
38

Unsupervised Digit Recognition Using Cosine Similarity

In A Neuromemristive Competitive Learning System

BON WOONG KU, Synopsys, Inc.

CATHERINE D. SCHUMAN, Oak Ridge National Laboratory

MD MUSABBIR ADNAN, The University of Tennessee, Knoxville

TIFFANY M. MINTZ, RAPHAEL POOSER, and KATHLEEN E. HAMILTON,

Oak Ridge National Laboratory

GARRETT S. ROSE, The University of Tennessee, Knoxville

SUNG KYU LIM, Georgia Institute of Technology

This work addresses how to naturally adopt the l2-norm cosine similarity in the neuromemristive system

and studies the unsupervised learning performance on handwritten digit image recognition. Proposed archi-

tecture is a two-layer fully connected neural network with a hard winner-take-all (WTA) learning module.

For input layer, we propose single-spike temporal code that transforms input stimuli into the set of single

spikes with different latencies and voltage levels. For a synapse model, we employ a compound memristor

where stochastically switching binary-state memristors connected in parallel, which offers a reliable and scal-

able multi-state solution for synaptic weight storage. Hardware-friendly synaptic adaptation mechanism is

proposed to realize spike-timing-dependent plasticity learning. Input spikes are sent out through those mem-

ristive synapses to each and every integrate-and-fire neuron in the fully connected output layer, where the

hard WTA network motif introduces the competition based on cosine similarity for the given input stimuli.

Finally, we present 92.64% accuracy performance on unsupervised digit recognition with only single-epoch

MNIST dataset training via high-level simulations, including extensive analysis on the impact of system

parameters.

CCS Concepts: • Computing methodologies→ Unsupervised learning; Bio-inspired approaches;

Additional Key Words and Phrases: Unsupervised learning, MNIST, digit recognition, single-spike temporal

code, spiking neural network, compound memristor, winner-take-all, neuromorphic computing

ACM Reference format:

Bon Woong Ku, Catherine D. Schuman, Md Musabbir Adnan, Tiffany M. Mintz, Raphael Pooser, Kath-

leen E. Hamilton, Garrett S. Rose, and Sung Kyu Lim. 2022. Unsupervised Digit Recognition Using Cosine

Similarity In A Neuromemristive Competitive Learning System. J. Emerg. Technol. Comput. Syst. 18, 2, Arti-

cle 38 (March 2022), 20 pages.

https://doi.org/10.1145/3473036

Authors’ addresses: B. W. Ku, Synopsys, Inc., 800 N Mary Ave, Sunnyvale, CA, 94085; email: bon.ku@synopsys.com; C.

D. Schuman, T. M. Mintz, R. Pooser, and K. E. Hamilton, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge,

TN, 37830; emails: schumancd@ornl.gov, mintztm@ornl.gov, pooserrc@ornl.gov, hamiltonke@ornl.gov; Md M. Adnan and

G. S. Rose, The University of Tennessee, Knoxville, 1520 Middle Dr, Knoxville, TN, 37996; emails: madnan@vols.utk.edu,

garose@utk.edu; S. K. Lim, Georgia Institute of Technology, 266 Ferst Dr, Atlanta, GA, 30332; email: limsk@ece.gatech.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1550-4832/2022/03-ART38 $15.00

https://doi.org/10.1145/3473036

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

https://doi.org/10.1145/3473036
mailto:permissions@acm.org
https://doi.org/10.1145/3473036

38:2 B. W. Ku et al.

1 INTRODUCTION

In a neuromorphic system, synaptic weights are updated by spike-timing-dependent plas-

ticity (STDP), a biological learning mechanism directly correlated to the brain-oriented func-

tions [10, 18, 48]. Over the past few years, memristor-based emerging non-volatile memory

(NVM) technologies [8, 9, 60, 66] have drawn huge attention of the field of neuromorphic comput-

ing to the fact that NVMs naturally realize STDP thanks to their efficient in-memory processing

capability [19, 21, 26, 33]. The superior fabrication density of NVMs over the traditional memory

technologies allows us to expect a large-capacity, compact-size, low-power, and hopefully afford-

able synaptic weight storage [1, 5, 31, 37, 53, 55]. Furthermore, engineering breakthroughs in NVMs

enable us to explore a large-scale memristive neuromorphic (neuromemristive) system architec-

ture that targets brain-level parallelism [28, 38].

