNN-based literature neglect the fact that the receptive field of
their GNN models are only subject to the number of layers of the graph convolutional layers,
which is less than 3 across all previous works. That is, if a GNN model has k convolutional
layers, then the power saving prediction of an instance will only depend on the features
within its local k-hop neighborhood structure and nothing beyond. In other words, the final
gate-sizing prediction of a design instance will only depend on its local subgraph. Unlike
previous works that rely on full-graph approaches to predict sizing solutions, in this article,
we present a subgraph approximation technique find the solutions in much faster runtime
and higher accuracy. Details of the proposed methodology will be discussed in Section 6.

Finally, besides the specific shortcomings raised in each of the category above, there exist several
common drawbacks in most of the previous works. First, the timing models they leverage are over-
simplified, which does not reflect real-world scenarios. In this article, we think the validation from
commercial signoff engine is critical to the application of the proposed models. Second, the original
ISPD-2012 benchmarks [19] that most of them leverage for evaluations are problematic. We analyze
the benchmarks using Synopsys PrimeTime and discover that the original worst negative slack
values across all the designs range from —1 to —8 ns, where all the target frequencies are less
than 1 GHz. This simple fact makes previous works unrealistic, because the power optimization
is meaningful only if the optimized designs are in signoff quality. Finally, none of the previous
works interpret the optimization results achieved by their methods, where they all consider their
optimization engines/models as blackboxes.

3 DESIGNING OF EXPERIMENTS

Inspired from the limitations and drawbacks of the previous works, in this article, we consider
Synopsys PrimeTime, a leading industrial signoff tool, as our baseline and propose ECO-GNN, a
transferable graph-learning-based signoff power optimization framework that can be easily inte-
grated with any modern PD flow. To provide fair and meaningful comparisons with prior works,
we re-synthesize the ISPD-2012 benchmarks using TSMC 28 nm technology node and demonstrate
that our framework ECO-GNN performs commercial-quality signoff power optimization instantly
on these designs. Furthermore, we leverage a GNN-based explanation method [32] to interpret the
Vi n-assignments made by our framework to ensure that our framework is reliable.

4 OVERVIEW OF ECO-GNN FRAMEWORK

Recently, GNNs have revolutionized many research areas, spanning from biology, social science,
chemistry, and many others [6]. They perform effective graph representation learning, where the
goal is to construct meaningful node embeddings that accurately characterize the nodes in the
graph. In general, GNNs follow a message passing scheme, where a feature vector of a node can
be considered as a message being iteratively transformed and passed to its neighboring nodes.
At the end of the graph learning process, the initial node features are transformed into better
representations that can be utilized in downstream tasks such as link prediction, node classification,
and clustering [31].

Figure 1 presents a high-level view of our framework ECO-GNN. Since VLSI netlists can be nat-
urally represented as hypergraphs, in this article, we leverage a specific variant of GNNs named
GraphSAGE [6] to conduct graph representation learning directly on the netlist graphs. After get-
ting the learned representations, we utilize a softmax-based classification model to predict the
Vin-assignments that optimize the signoff power. Note that the entire learning is an end-to-end
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V, prediction

Fig. 1. High-level view of our ECO-GNN framework, (a) input netlist, (b) graph representation learning, and
(c) Vyp, prediction. Note that (b) and (c) visualize the original netlist in a clique-based representation.

process. The classification loss that represents the cross-entropy between our predictions and the
ground-truths from Synopsys PrimeTime is utilized to update the parameters inside GNN and the
classification model through gradient descent.

The detailed learning process shown in Figure 1 works as follows. Given an input netlist as
shown in Figure 1(a), to determine the V;j-assignment of the target cell (red-colored), we first
leverage a GNN to sample and aggregate the features from its neighboring cells as shown in
Figure 1(b). Then, we predict its V;,-assignment based on the aggregated representation vector
as shown in Figure 1(c).

4.1 Our Objectives: Regression and Classification

The goal of this work is to construct a “general framework” that achieves commercial-quality sig-
noff power optimization results at inference time (the testing time of the model). To achieve this
goal, we explore two modeling approaches to solve different categories of problems: the regression
and the classification problems. In this article, a regression-based model refers to the framework
that predicts the “power difference” before and after ECO optimization, where a classification-
based model refers to the framework that generates the sizing results (i.e., assigning a new V;j,
type for each design instance). These two types of problems are inherently different and subject
to various real-world applications depending on the use cases. In Section 6, we present a “sub-
graph approximation” technique to solve the regression problem and leverage a node representa-
tion learning-based technique to solve the classification problem. Finally, note that our framework
does not assume any pre-defined netlist structure, so it is generalizable to every design. After
learning on a few designs, it has the facility to determine the V;j-assignments on the unseen ones
that optimize the signoff power.

5 DESIGN OF EXPERIMENTS

In this work, we follow the experimental setting of the ISPD-2012 power optimization contest as
many previous works, where all the cells in a given design are initially in the lowest V;j type
(tightest timing constraint). As mentioned in Section 2, we re-synthesize the ISPD benchmarks
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Fig. 2. Initial feature construction of cell d, where its fan-ins {a, b}, siblings {c, e}, and fan-outs {f, g} are
taken into consideration.

using a TSMC 28 nm technology node to ensure all the designs are in signoff performance before
conducting the power optimization through V;j-assignments.

