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ABSTRACT
DREAMPlace is a renowned open-source placer that provides GPU-
acceleratable infrastructure for placements of Very-Large-Scale-
Integration (VLSI) circuits. However, due to its limited focus on
wirelength and density, existing placement solutions of DREAM-
Place are not applicable to industrial design flows. To improve
DREAMPlace towards commercial-quality without knowing the
black-boxed algorithms of the tools, in this paper, we present
DREAM-GAN, a placement optimization framework that advances
DREAMPlace using generative adversarial learning. At each place-
ment iteration, aside from optimizing the wirelength and density
objectives of the vanilla DREAMPlace, DREAM-GAN computes and
optimizes a differentiable loss that denotes the similarity score be-
tween the underlying placement and the tool-generated placements
in commercial databases. Experimental results on 5 commercial and
OpenCore designs using an industrial design flow implemented by
Synopsys ICC2 not only demonstrate that DREAM-GAN signifi-
cantly improves the vanilla DREAMPlace at the placement stage
across each benchmark, but also show that the improvements last
firmly to the post-route stage, where we observe improvements by
up to 8.3% in wirelength and 7.4% in total power.
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1 INTRODUCTION
It is widely acknowledged that placement is the heart of every Phys-
ical Design (PD) flow, as the cell locations determined at this stage
directly affect the on-chip interconnects and hence the capacitances
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Figure 1: A high-level overview of DREAM-GAN that adopts
generative adversarial learning to improve DREAMPlace.
DREAMPlace improves its placement towards commercial-
quality by optimizing discriminator’s output.

and resistances induced, which are closely related to the Power,
Performance, and Area (PPA) metrics achieved in the end of the
design flow [9]. Driven by Moore’s Law, modern Very-Large-Scale-
Integration (VLSI) designs easily consist of millions of cells that
are required to be placed on constrained layouts, which severely
struggles Electronic Design Automation (EDA) tools to generate
high-quality placements in a reasonable amount of runtime.

To overcome the runtime barrier of VLSI placement, DREAM-
Place [11] and its variants [10] leverage Graph Processing Units
(GPUs) to significantly improve the placement runtime by formu-
lating CPU-intensive placement objectives into GPU-acceleratable
CUDA kernels. Particularly, in the vanilla DREAMPlace, placement
objectives of RePlace [3], a renowned analytical placer, are formu-
lated as CUDA kernels and accelerated by the deep learning toolkit
PyTorch [18], where a 34X speed up is achieved. However, in spite
of the significant runtime improvement attained, the placement
quality of DREAMPlace is not comparable to that of commercial
tools’ due to its limited objective focus of wirelength and density,
making it hardly applicable to industrial design flows. To overcome
this issue, in this paper, we present DREAM-GAN, the first-ever
learning-driven placement optimization framework that directly
improves DREAMPlace towards commercial-quality using gener-
ative adversarial learning. The key rationale is that even if we do
not know the algorithms or constraints used by the black-boxed
tools, we can quantify placement similarity between DREAMPlace-
generated placements and tool-optimized placements using adver-
sarial learning, and by optimizing the computed similarity scores,
the distribution gap between them can be narrowed.
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Figure 1 presents a high-level overview of DREAM-GAN, where
the vanilla DREAMPlace is considered as a “generator” whose goal
is to generate placements that follow similar distributions as the
tool-optimized ones in the database (which are optimized for differ-
ent PPA objectives with various placement parameters). To achieve
this, a discriminator built upon Convolutional Neural Networks
(CNN) and Graph Neural Networks (GNN) is developed to quantify
the placement similarity between the two “types (or styles)” of
placement (i.e., DREAMPlace-generated and tool-optimized). The
goal of the discriminator is to make correct judgements in deciding
whether its input originates from commercial databases or DREAM-
Place, whereas aside from wirelength and density optimization, one
of the objectives of DREAMPlace in our settings is to “fool” the
discriminator by generating placements that are similar to the ones
in the database, which effectively forms an adversarial setting.

The greatest strength of DREAM-GAN is that it enables DREAM-
Place to optimize the underlying placement towards a tool-verified
(and optimized) direction without explicitly knowing commercial
tools’ black-boxed algorithms. Although DREAMPlace leverages
fundamentally different algorithms compared with the tools, in
this work, we demonstrate that the placement quality of commer-
cial placers can be efficiently transferred to DREAMPlace with the
proposed framework DREAM-GAN.