Most studies on neuromemristive system architecture [3, 39, 50, 52, 59, 62, 64] have used the

dot-product as a similarity metric between an input feature vector and a synaptic weight vec-

tor during training. Although a memristor crossbar realizes the dot-product operation very effi-

ciently, it is unbounded unless the normalization followed, which tends to degrade the learning

performance [17, 34, 41, 46, 58]. Recently, Reference [20] experimentally showed that subsequent

forward and backward processing of the memristor crossbar provides the l2-norm value of the

weight vector very efficiently. This motivates us to demonstrate system-level unsupervised learn-

ing performance while actively employing cosine similarity (dot-product between l2-normalized

input feature and synaptic weight vectors) as the similarity metric.

In this work, we propose a neuromemristive competitive learning system architecture that finds

the best cosine similarity in the hard winner-take-all (WTA) [24] network motif. Shown in

Figure 1, our neuromemristive system is a fully connected two-layer spiking neural network with

a competitive learning module. Each layer has been optimized to manipulate cosine similarity.

Pre-synaptic input encoding neurons in the input layer perform single-spike temporal coding.

This encoding scheme allows not only efficient dot-product along the memristor crossbar but also

hardware-friendly STDP. Input spikes are sent out to the receptive field of fully connected post-

synaptic output integrate-and-fire neurons. The WTA logic introduces the competition among

output neurons based on cosine similarity between input and weight vectors. The sole winner

either triggers the STDP learning during training or chooses the final label for inference. Via ab-

stract high-level software simulations, we analyze the impact of system parameters extensively

and finally present 92.64% accuracy performance on unsupervised digit recognition [30] with only

single-epoch training.

2 INPUT SPIKE ENCODING

The learning efficiency of a neuromemristive system is directly affected by a spike encoding

scheme [7, 42]. The encoding scheme decides the amount of feature information delivered to the

system. Also it has a significant impact on the synaptic and neuronal signal processing complexity

to deal with the incoming spike sequence. In biological nervous systems, various neuronal spike

patterns have been observed in response to different types of external sensory stimuli [2, 14]. Sim-

ply put, when higher input intensity causes more frequent spikes, it is called rate code. However,

when the temporal structure of a spike sequence encodes the sensory input features, we call it

temporal code.

Rate code has been a traditional input encoding scheme in neuromorphic studies [11, 16, 33,

47, 49, 51], since neurons are known to be so sensitive to the internal fluctuations that noisy re-

sponses deform the temporal structure of a spike sequence. However, rate code results in long

network simulation runtime, since a neuron should collect enough number of spikes to capture

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

Unsupervised Digit Recognition Using Cosine Similarity 38:3

Fig. 1. Our neuromemristive competitive learning system. There exists 784 (28 × 28) pre-synaptic input en-

coding neurons (INi) that transform an input image into 784 single-spike signals. These spikes are sent out

through compound memristive synapses to each and every post-synaptic output integrate-and-fire neuron

(ONj) in the fully connected output layer, where the hard WTA network motif introduces the competition

among them.

the precise firing rate. Also, long-term depression (LTD) might occur right after long-term

potentiation (LTP), since a high-intensity stimulus causes pre-synaptic neurons to fire right

after a post-synaptic neuron fires, which complicates an STDP implementation. To resolve this

issue, some adopt neuronal refractory period to ignore the incoming spikes after post-synaptic

firing, others do not implement LTD but decrease the synaptic weights exponentially unless pre-

synaptic firing happens, and yet others utilize more parameters to tune the impact of LTD and

LTP differently. These all enlarge the parameter space to optimize, leading to difficulty in achiev-

ing near-ideal performance and fast runtime. Moreover, a spike generation circuit for rate code

commonly utilizes a random number generator (Poisson-distributed in general), which turns out

to be a huge overhead for the hardware implementation [12, 54].

However, temporal code has been known to offer a fast and efficient spike encoding solution

for the given visual stimuli [45, 56]. This is especially true when the temporal pattern of a input

spike sequence are so distinctive that post-synaptic neurons do not need to collect the whole spike

train redundantly. Previously, References [25, 35] utilized a Gabor filter to preprocess an image

and turned the resulting edge information of an image into spikes using temporal code. However,

the latency is reversely proportional to the input intensity, which leads to the distortion of input

features around high intensity pixels.