5.1 Problem Formulation

Given anetlist G = (V, E), where V denotes the instances in the design and E represents the logical
connections, assume that for each instance v € V, there are n V;,-assignments available from the
standard cell libraries. Let x{j = 1 if instance v is realized with jth V;; choice in the libraries and
x], = 0 otherwise. We formally define the signoff power optimization problem as follows:

V| n

minimize Z Z P(v{)x’z’;i, (1)

i=1 j=1

where P(v{ ) represents the signoff power of instance v; when jth choice of V;j-assignment is
realized such that the worst negative slack (WNS) along with the total negative slack (TNS)
do not degrade after the assignments, and no new DRVs are added.

5.2 Initial Node Features

Before leveraging GNN to conduct graph learning, we define an initial feature vector for each de-
sign instance as shown in Table 1. The term “initial” indicates that during the graph learning pro-
cess, these original features are transformed to other representations that are more beneficial for
the classification model to determine the appropriate V;,-assignments that optimize signoff power.
Features in Table 1 are extracted from technology files, SPEF files, and timing reports. These
20 features are chosen based on domain knowledge and parameter sweeping experiments. Most
of them are related to timing, because during the signoff power optimization, an instance’s V-
assignment changes only if the WNS and TNS do not degrade and no DRV is introduced. Figure 2
further illustrates the feature construction process. To determine the initial features of a target
instance d, we take the information of its fanins (instances {a, b}), siblings (instances {c, e}), and
fanouts (instances { f, g}) into account. However, these manually engineered features are not suf-
ficient to predict the V;j-assignments that optimize the design signoff power. To get better node
representations, we leverage GNNs to perform the graph representation learning.

6 ECO-GNN ALGORITHM
6.1 Overview of the Algorithm

Figure 3 shows a detailed illustration of the learning process in the ECO-GNN framework. Given
a netlist graph G = (V, E), our framework first takes the initial node features defined in Table 1
as inputs. Then, it leverages GraphSAGE [6], a variant of GNNs to perform graph learning. The
goal of graph learning is to obtain the node representations that better capture the underlying
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Table 1. Twenty Initial Node Features Used in Our GNN

Type # Dim. | Description

max output slew 1 max transition of output pin

max input slew 1 max transition of input pin(s)

wst output slack 1 worst slack of output pin

wst input slack 1 worst slack of input pin(s)

output cap limit 4 max driving cap of output pin per V;j
max leakage 4 max leakage per Vy,

tot input cap 1 sum of input pin cap

tot fanout cap 1 output net cap + input pin cap of fan-outs
tot fanout slack 1 sum of worst slack of fan-outs

wst fanout slack 1 worst. slack of fan-outs

avg fanin cap 1 average cap of fan-ins

wst fanin slack 1 worst slack of fan-ins

tot sibling cap 1 sum of input pin cap of siblings

tot sibling slack 1 sum of worst slack of siblings

Ea

adjacency matrix
Avixivi

Ea

initial node features
{h® vveV}

We obtain them using an initial PPA analysis.

Table 2. Dimension of Matrices Used in Our Work (See Figure 3)

Matrix Meaning Dimension
A adjacency matrix of the netlist graph VXV
R, initial node features from PPA analysis v X 20
h]; node embedding extracted by GNN v X128
P V;p-assignments from softmax function v X4

v denotes the number of gates in the circuit.

HEE

graph learning

—>

node embeddings
{h¥ wvveV}

—>

probability distubution
of each Vy, flavor
PM x4

Vi classification

Fig. 3. Illustration of our ECO-GNN learning process. The inputs include a netlist graph represented in an
adjacency matrix A and its initial features h%, defined in Table 1. First, we perform graph learning to generate
the node embeddings that represent the netlist better than the initial features. Figure 4 provides details of
the GNN structure used. Next, with the learned node embeddings, we conduct softmax-based classification
to determine the final V;,-assignment that optimizes the signoff power.

characteristics of the given netlist than the intial features. After graph learning, the learned rep-
resentation vector of each node v € V is projected to a logit vector P, through a softmax-based
classification model, which is a neural network. The vector P, represents the probability distribu-
tion of node v belonging to different V;, flavors that are available in the standard cell libraries.
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{h2 veV}
(learned embeddings)

128 dim. 128 dim. 128 dim.
GNN-Layer 1 GNN-Layer 2 GNN-Layer 3

Fig. 4. Our GNN architecture that maps the initial node features (20) into learned embedding features (128).

Table 2 shows the size of matrices used in our framework. The adjacency matrix A represents the
logical connections in the netlist, and the initial node features {h?, Yo € V} are the cell attributes
shown in Table 1. Note that the whole learning process, from graph learning to V;j, classification,
is end-to-end differentiable. Therefore, the parameters in the GNN and classification modules can
be updated simultaneously using gradient descent.

6.2 GNN: Feature Aggregator

The goal of graph learning is to construct accurate node embeddings through effective feature
aggregation. GNN functions as a feature aggregator that transforms the initial features hY, for
each node v € V into better representations hX by sampling and aggregating the features within
v’s K-hop neighborhood. This aggregation process is performed iteratively, where for each hop
k € {1,...,K}, a dedicated neural network (NN) W is developed to perform the transfor-
mation. These K dedicated NNs together form the GNN module in our framework as shown in
Figure 4. Since the number of neighbors of a node scales exponentially as the hop-count increases,
we fix the sampling size sj at each hop k to improve the computational efficiency and to prevent
overfitting.