2 RELATEDWORKS AND MOTIVATIONS
Analytical placers [2, 3, 7] have brought tremendous success to
the semiconductor industry in the last decade [9]. Nevertheless, re-
cent advancements in ML Theory and its applications have further
pushed modern placers to an unprecedented frontier [8]. Based on
the characteristics of learning strategies, existing learning-driven
frameworks for VLSI placement can be categorized into the follow-
ing streams:

• Supervised Placement Quality Prediction: These categories in-
clude the works who strive to predict crucial placement-related
metrics in early stages of the design flow, which typically rely on
pre-built databases with comprehensive data. A recent work [4]
developed an ensemble framework to predict post-place conges-
tion and timingmetrics based on amassive database that contains
millions of instances from 72 industrial designs. To extend the pre-
diction scope from single-stage to full-flow modeling, [12, 14] de-
veloped learning-driven flow-based graph modeling techniques
using GNNs to predict end-of-flow PPA metrics for each inter-
mediate placement stage, allowing designers to perform efficient
design space exploration (DSE).
• Unsupervised Placement Optimization: This category refers to
the works who aim to develop ML frameworks that directly per-
form placement optimization without a pre-built database. In
other words, they often directly consider ML models as opti-
mization rather than prediction frameworks. [15] presented the
PL-GNN framework that generates cell clustering constraints as
placement guidance using GNNs to advance commercial placers.
The key idea is to drive commercial placers to spend additional
effort in placing the cells belonging to the same ML-predicted
cluster closer to each other in order to improve the overall PPA
metrics. However, the framework in [15] is not “goal-directed”
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Figure 2: Illustration of integrating DREAM-GAN with an
industrial PD flow implemented by Synopsys ICC2.

as the graph learning and the clustering steps are not end-to-
end-differentiable, which prohibits GNN models from utilizing
feedback from the achieved optimization results. To overcome
this problem, the authors of [16] developed differentiable PPA-
inspired ML loss functions to improve the GNN learning process
with direct optimization feedback, which includes timing, power,
and congestion evaluations of the clustering results.
• Reinforcement Learning (RL) Placement Optimization: RL is a
promising paradigm that has shown superior optimization re-
sults in high-dimensional control problems. The authors of [17]
presented a seminal work that leveraged RL for macro placement
to replace human labor, which significantly improves the chip de-
sign turn-around time. Another work [1] utilized RL to efficiently
tune the placement parameters of commercial placers through
thousands of iterations. Still another work [20] further combined
simulated annealing and RL in a cyclic fashion to conduct itera-
tive placement optimization. Nonetheless, the runtime of modern
VLSI placements easily takes from hours to days, which greatly
limits the usage of RL-driven optimization algorithms.
Unlike the previous works presented above, in this work, we

take a brand new approach to perform VLSI placement optimiza-
tion using generative adversarial learning [5]. In the realm of PD,
previous work [13] has shown that the generative learning con-
ducted by GAN can elegantly optimize the Clock Tree Synthesis
(CTS) process of commercial tools without knowing the algorithms
inside the black-boxed CTS engine. Motivated by [13], in this paper,
we aim to leverage GAN-based models to demystify commercial
black-boxed placers so as to improve DREAMPlace [11], a renowned
open-source placer, to commercial-quality. Particularly, we consider
DREAMPlace as a generator in a conventional GAN-based frame-
workwhose goal is to generate commercial-quality placements from
an unplaced input netlist. To achieve this, we first build a profound
database containing commercial-quality placements with different
objectives (e.g., timing-driven, power-driven, etc.) using Synopsys
ICC2, an industry-leading commercial tool. We then develop a dis-
criminator that serves as a teacher to improve DREAMPlace by
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DREAMPlace commercial tool

(same global density target at 0.85)

Figure 3: Comparison of cell density maps between DREAM-
Place and Synopsys ICC2 under the same global placement
density target. It is observed that the commercial tool has
extra intelligence on where to locally aggregate or spread
out cells in order to optimize crucial PPA metrics while sat-
isfying the global density constraints.

optimizing the similarity scores between DREAMPlace-generated
placements and the ones in the commercial database as shown in
Figure 1. By minimizing the similarity loss, the underlying cell
locations of DREAMPlace-generated placements will be updated
through gradient descent, which effectively become more similar
to the tool-generated placements in the database.

Finally, Figure 2 shows a graphical illustration of integrating
the proposed framework DREAM-GAN into an industrial design
flow implemented by Synopsys ICC2. To perform fair comparisons
between the vanilla DREAMPlace and the proposed DREAM-GAN,
we use the same ICC2 parameters and seeds to implement the rest
of the design flow after global placement. In the experiments, we
show that DREAM-GAN outperforms DREAMPlace in critical PPA
metrics at each major stage of the flow.