In this work, we propose rapid and effective spike encoding scheme termed single-spike tem-

poral code (STC). STC transforms input stimuli into the set of single spikes with different laten-

cies and voltage levels; higher pixel intensity leads to earlier spike firing and larger spike voltage.

The sparsity derived from using single spikes allows cheap neuronal input spike processing. The

latency is calculated by the additive inverse of the pixel value with respect to the maximum pixel

intensity, so that the temporal structure of input spikes does not have any distortion. This determin-

istic delay calculation removes the need for a random generator making the architecture hardware

friendly. Also the temporal feature makes easy to implement efficient STDP scheme for memris-

tive synapses that will be discussed in the next section. Note that an input stimulus turns into

voltage and temporal feature vectors. What makes STC distinctive from existing works [15, 32, 63]

on temporal coding is that the voltage feature in STC naturally allows us to utilize the fast and

energy-efficient dot-product operation through a memristor crossbar array, since the amplitude of

spike voltage delivers the pixel value information directly.

Figure 2 depicts how STC transforms a handwritten digit image into spikes. There are 784 (28×
28) pixels for an image in the MNIST dataset [30], and single-channel pixel value ranges from 0 to

255. For ease of explanation, the encoding timesteps are assumed to be ranged from 0 to 255, and

the voltage level ranges from Vmin to Vmax . Now, if the pixel value is at its maximum (255), then

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

38:4 B. W. Ku et al.

Fig. 2. (a) In the MNIST dataset [30], there are 784 (28×28) pixels for a handwritten digit image, whose single-

channel intensity values range from 0 to 255. (b) Image is flattened and STC rapidly encodes the image into

784 single spikes with different latencies and voltage levels. Depending on the pixel intensity, the firing time

and the voltage level of a spike are decided; higher pixel intensity leads to earlier spike firing and larger spike

voltage.

the single spike fires at 0 timestep with maximum voltage level (Vmax), reaching the post-synaptic

neurons immediately and strongly. If the pixel value is at its minimum (0), then the single spike

fires at 255 timestep with the minimum voltage level (Vmin). Note that spikes from higher intensity

pixels contribute to the post-synaptic neuron firing earlier and more.

Moreover, STC offers a flexible solution to boost the simulation runtime by reducing the number

of encoding timesteps at the expense of the temporal and voltage precision of input spikes. Figure 3

shows the spike encoding result based on STC with only 4 timesteps. The single spikes placed at

their respective pixel locations are colored in black at the timestep when they are fired. Spike

voltage level for each timestep is presented at the bottom. Due to the reduced number of encoding

timesteps, a certain range of pixel intensity shares the same firing time and spike voltage level,

which are calculated by the following equations:

Ti = (Nstep − 1) − �Nstep × (Pi/(Pmax + 1))�, (1)

Vt = (Vmax −Vmin) ×
(Nstep − 1 − t)

(Nstep − 1)
+Vmin , (2)

where Ti is the spike timing for pixel i , Vt denotes the spike voltage level for timestep t , and

Vmax andVmin denotes the maximum and minimum voltage level, respectively. Nstep denotes the

number of encoding timesteps, Pi the intensity value of pixel i , and Pmax the maximum pixel

intensity (255 in this work).

Note that the reduced number of encoding timesteps results in the altered temporal structure

and voltage level of spikes. Therefore, the runtime savings makes a tradeoff with reduction in the

input feature precision.

3 SYNAPSE MODEL AND SPIKE-TIMING-DEPENDENT PLASTICITY

We employ a compound memristor model as a synaptic device in our neuromemristive system

[6, 44]. The compound memristive synapse takes advantage of the stochastic resistive switching

of a memristor [40, 61]; when multiple binary-state memristors are connected in parallel to

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

Unsupervised Digit Recognition Using Cosine Similarity 38:5

Fig. 3. The spike encoding result based on STC with four timesteps. The spike timing (Time t) and voltage

level (Vt) are determined by Equations (1) and (2), respectively. Spikes placed at their respective pixel locations

are colored in black when they are fired.