Following the graph learning approach presented in Reference [6], in this work, for each node
v € V, we obtain its representation vector h¥ at level' k by aggregating its representation 5! at
the previous level with the features of its neighbors N (v) sampled at k-hop as

Py toy = maxpool ({WPR;™, Vu € Ni(0))).

hk = sigmoid (Wimj - concat[hK~!, hﬁ,—vl(v)]) ,

)

where Wkag 9 and W,f ") denote the aggregation and projection matrices, respectively, which to-
gether form the weights of the NN dedicated in sampling and aggregating features at the k-hop
neighborhood. In the implementation, we set k € {1, 2,3}, and each NN (W;, W,, W5) in the GNN
module has an output dimension of 128. Note that the numbers 128 and 3 are chosen empirically
based on parameter sweeping experiments.?

In summary, the initial feature vector h?, for each node v € V is transformed to hX=3 in R'?%.
The GNN model utilized in our framework can be considered as a “node filter,” because it iterates

Level is corresponding to the hop-count. When aggregating the features of a node at level k, the information within its
k-hop neighborhood is considered.

2We varied them while monitoring the overall power saving vs. training time tradeoff. Due to the page limit, we omit the
related experimental results. But, a general trend shows that the higher the values are, the more the power saving is at the
cost of training time. But, the power saving saturates after some point.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 4, Article 55. Pub. date: May 2023.



55:10 Y.-C. Lu et al.

through every design instance to find better node representations that can be utilized in the latter
classification task of determining the V;j-assignments that optimize the design signoff power.

6.3 Loss Function

After leveraging GNN to perform graph representation learning, we take the learned node embed-
dings {hX € R'?%, Vv € V} as the inputs of our softmax-based classification model, which is a neu-
ral network, to determine the appropriate V;;-assignment for each design instance. As shown in
Figure 3, the end of the classification model connects to a softmax function that outputs P, which is
a |V| X n matrix denoting the probability of each node v belonging to n different V;, flavors, where
You eV, 3" | Py = 1. Note that n is limited to the discrete V;j, values specified by the technology.
The technology we utilize in this work is TSMC 28 nm, which has n = 4. A novelty of this work
is that we map the discrete V;j-sizing problem into a multi-class classification problem, where the
classification loss function is defined as
VI n

L=- Z Z Yiclog(Pic), 3)

i=1 c=1

where Y € RV*" denotes the V;j-assignments made by the Synopsys PrimeTime ECO engine,
which are taken as ground-truths. Essentially, our loss function (Equation (3)) represents the cross-
entropy between Y and P distributions. By minimizing Equation (3), we can update the parameters
in the entire ECO-GNN framework.

6.4 Training Methodology

The training process of ECO-GNN is supervised, where we use the V;j,-assignments obtained from
Synopsys PrimeTime ECO engine as ground-truths and minimize a supervised loss function to up-
date the GNN parameters. The main reason we discard traditional machine learning techniques
as the ones used in previous works [2, 21] is that these techniques fail to consider the neighbor-
hood information of an instance while determining the V;,-assignment, where the assignment
certainly depends on the neighborhood structure such as the impacts of the propagated arrivals
and transition effects.

Algorithm 1 summarizes the training process. Lines 3-10 illustrate the sampling and aggregating
process in graph learning, where for eachnode v € V, we aggregate its neighboring features at each
hop k € K through Equation (2). Note that before performing each aggregation, we normalize the
node representations at previous level as shown in Line 2 and Line 9. This normalization accelerates
the overall training process by reducing the oscillation of gradient descent. Based on the learned
representation vectors, in Lines 11-15 we calculate the cross-entropy loss (Equation (3)) from the
softmax-based classification model and leverage a gradient descent optimizer named Adam [10]
to update the parameters in the framework by minimizing the loss function. The overall training
process takes about 12 hours on the nine training designs shown in Table 3 with a machine that
has a 2.40-GHz CPU and a NVIDIA RTX 2070 graphic cards with 16 GB memory.

6.5 Complexity Analysis

The time complexity of ECO-GNN is linear with respect to the netlist size. Since the sampling
size (s) at each aggregation level is constrained, GNN modules spend constant time in visiting
every design instance and collecting features from its neighbors. Due to the large sparsity of the
netlist adjacency matrix, we realize the adjacency matrix A shown in Table 2 in the compressed
sparse row format [30]. Therefore, the space complexity of ECO-GNN is pseudo-linear rather than
quadratic with respect to the netlist size, because it is mainly constrained by the number of nets of
the underlying design. As shown in Algorithm 1, our framework conducts instance-based learning,
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ALGORITHM 1: ECO-GNN training methodology.
We use default values of K = 3, = 0.001,s; = 25,s, = 20,3 = 15, f; = 0.9, 2 = 0.999.

Input: (1) G(V, E): netlist graph, (2) A|v|x|v|: adjacency matrix, (3) Y: tool optimization results,
(4) n: number of available V;, flavors, (5) {hY, Vv € V}: initial features. (6) K: depth of aggre-
gation level, (7) {sx, Yk € {1,...,K}}: sampling size at k-hop neighborhood, (8) {Wy, Yk €
{1,...,K}}: parameters of NN at hop k, (9) a: learning rate, (10) {f;, f2}: Adam parameters.

Output: Pjy: V;p-assignment prediction of each instance.

1: while {W¢} do not converge do
hO

2: h% — m, YoeV > initial features from Table 1
3 for k « 1to K do
4 forv e Vdo > sample and aggregate by Equation (2)
5 Ni(v) « Sample si neighbors at k-hop
6 hlka(v) = maxpool({WZgghﬁ’l, Yu € N¢(v)})
7: h]f) = sigmoid(Wiroj . concat[hﬁ_l, hlfvv(v)])

end for .
9: hE M :,3”2 NveV > reduce gradient oscillation
10: end for
11 forv e V' do > minimize Equation (3)
12: po — softmax(WN - £K)
13: Go < VG[ZZ:] Yiclog(pvc)]
14: (Wi} « Adam(a, {Wi}, 9o, f1. Pe)
15: end for

16: end while

where each instance (cell) in the design can be considered as a data point. Given a netlist G = (V, E),
therefore, after learning on the nine training designs presented in Table 3, which in total contain
millions of data points, our framework achieves remarkable optimization results.