3 DREAM-GAN OVERVIEW
It is widely acknowledged that generative adversarial learning is
a promising paradigm that effectively captures complicated distri-
butions using generative and discriminative models which have
“opposite” objectives. Generally speaking, the goal of the genera-
tor is to generate target distribution alike data from random (or
non-meaningful) distributions, while the goal of the discriminator
is to distinguish the source of its inputs (i.e., from the generator
or from the target distribution). Note that both generator and dis-
criminator can be realized by any differentiable system (i.e., not
necessarily neural networks). As aforementioned, in this paper we
consider DREAMPlace, a differentiable placement system, as a gen-
erator whose goal is to generate placements that follow similar
distributions as the ones in the tool-optimized database.

Our discriminator leverages CNNs and GNNs to determine the
origin of its input source that alternates in each iteration of GAN
training, where CNNs are responsible to encode cell bin-density
maps, and GNNs are responsible to encode netlist connectivity. The
rationale behind using GNNs for netlist encoding is that netlists
are essentially hypergraphs whose node connectivity is critical to
placers. The motivation behind using CNNs for bin-density map
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Figure 4: Detailed architecture of DREAM-GAN. Given place-
ments in terms of (x, y) locations, the CNN-based and GNN-
based discriminators leverage bin-density maps and netlist
graphs, respectively, to determine the placement origins (i.e.,
either from DREAMPlace or from the commercial database).

Table 1: Parameters we leverage for database generation.

ICC2 parameters type (values) description
set_qor_strategy enum (3) set optimization priority
low_power_effort enum (4) effort in low power optimization
congestion_effort enum (3) effort in congestion optimization
is_timing_driven bool (2) is timing-driven placement
is_power_driven bool (2) is power-driven placement
buffer_aware bool (2) buffering of high-fanout nets
coarse_density float ([0.7,0.9]) density of global placement

target_route_density float ([0.7,0.9]) density of early global routing

encoding is shown in Figure 3. We observe that under the same
global density target, the commercial tool has extra intelligence on
locally aggregating or loosening cells in order to improve design
PPA metrics globally, where DREAMPlace naively strives to make
every local bin to have the same local density target as the global
density target. This density variation is proven to be critical to the
success of placement optimization in [16]. The observation shown
in Figure 3 strongly motivates us to leverage bin-density map as
one the indicators of placement similarity, and CNNs thus become
the second-to-none choice to perform such encoding as they are
well-known for grid signals (e.g., images) classification.

Figure 4 illustrates the detailed architecture of DREAM-GAN.
As aforementioned, the key idea of DREAM-GAN is to improve the
placement quality of DREAMPlace to commercial-quality through
generative adversarial learning. To achieve this goal, we first build a
commercial database containing various tool-optimized placements
with different objectives, including performance-driven placements,
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Figure 5: Difference in objectives between DREAMPlace [11]
and the proposed DREAM-GAN at each placement iteration.
The similarity loss encourages the placements from DREAM-
Place follow the distributions as the ones in the database.

low-power placements, routability-driven placements, etc., which
can be obtained by permuting placement parameters offered by
Synopsys ICC2. Table 1 shows the parameters we utilize in this work
to generate commercial-quality placements. As shown in the table,
the combination of different parameters forms a high-dimensional
space, leading to a variety of tool-optimized placements that have
distinct PPA objectives, and thus resulting in a diversified database.
During placement iterations, DREAM-GAN guides DREAMPlace
to directly improve cell locations by optimizing the computed simi-
larity scores so that the achieved placements can follow a similar
distribution to the ones in the database.

To directly update cell locations by optimizing similarity scores,
the inputs of DREAM-GAN have to be differentiable with respect
to locations. GNNs naturally satisfy this requirement as they are
end-to-end models and cell locations are taken as node features.
However, normally, the computation of a bin-density map is not
differentiable as it is not continuous. To overcome this issue, in this
paper, we propose a differentiable bin-density map transformation
technique named “Soft-Bin”, which transforms cell locations into
“probabilistic” 2D bin-density maps using a softmax function so that
the CNN-computed gradients can be directly used to update cell
locations in each placement iteration.

Finally, the key difference in objectives between DREAM-GAN
and the vanilla DREAMPlace is illustrated in Figure 5. In each place-
ment iteration of DREAM-GAN, aside from optimizing the existing
objectives of DREAMPlace: wirelength and density, it computes and
optimizes a similarity loss using the architecture shown in Figure 4
to guide the generated placements towards commercial-quality.

4 ALGORITHMS
In this section, we will delve into the details of each transforma-
tion technique and main components of the proposed framework
DREAM-GAN as shown in Figure 4, which include GNN learning
for cell locations encoding, the proposed Soft-Bin algorithm that
generates differentiable 2D bin-density map, and the objectives of
the CNN and GNN-based discriminator networks.