Fig. 4. Compound memristive synapses that connect pre-synaptic input encoding neurons (IN) and post-

synaptic integrate-and-fire output neurons (ON). Ri denotes either Rof f (high-resistance state, HRS) or Ron

(low-resistance state, LRS) of the binary-state memristor i . The synaptic weight is represented by the effective

memductance of parallelly connected M binary-state memristor constituents.

implement a synapse, the synaptic weight state is determined by the binary resistance states of

individual memristors, which is stochastically updated during synaptic adaptation. Note that the

compound memristor offers fully scalable (M + 1) different evenly distributed synaptic weight

states, and the synaptic weight is controlled by the population of resistance states. As shown

in Figure 4, consider that Rof f and Ron is the resistance for high-resistance state (HRS) and

the -low-resistance state (LRS) of a binary-state memristor, respectively. Given M binary-state

memristor constituents connected in parallel, assume that x ∈ [0,M] memristors are in LRS. The

weight of the compound memristive synapse (W) is calculated by

W = x/Ron + (M − x)/Rof f . (3)

STDP adjusts synaptic weights based on the correlation of a pre- and a post-synaptic neuron

spike firing events. If the pre-synaptic neuron fires before the post-synaptic neuron fires, then

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

38:6 B. W. Ku et al.

STDP increases the synaptic weights (LTP). When the pre-synaptic neuron fires after the post-

synaptic neuron fires, STDP weakens the synaptic connections (LTD). Our STDP implementation

with compound memristive synapses controls the number of STDP events (Nstdp) based on the

time difference between a pre-synaptic neuron spike and a post-synaptic neuron spike; the shorter

the time difference is, the more STDP events occur. The state transition of individual memristors

with resistive switching probability (P) is performed by exposing them to the weak programming

condition [40, 61]. When LTP occurs, memristors in HRS stochastically switch their resistance

states to LRS. For LTD, the transition goes from LRS to HRS. Then the expected change of x within

a single LTP / LTD event is

< Δx >LT P= (M − x)P , (4)

< Δx >LT D= −xP . (5)

Solving Equations (3), (4), and (5) together, Figure 5 shows the change of synaptic weight per

LTP and LTD events, respectively. The amount of expected synaptic weight change in a single

STDP event depends on the current synaptic weight, and it exponentially decreases when STDP

events consecutively happen.

Figure 6 depicts that STC makes STDP implementation straightforward. The time window for

the STDP rule fully covers the entire encoding timesteps (Nstep) for both LTP and LTD cases sym-

metrically, so that every single input spike contributes to the synaptic adaptation. The maximum

number of STDP events is constrained to be the same as Nstep in this work. When a post-synaptic

neuron fires a spike, we calculate the respective spike timestep difference from each of the pre-

synaptic neuron spikes that contribute to the post-synaptic neuron firing (ΔT = Tpr e −Tpost < 0

whereTpr e andTpost denote the timestep when the pre-/post-synaptic neuron fires the spike). Then

ΔT decides the number of LTP events based on the linear STDP rule (NST DP = Nstep − |ΔT |), and

individual compound memristive synapses are repetitively exposed to the weak programming con-

dition up to the decided number of LTP events. Note that LTP happens right after the post-synaptic

neuron fires. Also, synapses connected to pre-synaptic neurons that encode the highest-intensity

pixels do not take the maximum number of LTP events, but the ones who contribute to the post-

synaptic neuron firing at the closest timing take the full synaptic weight updates.

Synapses connected to pre-synaptic neurons that fire after the post-synaptic neuron firing take

LTD. Again, the spike timestep difference (ΔT = Tpr e − Tpost > 0) produces the number of LTD

events based on the linear STDP rule, and weak programming is followed. LTD happens whenever

the pre-synaptic neuron fires after the post-synaptic neuron firing. It is noteworthy that LTD is as

important as LTP, since it captures the background contrast in the image effectively.