6.6 Handling Unseen Designs

A highlight of this work is that a trained ECO-GNN framework has the ability to perform
commercial-quality signoff power optimization on unseen designs at inference time. This capability
is independent of the netlist structure or the netlist size, because to determine the V;,-assignments
that optimize the signoff power in an unseen design, we only need to take the initial features and
the adjacency matrix as inputs, and ECO-GNN will determine the appropriate V;,-assignments
through constant time inferencing. Unlike PrimeTime and previous works that require multiple
iterations to determine the final V;,-assignments, our framework is a one-pass tool that generates
tool-accurate results instantly.

6.7 A Regression Perspective: Subgraph Approximation for Fast Power Prediction

Up to now, we have presented a complete graph learning-based framework that can predict the
final V;p-assignment of each design instance without actually running signoff power ECO, which
is highly time-consuming. Specifically, we cast the ECO signoff power optimization prediction as
a classification problem, where we present a GNN-based model that classifies each design instance
to a specific Vy;, type. Nonetheless, in many real-world scenarios, designers are seeking a direct
estimate of the actual power saving value (i.e., regression) before running any optimization or
performing any netlist update using ECO change-lists. In addition, on certain occasions, designers
would only want to conduct the ECO power optimization on a partial netlist rather than the whole
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netlist. For instance, in modern industrial design flows, it is common to solely perform the signoff
power optimization on the design instances whose slack values are larger than a pre-defined thresh-
old, which is because the ECO changes made on these instances (with large positive slack values)
will introduce the least timing impact to the overall placed and routed design. Therefore, in this
section, we will present a new methodology that meets these needs of designers.

Although we can apply Algorithm 1 to overcome the above problem of partially optimizing the
netlist by performing a full-graph (i.e., full-netlist) inference on every design instance, this compu-
tation will introduce excessively unnecessary computational resources and runtime given that the
optimization is targeted on a few instances. To overcome this issue, we propose a new methodol-
ogy, named “subgraph appoximation,” where instead of using the information of the entire netlist
to predict the final gate types of a few instances, we leverage GNN to encode the features from
their local subgraphs.

Given a target instance v € G, the subgraph sG,, of this instance v refers to its local three-hop
neighborhood graph structure of the underlying netlist. For each selected instances V that meet the
slack threshold for signoff power optimization, we leverage GNNs to perform subgraph encoding,
where the goal is to construct a meaningful graph-level feature representations that capture the
characteristics of the targeted instances. Note that the philosophy behind this subgraph-based
approach is fundamentally different from the previous approach. The current approach focuses on
learning “graph-level” vectors that characterize the information related to optimizing single design
instance, where the previous approach (i.e., Algorithm 1) dedicates on learning the “node-level”
embeddings that capture the interaction among all instances in the netlist. Based on the initial
node features defined in Table 1, we first leverage Equation (2) to transform the initial features to
high-dimensional representations. Then, for each node v in a subgraph sG, we obtain the graph-
level vector s through

s = concat [mean_pool ({hf,:K}) ,feat(v)] , (4)

where feat(v) denotes the underlying features of the target instance v that is selected for the
power optimization, which includes the current power consumption (internal and driving net
switching power), cell capacitance (input pin cap), driving strength, and the worst transition val-
ues of input and output pins. The subgraph vector s, which characterizes the “local” information
of the target instance v that is related to its power optimization, will be taken as the input of fully
connected layers to directly predict the change of power consumption.

Finally, Figure 5 demonstrates an overview of the subgraph-based power prediction flow, where
the goal is to predict the power difference before and after performing power optimization on the
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ALGORITHM 2: Assisting V;,-assignment with subgraph approximation.

Input: (1) G(V,E): netlist graph, (2) Ay |x|v|: adjacency matrix, (3) t: target instance, (4) Wgco-GNN:
weights of ECO-GNN, (5) Wpp: weights of feedfoward neural networks, (6) Y: tool optimization results
Output: {p;}: V;p-assignment of instance ¢.
1: while {W} do not converge do
2: st < 3-hop local subgraph of instance ¢
g < subgraph encoding of s; > graph-level vector as in Figure 5
h; < ECO-GNN(G,A;WECO-GNN) > node embeddings of cell t from full-graph learning
¢y < concat[g;, ht] > concatenate graph-level vector with node embeddings
pt < softmax(Wpp - ct)
gt < VQ[Z:%ZI Yiclog(pre)]
(W} — Adam(a, (W), g;)
end while

R A AR

target instance colored in red. The detail steps are as follow. First, we leverage GNN to preform
node representation learning on the local three-hop neighborhood subgraph of the target instance,
which includes the fanout/fanin cells up to three levels and the sibling cells up to two levels. This
node representation learning will transforms the initial features of each cell in the subgraph into
high-dimensional representations (128 dimensions). Then, a global mean pooling is performed
across each cell in the subgraph to obtain a graph-level vector, which is expected to represent the
ECO-related characteristics of the target instance. Finally, the graph-level vector, along with the
initial feature vector of the targeted instance, is fed to a downstream feed-forward neural network
to predict the actual power saving and mean-squared-error is utilized as the loss function to train
the entire framework.