4.1 VLSI Netlist Encoding using GNNs
Graph representation learning conducted by GNNs is an effective
technique to encode netlist connectivity and the underlying at-
tributes into a meaningful graph- or node-level representations. In
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Figure 6: Illustration of netlist transformation and GNN
learning on node f, where cell locations (x,y) are taken as
initial node features. The blue nodes denote the 1-hop neigh-
bors, the green nodes denote the 2-hop neighbors, and the
arrows denote the message passing directions to compute
the final representations of the target node colored in red.

the realm of PD, such encoded representations have been lever-
aged to successfully solve many tasks that are once considered
extremely hard to solve [19]. In this paper, we specifically lever-
age GNNs to encode netlist graph 𝐺 = (𝑉 , 𝐸) of the underlying
placement while considering cell locations as initial attributes. The
results graph-level vectors are further taken as the input of the pro-
ceeding GNN-based discriminator network to decide the similarity
between different placements.

To apply GNNs for solving VLSI problems, a netlist transforma-
tion technique is required to transform the netlist hypergraphs into
normal graphs. A naive transformation that assigns a GNNmessage
passing edge between each cell on the same net will introduce𝑂 (𝑛2)
edges, which may damage the quality of graph learning as redun-
dant edges limit the expressiveness of GNNs [21]. To overcome this
issue, in this work, we adopt the netlist transformation technique
proposed in [16] that for every net in the original netlist graph, only
driver-to-load connections are added in the transformed graph, and
beyond that, artificial edges are introduced between every start
points and end points of timing paths.

Figure 6 shows the illustration of the graph learning process in
the proposed DREAM-GAN framework. Given an input placement,
GNNs are leveraged to perform node representation learning by
using cell locations as initial node features. Considering the benefits
of runtime and computational memory, in this work, we adopt
the message passing scheme of GraphSAGE [6] to perform node
representation learning on a target node 𝑣 as (which is repeated for
each cell in the design):

ℎ𝑘−1
𝑁𝑒𝑖𝑔ℎ (𝑣) = 𝑟𝑒𝑑𝑢𝑐𝑒_𝑚𝑒𝑎𝑛

(
{W𝑎𝑔𝑔

𝑘
ℎ𝑘−1𝑢 , ∀𝑢 ∈ 𝑁𝑒𝑖𝑔ℎ(𝑣)}

)
,

ℎ𝑘𝑣 = 𝜎

(
W𝑝𝑟𝑜 𝑗

𝑘
· concat

[
ℎ𝑘−1𝑣 , ℎ𝑘−1

𝑁𝑒𝑖𝑔ℎ (𝑣)

] )
,

(1)

where 𝑘 denotes the transformation level, 𝜎 denotes the sigmoid
function, 𝑁𝑒𝑖𝑔ℎ(𝑣) denotes the neighbors of node 𝑣 , 𝑊 𝑎𝑔𝑔

𝑘
and

𝑊
𝑝𝑟𝑜 𝑗

𝑘
denote the aggregation and projection matrices at the 𝑘-

th layer of the GNN model. In this work, the GNN-encoded node
embeddings have 32 dimensions and the message passing transfor-
mation has a total number of three levels, which is subject to the
number of GNN layers in the framework as shown in Figure 4. After
the node representation learning, we obtain the final graph-level en-
coding 𝑔 by performing mean and max pooling of the transformed
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node embeddings {ℎ3𝑣 ∀𝑣 ∈ 𝑉 } as:

𝑔 = concat
[
𝑚𝑒𝑎𝑛_𝑝𝑜𝑜𝑙𝑖𝑛𝑔

({
ℎ3𝑣

})
,𝑚𝑎𝑥_𝑝𝑜𝑜𝑙𝑖𝑛𝑔

({
ℎ3𝑣

})]
, (2)

which is taken as the input of the proceeding feedforward neural
networks to make the final decision of whether the underlying
placement is similar to the ones in the database in terms of the
GNN-encoded representations.

4.2 GNN-Based Discriminator
Figure 7 demonstrates the adversarial learning conducted by GNNs
in the proposed framework DREAM-GAN. By applying node repre-
sentation learning on the input placement, which is either from the
commercial database or from the DREAMPlace engine, we train
the GNN model to differentiate various placement sources based on
netlist connectivity and assigned cell locations. Note that the goal of
DREAMPlace is to generate “realistic” placements that are similar to
the ones in the database so as to “fool” the discriminator to predict
its generated placements as coming from the database. Nonethe-
less, GNN alone is not enough to characterize and differentiate
different placements. For example, to truly encode the difference
of the bin-density distribution as shown in Figure 3, a more direct
approach that quantifies the layout information is needed. Hence,
in this work, we leverage CNN-based networks to encode such
information.