4 NEURON MODEL AND NETWORK ARCHITECTURE

Under the competitive learning principle, experts compete against each other with their own neu-

ronal expertise. If a neuron is more specialized to process a specific stimulus than others by in-

creasing its own expertise, then it becomes a winner and either takes a learning chance or chooses

the final label. In this work, the neuronal expertise is defined as the cosine similarity between an

input feature vector and a synaptic weight vector. The larger cosine similarity, the better neuronal

expertise matching with the given input. To calculate the cosine similarity, recall that the recep-

tive field of a post-synaptic neuron constructs a synaptic weight vector (�W). Also, note that STC

turns an input image into spikes with different voltage levels, which construct an input feature

vector (�I). During encoding timesteps, input spikes are applied to the memristor crossbar, while

post-synaptic neurons hold virtual ground at the other end. Then, the total current sum flowing

into a post-synaptic neuron is equal to the dot-product between the synaptic weight vector and

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

Unsupervised Digit Recognition Using Cosine Similarity 38:7

Fig. 5. The change of synaptic weight in a compound memristive synapse. Rof f and Ron are HRS and LRS,

respectively, and M denotes the number of binary-state memristor constituents in a compound memristive

synapse. (a) The expected synaptic weight change (< ΔW >LT P) vs. the current synaptic weight (W) for a

single LTP event. (b) The impact of the number of LTP events (NLT P) on the synaptic weight. (c) The expected

synaptic weight change (< ΔW >LT D) vs. the current synaptic weight (W) for a single LTD event. (d) The

impact of the number of LTD events (NLT D) on the synaptic weight.

the input feature vector (〈�I , �W 〉) by Ohm’s law and Kirchhoff’s current law [19, 65]. An analog-to-

digital converter turns the current value into the digital membrane potential for the post-synaptic

neuron [4, 27]. Given that the forward and backward processing of a memristor crossbar gives us

the sum of squared �W values (〈 �W , �W 〉) [20], we can calculate the l2-norm of �W (‖ �W ‖) easily for

each neuron. Also note that the l2-norm of �I (‖�I ‖) is an external constant for each input image.

Dividing membrane potential by ‖ �W ‖ and ‖�I ‖ naturally gives us the cosine similarity, which is a

measure of similarity between �W and �I in the dot-product space.

It is important to note that the spike firing event of the winner neuron out of competition is

essential for STDP learning mechanism. Therefore, the integrate-and-fire operation of a neuron

should be well defined for the best learning performance. For training, each input image has to

be presented to the system twice, and the winner neuron from the first round triggers the STDP

learning in the second round. To be more specific, at the end of first round, we pick the largest

cosine similarity from the entire output neurons. Then we decide the amplifying factor by the ceil-

ing of the reciprocal of the largest cosine similarity. The amplifying factor scales up the increase

of membrane potential (〈�I , �W 〉) during the second round of input image presentation. When the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

38:8 B. W. Ku et al.

Fig. 6. (a) Our symmetric STDP rule to determine the number of STDP events (Nstdp). The time window

for STDP rule covers the entire spike encoding timesteps (Nstep) for both LTP and LTD cases, so that every

single input spike contributes to synaptic adaptation. The maximum number of STDP events is assumed to be

(Nstep) in this work. The timestep difference between a pre-synaptic neuron spike and a post-synaptic neuron

spike (ΔT = Tpr e − Tpost) decides Nstdp . (b) STDP implementation with single-spike temporal code. The

red dotted line is when post-synaptic neuron spike fires. Synapses connected to pre-synaptic neurons who

fired before the post-synaptic neuron fires take LTP; otherwise they take LTD updates. For synaptic weight

update, the compound memristive synapse is repetitively exposed to the weak programming condition up

to the decided Nstdp .

membrane potential is over the threshold (‖ �W ‖ × ‖�I ‖), a neuron fires a spike. Note that the thresh-

old of an output neuron is not affected by the amplifying factor.

Recall that STC encodes the input spike feature in the priority order. Spikes from higher intensity

pixels come earlier to output neurons and add larger values to the membrane potential. However,

the largest STDP learning chance is given to the synapses that deliver the pre-synaptic spikes fired

most recently. By adopting the amplifying factor in the integrate-and-fire operation, we controls

the firing timing of an output neuron, tuning the impact of STDP learning. The ceiling of the

reciprocal of the largest cosine similarity gives the smallest integer amplifying factor so that it

minimizes the number of firing output neurons while guaranteeing at least one of the most relevant

output neurons firing in the second round of image presentation. The ceiling function allows us

to offer a learning chance to other immature experts, which naturally realizes balanced training.