6.8 Assisting V;,-Assignment with Subgraph Approximation

The V;,-assignment problem is a classification task by nature as the available gate sizes are discrete,
which we solve by leveraging GNNs to encode full-netlist information as shown in Algorithm 1.
However, as aforementioned, the purpose of the proposed subgraph approximation technique is to
perform regression-based power prediction by merely using partial-netlist information. Therefore,
to assist the V;;-assignment task with the subgraph approximation technique, a learning method-
ology needs to be developed to bridge the gap between the classification and the regression tasks.

Algorithm 2 summarizes how the subgraph approximation technique can be leveraged to as-
sist the traditional V;;-assignment task, where the key idea is to leverage the encoded graph-level
vector from subgraph approximation as additional information to help predict the final V;, type
of the target instance. The detail steps are as follow. First, we leverage the subgraph approxima-
tion technique to encode the local three-hop neighborhood subgraph of the target instance ¢ to
obtain a graph-level vector g, (Lines 2 and 3). Then, we leverage the aforementioned ECO-GNN
framework to perform node representation learning and obtain the learned embeddings h; of the
target instance (Line 4). Finally, we concatenate the graph-level vector (describing the local neigh-
borhood structure) and the learned embeddings as input to the downstream feedforward classifi-
cation network to predict the final V;;, assignment. Note that the entire algorithm is end-to-end
differentiable.

7 EXPLAINING PREDICTION RESULTS

Understanding the reasons behind the predictions of ML models can give users better trust in
the models. In this work, we explore explanation techniques that provide insights of the V-
assignment predictions made by the proposed framework ECO-GNN. Given a targeted instance
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for explanation, we will explore its local subgraph to determine what are the important factors in
terms of neighboring nodes and connected nets that drive the prediction of the proposed graph
learning-based framework.

7.1 Inner Workings of GNN Predictions

Unlike previous works who consider their optimization engines as blackboxes, in this article, we
implement a GNN-based explanation method [32] to interpret the V;j-assignment predictions
made by our framework ECO-GNN. Given a set of target instances {v} € V in a netlist graph
G = (V,E), the goal is to find an influential sub-graph Gs = (Vs, Es) that has high contribution to
the decision of {v}’s V;,-assignments. The objective of finding such sub-graph Gs can be quanti-
tatively formulated as maximizing the mutual information (MI) between the original graph G
and the sub-graph Ggs as

max MI(G, Gs) = H(Y) ~ H(Y|G = Gs). (5)

where H(-) denotes the entropy of the given distribution and Y represents the V;;, prediction distri-
bution of the target instances. Since H(Y), the entropy of the prediction distribution based on the
original graph, is a constant, maximizing Equation (5) is equivalent to minimizing the conditional
entropy H(Y|G = Gg), which can be formulated as

H(Y|G = Gs) = =Ey|g=c; [log (Po(Y|G = Gs))] , (6)

where 0 denotes the parameters of the trained ECO-GNN framework. Note that due to the fact
that the number of neighbors of the target nodes increases exponentially as the hop-count in-
creases, in the implementation, we constrain Gg to search within the one-hop neighbors of the
target instances {v}. In the context of the actual netlist, G5 represents the cells that are either the
fanins, fanouts, or siblings of {v} as well as the message passing flows (edge connectivities) that
demonstrate how important features are aggregated. We believe this interpretability would give
designers precious insights on what the framework has learned and whether the V;j-assignments
are reliable or not.

8 EXPERIMENTAL RESULTS

In this section, we demonstrate the achievements of our ECO-GNN framework, which is im-
plemented in Python3 with Tensorflow 1.0 library. We leverage 7 designs from the ISPD-2012
benchmark [19] and 7 other industrial designs to conduct the experiments. All 14 designs are syn-
thesized under TSMC 28 nm technology node by Synopsys Design Compiler 2015 and placed and
routed using Cadence Innovus v18.1. To validate the signoff power optimization results of ECO-
GNN, we use Synopsys PrimeTime 2018 to perform timing and power analysis and consider the
PrimeTime ECO engine as the baseline across all experiments.

8.1 Benchmarks Details and Timing Corners

As mentioned in Section 2, due to the unrealistic nature of the ISPD-2012 benchmark that the
worst negative slacks in the original designs range from —1 ns to —8 ns, we re-implement all
seven ISPD designs using TSMC 28 nm technology node and commercial PD tools. Aside from
the ISPD benchmarks, we introduce 7 other renowned industrial designs, including JPEG, TATE,
LDPC, AES-128, NOVA, ECG from OpenCores.org, and RocketCore [1], which is a RISC-V-based
multi-core system. To substantiate the generality of our framework, we utilize 9 designs in the
training process and perform the validations on the 5 unseen ones. The characteristics of these 14
designs are shown in Table 3. In the table, we also demonstrate the graph-related statistics, which
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Table 3. Our Benchmarks and Their Attributes in TSMC 28 nm

Design Name | # Nets #FFs | #Cells | MPL | SR | RCC | Usage
RocketCore 93,812 | 16,784 | 90,859 68 | 381 7
AES-128 90,905 | 10,688 | 113,168 17 | 68 12
NOVA 138,171 | 29,122 | 136,537 32 | 185 3
ECG 85,058 | 14,018 | 84,127 29| 76 8

LDPC 42,018 2,048 39,377 23 | 229 14 | training
DMA 10,898 2,062 | 10,215 15| 29 52
PCI_BRIDGE 1,381 310 1,221 24| 33| 307
DES_PERF 48,523 8,802 | 48,289 17 | 28 29
B19 34,399 3,420 | 33,784 35| 29 22
TATE 185,379 | 31,409 | 184,601 31| 26 5
JPEG 231,934 | 37,642 | 219,064 26 | 173 4

VGA_LCD 56,279 | 17,054 | 56,194 24| 25 19 | testing
LEON3SMP | 341,263 | 108,724 | 341,000 48 | 28 3
NETCARD | 317,974 | 87,317 | 316,137 37| 31 4

MPL denotes the maximum path length of timing paths, SR denotes the spectral
radius of the adjacency matrix, and RCC denotes the Rich Club Coefficient (10 4).