4.3 Soft-Bin: Transforming Cell Locations to
Differentiable 2D Bin-Density Map

As aforementioned, the key motivation behind using bin-density
distribution as one of the placement similarity metrics is shown in
Figure 3, where we observe that commercial placer has extra intelli-
gence on where to locally aggregate or loosen cells to improve the
overall PPA metrics, while the vanilla DREAMPlace naively makes
every local bin-density satisfies the global density constraints.

It should first be mentioned that a normal bin-density calcu-
lation method using the simple formula of dividing the total cell
area (in a bin) by the total bin area is not differentiable, as the
assignment of locating a cell to a bin is purely based on the cell’s
locations (i.e., deterministic). Although this deterministic way to

Algorithm 1 Soft-Bin Transformation.

Input: 𝐺 = (𝑉 , 𝐸): input netlist, {𝑋𝑣, 𝑌𝑣 ∀𝑣 ∈ 𝑉 }: cell locations of
the input placement,𝑊 : with of floorplan, 𝐻 : height of floor-
plan, 𝑏_𝑤𝑖𝑑𝑡ℎ: bin width, 𝑏_ℎ𝑒𝑖𝑔ℎ𝑡 : bin height.

Output: 𝑀 ∈ 𝑅 |𝑉 |x |𝑉 | : differentiable 2D bin-density map.
1: 𝑀 [∗] [∗] ← 0 ⊲ initialize M to 0
2: 𝑏𝑖𝑛_𝑎𝑟𝑒𝑎 = 𝑏_𝑤𝑖𝑑𝑡ℎ ∗ 𝑏_ℎ𝑒𝑖𝑔ℎ𝑡
3: 𝑛𝑢𝑚_𝑤 ← 𝑓 𝑙𝑜𝑜𝑟 ( 𝑊

𝑏_𝑤𝑖𝑑𝑡ℎ
)

4: 𝑛𝑢𝑚_ℎ ← 𝑓 𝑙𝑜𝑜𝑟 ( 𝐻
𝑏_ℎ𝑒𝑖𝑔ℎ𝑡 )

5: for 𝑖 = 0; 𝑖 < 𝑛𝑢𝑚_𝑤 ; ++𝑖 do
6: for 𝑗 = 0; 𝑗 < 𝑛𝑢𝑚_ℎ; ++ 𝑗 do
7: 𝑉 ′ ← 𝑓 𝑖𝑙𝑡𝑒𝑟 {𝑖∗𝑛𝑢𝑚_𝑤 ≤ 𝑋𝑣 < (𝑖+1)∗𝑛𝑢𝑚_𝑤∀𝑣 ∈ 𝑉 }
8: 𝑉 ′ ← 𝑓 𝑖𝑙𝑡𝑒𝑟 { 𝑗∗𝑛𝑢𝑚_ℎ ≤ 𝑌𝑣 < ( 𝑗+1)∗𝑛𝑢𝑚_ℎ∀𝑣 ∈ 𝑉 ′}
9: for 𝑣 ∈ 𝑉 ′ do
10: 𝑏 ← 𝑀 [𝑖] [ 𝑗]
11: 𝑛𝑒𝑖𝑔ℎ_𝑏𝑖𝑛𝑠 ← get adjacent and diagonal bins of 𝑏
12: 𝑑𝑖𝑠𝑡_𝑣𝑒𝑐 ← [] ⊲ distance vector of cell 𝑣 to each bin
13: 𝑑𝑖𝑠𝑡_𝑣𝑒𝑐.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (∥𝑏𝑥 − 𝑣𝑥 , 𝑏𝑦 − 𝑣𝑦 ∥2)
14: for 𝑛𝑏 ∈ 𝑛𝑒𝑖𝑔ℎ_𝑏𝑖𝑛𝑠 do
15: 𝑑𝑖𝑠𝑡_𝑣𝑒𝑐.𝑝𝑢𝑠ℎ_𝑏𝑎𝑐𝑘 (∥𝑛𝑏𝑥 − 𝑣𝑥 , 𝑛𝑏𝑦 − 𝑣𝑦 ∥2)
16: 𝑝𝑟𝑜𝑏_𝑣𝑒𝑐 ← 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑑𝑖𝑠𝑡_𝑣𝑒𝑐−1

)
17: 𝑎𝑟𝑒𝑎_𝑣𝑒𝑐 ← 𝑎𝑟𝑒𝑎𝑣 ∗ 𝑝𝑟𝑜𝑏_𝑣𝑒𝑐 ⊲ expected values
18: update𝑀 by 𝑎𝑟𝑒𝑎_𝑣𝑒𝑐 ⊲ add area of each bin to M
19: 𝑀 ← 𝑀

𝑏𝑖𝑛_𝑎𝑟𝑒𝑎 ⊲ convert expected area to expected density

generate 2D bin-density maps from cell locations is “exact” and
accurate, a probabilistic bin-density calculation method is needed
in our learning-driven framework in order to update the cell loca-
tions by using the gradients calculated from the similarity loss. To
achieve this, we develop a differentiable bin-density transformation
technique that is termed Soft-Bin as shown in Algorithm 1.