4.1 Training

The purpose of training is to increase the neuronal expertise, which is cosine similarity

(〈�I , �W 〉/‖ �W ‖ × ‖�I ‖) between an input feature vector �I and a synaptic weight vector �W in this

work. At the beginning of training, we initialize the synaptic weights by reseting all memristors

into HRS, which implies that no expertise is given for every output neuron. For each input image,

every output neuron is activated before the first encoding timestep and performs integrate-and-

fire operation as encoding timesteps proceed. The simulator records the firing status of output

neurons and places a neuron on the candidate list if it fires. Note that the �W of output neurons

who are not trained once yet has no specific orientation, since we reset all the synaptic weights be-

fore training starts. When the very first competition decides the sole winner from output neurons

randomly, only the winner takes a specific orientation in its �W after synaptic adaptation. There-

fore, there is a high chance for the first winner to win the competition again unless we give an

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

Unsupervised Digit Recognition Using Cosine Similarity 38:9

advantage to another output neurons for the next competition. For the fair competition, if there

exists output neurons that have never fired before, then we place them on the candidate list in the

first priority even though they have not fired and choose one of them as the winner. Then we force

the winner to fire at the first timestep so that it develops the seed orientation in its �W and produces

valid cosine similarity. Once every output neuron has fired at least once, the normal competition

proceeds.

When only the single candidate exists, the rest of output neurons are deactivated, and the win-

ner takes an STDP based on the proposed synaptic adaptation method. If multiple candidates exist,

then we find the winner neuron who has the smallest ratio of membrane potential to the threshold

(Vmem/Vth > 1) at the current firing timestep. The reason why we choose the smallest Vmem/Vth

is as follows. The fact that cosine similarity is 1 at its maximum implies that without controlling

the amplifying factor, an output neuron fires only if the input feature vector (�I) is exactly on the

same direction of synaptic weight vector (�W). In this case, multiple output neurons can fire, but

they should have exactly the same expertise, so it does not matter that WTA chooses any one of

them as the winner. However, if no one fires at the first image presentation, and we adjust the

amplifying factor for the next iteration, then multiple candidates can exist although they have

different expertise. Recall that the amplifying factor is initially determined with the largest cosine

similarity. Therefore, neuron firing guarantees that the expertise of a candidate is close enough to

input feature, so choosing the smallestVmem/Vth helps to give a training chance to immature out-

put neurons, which partially realizes homeostasis for balanced training. When the single winner

is chosen, again all output neurons except for the winner become inactive, and only the winner

takes an STDP.

4.2 Labeling and Inference

Labeling proceeds in the same way as training, but synaptic weights are fixed and we do not use

WTA competition. We feed visual stimuli to the network and record the firing status of output

neurons for the given stimuli. Since it is not a competition, multiple neurons are allowed to fire.

Each output neuron has its own scoreboard for 10 labels. For the given input image and its label, if

the neuron fires, then we add 1 to the score of the given label. After a single epoch of training set,

the label of each output neuron is decided by the label with the maximum score. This is the only

step where labels in the training set are used. For inference, again synaptic weights are fixed, but

we turn on the WTA module this time. In addition, we do not use the amplifying factor but only

care about choosing the best expert for the given input stimuli based on the cosine similarity to

input images in the test set, which are unseen from training. Then the single winner determines

the final classification label.

5 EXPERIMENTAL RESULTS

5.1 Simulation Parameters

The STDP rule is assumed to be symmetric, and the maximum number of STDP events (Nstdp)

is assumed to be the same as the number of spike encoding timesteps (Nstep) in this work. Our

simulation parameters are referred to the experimental data [61]. We set Vmin and Vmax as 0.1 V

and 1 V, respectively, to be within the practical memristor readout voltage range. For memristor

parameters, Ron is assumed to be 10 kΩ, and 1 MΩ for Rof f . Based on those assumptions, we

develop a C++ high-level software simulator and run it on Titan, the flagship Cray XK7 supercom-

puter system located at Oak Ridge National Laboratory. The number of binary switching mem-

ristor constituents in a compound memristive synapse (M), memristor switching probability (P),

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

38:10 B. W. Ku et al.

Fig. 7. Reconstructed input images based on the different number of encoding timesteps (Nstep). The voltage

level of spikes in each timestep is scaled to the range of pixel intensity (∼0–255). The definition of matching

rate is the projection ratio, which is the ratio of l2-norm of the original vector to that of the restored vector

after projection.

number of output neurons (Nexper t), and number of encoding timestep (Nstep) are parameterized

to analyze the impact on the learning performance of our neuromemristive system.