Table 4. Subgraph Approximation Prediction Results on
Unseen Benchmarks

| Unseendesign [ VGA | JPEG [ TATE | LEON |

NRMSE % 2.2 2.8 1.7 1.4

CC 0.96 0.97 0.97 0.98

Total power Before | 212.7 | 376.8 | 345.0 | 576.6
(mW) After | 197.9 | 3423 | 328.7 | 552.4
WNS Before | —3.4 | —-13.1 | -24 | —16.3
(ps) After | =31 | —128 | —23 | —16.2
TNS Before | —14.1 | —228.7 | —3.2 | —246.0
(ps) After | —12.4 | —202.5 | —3.0 | —239.3

CC denotes the Pearson correlation coefficient and is calculated
against the ICC2 optimization results.

include the maximum path length of timing paths, the spectral radius (i.e., maximum eigenvalue
of adjacency matrix), and the Rich Club Coefficient (an indicator of connectivity).

Following the experimental settings of the ISPD-2012 contest where all the designs are synthe-
sized with one timing corner and one V;j flavor that has the tightest timing constraint, in this
work, we synthesize all the designs using typical corner and ultra-low V;, flavor (tightest timing
constraint) in TSMC 28 nm for fair comparisons. In the PrimeTime ECO for signoff power opti-
mization, each design instance is enabled to be swapped into one of the three other V;;, flavors,
which are low, high, and ultra-high types, or remain as the ultra-low type (four choices in total).
Therefore, the solution space of our V;j,-assignment problem is 4!V!, which is almost impossible
for designers to perform design exploration in an exhaustive manner.

8.2 Subgraph Approximation Results

As aforementioned, in this article, we not only develop a classification-based model to predict
the final V};, type of each design instance using entire netlist information, we also present the
subgraph approximation technique to estimate the power recovery of individual instances during
signoff ECO. Table 4 demonstrates the prediction results on four unseen designs. In this article,
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Fig. 6. Prediction results of subgraph approximation. We validated the subgraph model on 4 unseen designs.
Each dot in the plots represents a design instances whose initial slack is above 200 ps before ECO power
optimization.

we specifically focus on two metrics to evaluate the model: normalized root-mean-squared
error (NRMSE) and the correlation coefficient (CC). Note that NRMSE is calculated by nor-
malizing the RMSE, which inherently comes with a “unit” (e.g., mW) by the difference between
the maximum and minimum ground-truth values (i.e., NRMSE = powermljf{“;ﬁ T rT— ). NRMSE is a
popular comparison metric that removes the effect of unit scale. As shown in the figure, we observe
that the proposed model consistently delivers highly accurate prediction results across the unseen
benchmarks. Finally, Figure 5 shows the scatter distribution of the prediction results, where each

dot represents an actual subgraph whose worst slack value before the optimization is 200 ps.

8.3 Prediction Results of V;;,-Assignment with Subgraph Approximation

In this experiment, we demonstrate the effectiveness of using the proposed subgraph approxima-
tion technique to improve the prediction task of V;,-assignment. Table 5 demonstrates the de-
tailed prediction results in the format of confusion matrices. The upper table shows the results
without using the subgraph approximation technique, and the lower table demonstrates the re-
sults achieved with subgraph approximation using Algorithm 2. In the table, we observe that the
subgraph approximation technique can indeed boost the prediction accuracy, which is expected as
more information (e.g., the graph-level vector) is curated for the model to make better predictions.

8.4 Discussion of Subgraph Approximation

One of the highlights of this article is the proposed concept of subgraph approximation, which
enables fast and accurate prediction of power optimization. The rationale behind the proposed
subgraph approximation technique is twofold. First, given that power and timing are often inter-
related with each other and the power recovery in ECO often comes under the sacrifice of timing
degradation, the final V;;, type of a target instance v will depends on not only its direct one-hop
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Table 5. Confusion Matrix Comparison of V;j-assignment with and without
Subgraph Approximation on the VGA Benchmark

Predictions (accuracy: 0.94)

w.o. subgraph | ultra-low | low | high | ultra-high | Total

ultra-low 429 17 53 82 581
Ground low 22 1557 | 144 202 1,925
-truths high 14 18 | 5026 166 5,224
ultra-high 45 111 | 189 9110 9,455
Total 510 1703 5412 9560 17,185

Predictions (accuracy: 0.96)

w. subgraph | ultra-low | low | high | ultra-high | Total

ultra-low 518 26 23 14 581

Ground low 12 1645 | 188 80 1,925
-truths high 21 93 | 4973 137 5,224
ultra-high 37 19 124 9275 9,455
Total 588 1783 5308 9506 17,185

Each count represents an instance whose slack value is greater than 200 ps before the
PrimeTime ECO optimization.

neighbors but also other neighbors that may or may not locate on the same timing paths. Therefore,
we leverage GNNs to encode such neighboring information for the final prediction of its power
recovery. Second, the reason we do not select a huge number of hops to perform the subgraph
encoding is because the QoR impact of a single gate sizing move on a design instance to the overall
netlist diminishes quickly as the hop count increases.