The key idea behind Algorithm 1 is that instead of deterministi-
cally assigning each cell to an exact bin based on its (x, y) location,
we can probabilistically distribute the cell area to its neighboring
bins using the softmax function, which enables cell locations to be
updated along with any maximization or minimization operation of
the computed bin-density. That is, with the proposed Soft-Bin tech-
nique, cell locations can be directly updated using gradient descent
by optimizing the similarity loss computed from the CNN-based
discriminator as shown in Figure 4.

The proposed Soft-Bin algorithm works as follows. In Lines 1–4,
we initialize the bin densitymap𝑀 based on the input specifications.
The cells corresponding to each bin can be obtained using Lines 7–8.
Now, as shown in Lines 10–15, for each cell that deterministically
belongs to a target bin 𝑏, we first identify its neighboring bins
(adjacent or diagonal) 𝑛𝑒𝑖𝑔ℎ_𝑏𝑖𝑛𝑠 , and then compute a distance
vector 𝑑𝑖𝑠𝑡_𝑣𝑒𝑐 that denotes the Euclidean distance between the
target cell to each bin (including 𝑏 and 𝑛𝑒𝑖𝑔ℎ_𝑏𝑖𝑛𝑠). Finally, we
transform the distance vector 𝑑𝑖𝑠𝑡_𝑣𝑒𝑐 into a probability vector
𝑝𝑟𝑜𝑏_𝑣𝑒𝑐 using the softmax function as shown in Line 16, and the
“expected” area contribution can be calculated using Line 17. After
updating 𝑀 by the expected area contribution of each cell in the
design, we obtain the final density of each bin using Line 19.
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Figure 8: Illustration of our CNN-based discriminator us-
ing the Soft-Bin transformation technique that transforms
cell locations to differentiable bin-density maps. The goal
of DREAMPlace is to generate placements that have similar
bin-density maps as the ones in the database.

4.4 CNN-Based Discriminator
With the proposed Soft-Bin technique for differentiable bin-density
map transformation, we now describe the adversarial learning con-
ducted by the CNN-based discriminator as shown in Figure 8. Note
that the key motivation for using CNNs to encode and differentiate
different placements is originated from Figure 3, where we clearly
observe that the commercial tool is having additional intelligence
on locally spreading or coarsening cells for PPA optimization which
DREAMPlace is lacking of. Therefore, to advance DREAMPlace to-
wards commercial-quality, we aim to improve the DREAMPlace
generated locations by following the bin-density distributions as
the ones generated by the commercial tool.

As shown in Figure 8, we use the proposed Soft-Bin technique
to transform the DREAMPlace generated placement into a differen-
tiable “soft” bin-density map, while using exact (i.e., deterministic)
computation to obtain the bin-density map from the commercial
database as it does not need to be differentiable. By considering
the input density maps as grid signals, CNNs are used to perform
convolution to extract key information that can be used to decide
whether the input is coming from DREAMPlace or the database.

4.5 End-to-End DREAM-GAN Training
The key difference between the “training” of the vanilla DREAM-
Place and our proposed DREAM-GAN is shown in Figure 5. Beyond
the conventional placement objectives which are wirelength and
density, we consider DREAMPlace as a generator to maximize the
probability of the generated placement being classified as “tool-
optimized” by the GNN-based and CNN-based discriminators. The
similarity loss 𝐿𝑠𝑖𝑚 computed by the entire discriminator (GNN-
based and CNN-based) can be obtained as:

L𝑠𝑖𝑚 =E(𝐺,𝑥,𝑦)∼𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒
[
𝑙𝑜𝑔(𝐷𝑔𝑛𝑛 (𝐺, 𝑥,𝑦))

]
+ E(𝐺,𝑥,𝑦)∼𝐷𝑅𝐸𝐴𝑀

[
𝑙𝑜𝑔(1 − 𝐷𝑔𝑛𝑛 (𝐺, 𝑥,𝑦))