8.5 Optimization Results on Unseen Designs

In this experiment, we compare the signoff power optimization results achieved by our frame-
work ECO-GNN with the commercial tool Synopsys PrimeTime. To substantiate the generality of
ECO-GNN, we only use nine designs for training, and perform validations on the five unseen ones
as shown in Table 3. Note that to perform meaningful and reasonable signoff power optimization,
each design is originally implemented in signoff frequency, where the WNS is close to 0. The op-
timization constraints are that the WNS and TNS do not degrade and no violation is introduced
after the optimization.

Table 6 demonstrates the optimization results. Compared with PrimeTime, ECO-GNN achieves
up to 14X runtime improvement with similar optimization quality. Unlike previous works that do
not utilize commercial signoff tools for validations, we demonstrate that our framework performs
tool-accurate signoff power optimization without degrading the original signoff performance of
each unseen design. Note that each design in Table 6 has different target frequencies, which proves
that the optimization achieved is not confined by design characteristics. The inference time of ECO-
GNN is measured on a machine with 2.40-GHz CPU and a NVIDIA RTX 2070 graphics card with
16-GB memory, where Synopsys PrimeTime is ran on a machine with 2.50-GHz CPU and 8 cores
enabled.

Table 6 also reports the micro F1-score as the evaluation metric of the classification task, owing
to the fact that our framework ECO-GNN is performing supervised learning that we take the V-
assignments from Synopsys PrimeTime as ground-truths in the training process. Note that micro
F1-score represents the accuracy of multi-class classification. In the table, we observe that ECO-
GNN performs the the V;;-assignments in high fidelity as PrimeTime.
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Table 6. V;j Re-assignment Impact on Power, Timing, and Runtime between ECO-GNN
and Synopsys PrimeTime

Design Target Optimization | Leakage power | Total power | WNS | TNS | Runtime | F1-score
frequency Engine (mWw) (mw) (ps) (ps) (sec) (micro)
Before Opt. 38.3 345.0 -24 | -32 -
TATE 1.2 GHz PrimeTime 1.84 282.7 -0.5 -0.6 141 0.90
ECO-GNN 1.72 280.6 -09 | -13 [ECE @0 |
Before Opt. 57.5 376.8 -13.1 | —-228.7 -
JPEG 1.1 GHz PrimeTime 3.4 294.6 =5.7 | -69.6 120 0.85
ECO-GNN 3.8 296.9 -11.4 | -1824 IR |
Before Opt. 18.0 212.7 -34 | -141 —
VGA_LCD | 1.8 GHz PrimeTime 3.7 184.6 -2.6 -44 69 0.89
ECO-GNN 35 1833 =Pl 5 (14x)
Before Opt. 101.4 576.6 -16.3 | —246.0 —
LEON3MP | 700 MHz PrimeTime 15.1 459.8 -84 | -76.7 341 0.88
ECO-GNN 12.2 454.9 -128 | 2093 JEENEERY 00 |
Before Opt. 78.1 651.5 -24 | -4.2 —
NETCARD 1 GHz PrimeTime 9.9 544.3 -0.8 -1.1 302 0.86
ECO-GNN 6.9 537.6 -12 | 27 |

Selected designs are unseen during training. Note that both leakage and total power reduce from V;j, re-assignment,
because our initial designs before ECO optimization are using ultra-low V;; only as suggested in Reference [19].
Timing also improves because of the gate capacitance reduction from higher V;,.

Table 7. Sweeping Experiments on Maximum Number of
Aggregation Level (K) of GNN

Designs (Fl-score) | K=1|K=2|K=3|K=4|K=5
TATE 0.39 0.78 0.90 0.82 0.73
JPEG 0.33 0.74 0.85 0.81 0.70

VGA_LCD 0.42 0.81 0.89 0.85 0.74
LEON3MP 0.36 0.84 0.88 0.79 0.66
NETCARD 0.41 0.69 0.86 0.83 0.72

The entry represents the F1 score of the classification results.

Finally, due to the fact that V;j,-assignments directly optimize the design leakage power, Figure 8
further shows the instance-based leakage power consumption maps of the unseen designs, which
are corresponding to the optimization results presented in Table 6. In the figure, we compare the
leakage power consumption of each instance in the original designs with the ones after using
ECO-GNN to perform signoff power optimization. Across all designs, we observe that ECO-GNN
effectively reduces the overall leakage power without introducing extra hotspots.

8.5.1 Sweeping Experiments on GNN Aggregation Level. In the realm of graph learning using
GNNs, choosing a right number of the maximum aggregation level is critical to the success of rep-
resentation learning. Nonetheless, it is known that GNNs tend to suffer from the over-smoothing
problem [3], which is an issue that the representations among different nodes become indistin-
guishable and thus the prediction accuracy becomes worse. Therefore, for the majority of GNN
applications, the number of aggregation level is empirically set to a number between 2 and 4 (inclu-
sive) [33]. In this article, we validate the hypothesis by providing sweeping experiments over the
GNN aggregation level as shown in Table 7, where we clearly observe that in the classification task
of predicting final V;, type for each design instance, the best accuracy occurs when the number of
aggregation level is set to 3.
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Fig. 7. Graph learning explanation on b19 benchmark. The majority of the neighbors are ultra-high V;j, but
cells with lower V;j, types have higher importance to the target node. As a result, low V;, is assigned to the
target node.
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Fig. 8. Leakage power consumption of each design instance before and after using ECO-GNN to perform
optimizations. The designs are unseen during training, and the unit is mW.