]
+ E(𝐺,𝑥,𝑦)∼𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 [𝑙𝑜𝑔(𝐷𝑐𝑛𝑛 (𝐺, 𝑒𝑥𝑎𝑐𝑡_𝑚𝑎𝑝 (𝑥,𝑦)))]
+ E(𝐺,𝑥,𝑦)∼𝐷𝑅𝐸𝐴𝑀 [𝑙𝑜𝑔(1 − 𝐷𝑐𝑛𝑛 (𝐺, 𝑆𝑜 𝑓 𝑡-𝐵𝑖𝑛(𝑥,𝑦)))] ,

(3)

where 𝐷𝑔𝑛𝑛 and 𝐷𝑐𝑛𝑛 denote the GNN-based and CNN-based dis-
criminators respectively, (𝐺, 𝑥,𝑦) denotes the sampled (either from
the database or from DREAMPlace) netlist graph with annotated
cell locations, 𝑒𝑥𝑎𝑐𝑡_𝑚𝑎𝑝 denotes the deterministic bin-density
map, and 𝑆𝑜 𝑓 𝑡 − 𝐵𝑖𝑛 denotes the proposed transformation tech-
nique. Finally, the similarity loss 𝐿𝑠𝑖𝑚 will be jointly optimized with
the existing DREAMPlace objectives as

𝐿 = 𝐿𝑊𝐿 + 𝜆1𝐿𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + 𝜆2𝐿𝑠𝑖𝑚, (4)

where 𝐿𝑊𝐿 and 𝐿𝑑𝑒𝑛𝑠𝑖𝑡𝑦 denote the wirelength and density ob-
jectives computed from the vanilla DREAMPlace, {𝜆} denote the
hyper-parameters for loss weighting. At each placement optimiza-
tion, DREAMPlace will optimize Equation 4 to improve the under-
lying placement towards commercial-quality.

5 EXPERIMENTAL RESULTS
In this paper, we validate the proposed framework DREAM-GAN
on 5 commercial CPU and OpenCore benchmarks under the TSMC
28𝑛𝑚 technology node. In the experiments, we perform head-to-
head comparisons between DREAMPlace [11] and DREAM-GAN at
each major stage of an industrial PD flow implemented by Synopsys
ICC2. The commercial database is generated by randomly sampling
the parameters in Table 1, where for each benchmark, we complete
50 commercial runs to obtain the tool-optimized placements with
different PPA objectives. The entire DREAM-GAN framework is im-
plemented upon the infrastructure of DREAMPlace using PyTorch.
For each benchmark, the runtime difference between DREAM-GAN
and DREAMPlace is less than 2 minutes on a CPU-only machine.

5.1 DREAM-GAN Optimization Results
To perform head-to-head comparisons between DREAMPlace [11]
and DREAM-GAN, for both approaches, we use the exact same
seeds and parameters offered by ICC2 to implement the full-chip de-
sign after global placement. An illustration of the comparison flow
is shown in Figure 2. Table 2 demonstrates the detailed optimization
results, where we clearly observe that across all the benchmarks,
DREAM-GAN consistently outperforms DREAMPlace at each ma-
jor PD stage in critical PPAmetrics. Specifically, at our largest bench-
mark (i.e, CPU-2with 580K cells), we observe that DREAM-GAN sig-
nificantly improves the post-route wirelength by 8.3% and the total
power by 7.4%. Among all the benchmarks, DREAM-GAN delivers
impressive average improvements of 4.34% in post-route wirelength,
and 3.16% in post-route total power. We believe the experimental
results have empirically proved that DREAM-GAN successfully ad-
vances DREAMPlace towards commercial-quality. Finally, we want
to emphasize that although DREAM-GAN requires a pre-built data-
base to perform similarity-based learning, it does NOT use any
“memorization” technique such as net-matching, cell-alignment
etc. to perform the optimization, as even for the same benchmark,
the number of cells or nets may vary from run to run in the data-
base due to the realization of various PPA objectives. Our superior
optimization results are purely achieved by optimizing placement
similarity scores via generative adversarial learning, which does
not require the number of cells or nets to be matched between the
designs that DREAM-GAN optimizes and the ones in the database.
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Table 2: Detailed PPA comparison results between DREAMPlace [11] and DREAM-GAN at each major PD stage. The comparison
flow is illustrated in Figure 2. In this work, we use Synopsys ICC2 to perform the entire PD except for the global placement that
is either performed by DREAMPlace (left column) or DREAM-GAN (right column). The runtime difference in global placement
between the two approaches is no more than 2 minutes across all commercial and OpenCore benchmarks.

design PD DREAMPlace [11] DREAM-GAN (ours)

(# cells) stage wns TNS # total total wns TNS # total total
(ns) (ns) vios WL (um) power (mW) (ns) (ns) vios WL (um) power (mW)

CPU-1

global place -2.05 -13498 19558 374130 200.1 -1.46 -10601 18425 3546577 193.5

(220K)

place opt -1.74 -6197 13018 4034908 194.7 -1.52 -6024 12697 3870333 179.6
clock opt -0.30 -45.89 681 4163129 144.4 -0.24 -34.28 473 4041709 140.1
route opt -0.26 -22.4 464 4166459 144.3 -0.18 -21.11 446 4050908 (-2.7%) 141.9 (-1.6%)

CPU-2
global place -432.97 -5634543 48869 12382802 25142.4 -432.98 -5324323 45644 11110278 25098.2

(580K)
place opt -608.91 -7218793 40780 12654907 13244.1 -608.74 -7202230 40544 11493278 12431.0
clock opt -0.20 -61.48 1726 17769476 488.1 -0.23 -48.28 1505 16305060 455.0
route opt -0.17 -45.83 1405 17765081 490.5 -0.14 -28.61 942 16287654 (-8.3%) 454.2 (-7.4%)

CPU-3
global place -2.13 -8437.48 11730 1711937 149.2 -1.96 -8057.19 11435 1691131 147.8

(121K)
place opt -0.54 -164.78 2466 1439469 155.8 -0.48 -138.74 1981 1413154 153.1
clock opt -0.51 -37.68 414 1588135 141.9 -0.57 -32.98 359 1518498 137.7
route opt -0.49 -41.21 1207 1582822 143.0 -0.35 -36.24 1023 1520481 (-3.9%) 138.9 (-2.9%)

VGA
global place -2.2 -13999.49 16630 2418386 345.5 -1.65 -8057.19 11435 1691131 342.2

(57K)
place opt -0.07 -2.06 188 1426981 279.8 -0.10 -2.55 171 1456516 276.5
clock opt -0.16 -7.46 441 1579559 327.8 -0.14 -5.37 398 1536218 322.4
route opt -0.17 -13.73 1712 1586940 333.5 -0.14 -7.06 1050 1542569 (-2.8%) 329.1 (-1.3%)

LDPC
global place -1.14 -1411.74 2184 1289738 225.8 -1.10 -1331.30 2048 1233014 219.5

(46K)
place opt -0.25 -292.49 2192 1454863 255.5 -0.21 -217.76 -217.76 1390693 248.6
clock opt -0.20 -156.62 1897 1857624 255.4 -0.16 -98.47 1757 1785355 248.4
route opt -0.24 -198.72 1976 1878969 261.8 -0.18 -123.94 1846 1803729 (-4.0%) 255.0 (-2.6%)

6 DISCUSSION: WHY DREAM-GANWORKS?
We believe the success of our framework DREAM-GAN immedi-
ately implies an important message. That is, just as “image stlyes”
can be transferred between different domains in recent GAN ap-
plications, “placement stlyes” can be transferred among different
placers using generate adversarial learning without knowing the
underlying algorithms or constraints. Particularly, in this work, we
leverage bin-density maps along with netlist graphs to quantify
“placement styles” of different placers, which are encoded by CNN-
based and GNN-based discriminators, respectively. Figure 9 shows
the bin-density map comparison between DREAM-GAN and Syn-
opsys ICC2, where we observe that the achieved bin-density maps
are indeed similar to each other, demonstrating the effectiveness of
the proposed framework.

Finally, in Table 2, we observe that DREAM-GAN not only im-
proves the wirelength significantly, but also introduces notable
improvements in power and timing. We think this is because by
following the placement distribution of ICC2 in terms of cell loca-
tions, DREAM-GAN introduces less buffers and delay fixing pro-
cedures than the vanilla DREAMPlace during many optimization
steps throughout the flow, which effectively leads to less power
consumption and better timing results.

7 CONCLUSION AND FUTUREWORK
In this paper, we have presented DREAM-GAN which is the first-
ever learning-driven framework that improves DREAMPlace, an
open-source placer, towards commercial-quality using generative

DREAM-GAN commercial tool

placement after optimization

Figure 9: Density map comparison between the proposed
DREAM-GAN and Synopsys ICC2 on the CPU-2 benchmark.

adversarial learning. In the experiments, we show that DREAM-
GAN not only immediately improves major PPA metrics at the
placement stage, but also demonstrate that the improvements last
firmly to the post-route stage. The main assumption of this work is
that “placement style (quality)” is an inherent attribute of a placer,
which can be parameterized and transferred to another placer using
generative adversarial learning. Although this assumption is proved
empirically in this paper, in the future, we aim to provide more
rigorous analyses and further enable effective transfer learning
across different designs. Finally, we believe this work shall present
new directions in advancing VLSI placement.
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