8.6 Discussion of Optimization Results

Power Perspective. As shown in Table 6, the optimizations through V;;-assignments achieved
by our framework and PrimeTime improve both leakage power and total signoff power. This is
because we follow the experimental settings from the ISPD-2012 contest [19] as many previous
works [8, 17, 21-23, 25, 26]. The setting suggests all the cells to be in ultra-low V;j, (tightest timing
constraint) before the optimization. Therefore, for a design instance, a swap from ultra-low V;, to
other V;j, types in TSMC 28 nm not only improves its static power (leakage) but also the dynamic
power as the capacitance load is reduced.

Timing Perspective. As shown in the table, we observe that the WNS and TNS get improved as
well. This comes from the fact that although PrimeTime will not upsize the V;j type of the cells
that are on critical (negative slack) paths, the driving load of such cells may still be reduced if some
of its fanout cells that are not on critical paths are swapped to higher V;j, types, which in the end
improves the overall timing as a by-product.
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8.7 GNN Explanation

Instead of viewing our framework ECO-GNN as a blackbox, we validate our optimization results
by explaining the V;j-assignments made by our framework. Figure 7 demonstrates the explana-
tion results on the b19 design, where we plot the graph learning computational graph centered
on the target node colored in red along with its neighbors using force-directed placement draw-
ing [4]. Note that although we present single-instance explanation in this experiment for clarity,
the proposed explanation method can be leveraged to perform the explanation of multi-instance
as well.

To explain the V;j,-assignment on the target node (red), we identify the important message pass-
ing flows within the local sub-graph. As mentioned in Section 7.1, we constrain the explanation
method to search within the one-hop neighborhood. Therefore, every neighboring node in Figure 7
is either the fanin, fanout, or sibling of the target node. However, as shown in the figure, the influ-
ential features may not be passed directly from the neighbors to the target even though they are
one-hop neighbors. This is because the message passing scheme in graph learning is bi-directional.
For better illustration, in Figure 7, we plot two directed edges for each bi-directional edge in the
graph learning computational graph to show how the influential features are being passed.

Figure 7 shows that the V;;-assignment made by ECO-GNN on the target node is reliable, be-
cause we observe that the final V;j; type of the target node is more influenced by its minority
neighbors who are in lower V;;, types rather than the majority neighbors that are in the ultra-high
Vin type. This aligns well with common design knowledge. Since cells in lower V;;, types have
larger capacitance, tighter constraints will be imposed on their drivers compared with cells in
high-level V;, types. Therefore, we conclude that the V;,-assignment made by ECO-GNN on the
target cell is reliable.

8.8 Why Does ECO-GNN Work?

In the experiments, we demonstrate that ECO-GNN achieves commercial quality signoff power op-
timization results with negligible runtime compared with Synopsys PrimeTime. The achievements
of our framework can be accounted by two reasons. First, the initial modeling features (Table 1)
accurately capture the underlying characteristics of each design instance that are related to the
signoff power optimization. Specifically, the timing related features provide solid information for
our framework to select appropriate V;j,-assignments that optimize signoff power with the consid-
eration of timing budget. Second, GNNs are highly powerful for solving the optimization problems
on graphs. The final V;;-assignment of an instance highly depends on the information of its neigh-
borhood structure. Therefore, unlike previous works [2, 21] who use traditional machine learning
techniques to predict the V;,-assignment of an instance solely based on its handcrafted features,
our framework acts as a graph filter that aggregates an instance’s neighboring information to
more accurately determine its final V;;-assignment through the classification model. Finally, with
the validations from the explanation method, we conclude that this work successfully presents a
solution to the long-lasting V;;-assignment problem.

In spite of the superior performance achieved, we still see some limitations of the proposed
framework. We observe that Synopsys PrimeTime consistently delivers better timing results, and
ECO-GNN does not consistently improve the signoff power from the commercial tool. In fact, this
is resulted from the modeling errors occurred in the learning process. Although we take the V;j-
assignments from Synopsys PrimeTime as the ground-truths, there always exists a gap between the
predictions of our framework and the actual assignments made by the tool. Nonetheless, the goal
of this work is not to replace commercial signoff tools, but to provide PD engineers a fast, accurate,
and reliable estimation of the amount of power recovery to expect from the signoff tools.
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8.9 Related Works on Improving Chip Design Turnaround Time

Although the main focus of this work is to improve the turnaround time of signoff power opti-
mization, related works have been developed to improve chip design productivity in different en-
deavors. Recently, as the hardware resources become more powerful, GPU-accelerated algorithms
have been developed to significantly improve runtime of different tasks [9]. A previous work [5]
develops a novel static timing analysis engine on a GPU-CPU hybrid system that greatly achieves
a 3.6Xx speed-up on designs with over million of cells. Another work [13] further leverages GPU
and deep learning toolkit, PyTorch, to advance placement, where the runtime is improved by 30x
without degrading solution quality. As the technology scaling continuously increases the design
complexity, in the future, methodologies to improve design turnaround time will be ever-critical.

9 CONCLUSION

In this article, we have proposed two different ML modeling approaches in classification and regres-
sion aspects to overcome the inherent challenges of the current signoff power optimization flow.
The proposed framework, ECO-GNN, not only can provides commercial-quality tool-accurate sig-
noff power optimization results instantly on unseen designs but also has the ability to estimate
the power savings of targeted instances using information obtained from local graph structure.
Furthermore, we present a GNN-based explanation method to demonstrate the reliability of our
framework, which gives designers better reasonings about the predictions of the models.
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