5.2 Impact of the Number of Encoding Timesteps

Nstep has a direct impact on the temporal structure and voltage level of encoded spikes. If Nstep

is equal to the maximum pixel intensity, then each pixel value is mapped to a specific timestep in

one-to-one correspondence. In this case, however, spike processing at the output layer takes a huge

portion of network-level simulation, resulting in an exponential increase of simulation runtime. To

reduce the runtime overhead,Nstep can be scaled down, and a range of pixel values shares the same

spike timestep. However, this leads to compression loss in the feature precision as a consequence.

To quantize the impact of reduction in Nstep on the input feature, we reconstruct a digit image

by transforming the voltage level of spikes into a pixel value and explore the resemblance of the

reconstructed image to the original.

Figure 7 shows the reconstructed images based on the different Nstep . The voltage level of spikes

in each timestep is scaled to the range of pixel intensity (∼0–255). The definition of resemblance

used here is the projection ratio. We project the restored feature vector onto the original feature

vector and measure the ratio of L2-norm of the original vector to that of the projected vector. We

observe that the mismatching rate increases exponentially while reducing Nstep . When binary

spike encoding (Nstep = 2) is used, the mismatching rate goes up to 5.29%.

Figure 8 shows the spike processing runtime overhead for an output neuron based on different

Nstep . When Nstep = 256, processing an input image takes around 10 s, which is a huge overhead

for the entire network-level simulation (consider 60,000 training images for a single epoch). It is

observed that this overhead is exponentially decreased with redunction in Nstep . Therefore, we

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

Unsupervised Digit Recognition Using Cosine Similarity 38:11

Fig. 8. A tradeoff between the feature precision and the spike processing runtime based on different Nstep .

With the multiplication of mismatching rate and simulation runtime as a cost function, we decide Nstep = 4

as the sweet spot while targeting less than 2 s of spike processing runtime.

Table 1. The Impact of Nstep on the Number of Training Repetition Required to

Have at Least 1 of 784 Synapses Fully Matured, Where All Memristor

Constituents Are in LRS

Encoding

Time Steps

Repetition Count Encoding

Time Steps

Repetition Count

Min Avg Max Min Avg Max

4 94 99.3 103 16 23 25.8 28

8 48 51.4 56 32 12 13 14

find a tradeoff between feature precision and the simulation runtime overhead. With the multipli-

cation of mismatching rate and simulation runtime as a cost function, we decide Nstep = 4 as the

sweet spot while targeting less than 2 s of spike processing runtime (Nstep ≤ 32).

Recall that the maximum number of STDP events (Nstdp) is the same as Nstep . Since Nstdp

decides the number of weak programming events for synaptic adaptation, changing Nstep affects

the speed of synaptic weight update as well. Table 1 shows the impact of Nstep on the number

of training repetition required to have at least one of 784 synapses fully matured, where all

memristor constituents are in LRS. Two hundred fifty-six memristor constituents for a synapse,

and 0.01 resistive switching probability is used for this experiment. Due to the stochasticity of

resistive switching, experiments are done 10 times each, and the first training image is used. We

observe that increasing Nstep inversely decreases the required repetition count for a neuron to

become a matured expert on a specific input image. If Nstep = 32, then only 13 repetition in

average allows full synaptic adaptation, which implies that too-large Nstep makes a neuron easily

forget its previous expertise and adapt to a new input feature.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

38:12 B. W. Ku et al.

Table 2. The Impact of Synapse Parameters on the Number of Training Repetition

Required to Have at Least 1 of 784 Synapses Fully Matured

Memr.

Count

Swt.

Prob.

Repetition Count Memr.

Count

Swt.

Prob.

Repetition Count

Min Avg Max Min Avg Max

4 0.001 53 79.9 130 64 0.001 572 666.9 720

4 0.01 7 10.1 14 64 0.01 54 63.9 75

4 0.1 1 1.3 2 64 0.1 6 6.9 8

16 0.001 227 337 388 256 0.001 856 984.9 1061

16 0.01 30 37 45 256 0.01 94 99.3 103

16 0.1 3 3.3 5 256 0.1 9 10 11

5.3 Impact of Synapse Parameters

Synapse parameters have a direct impact on synaptic adaptation. The switching probability (P)

decides the speed of weight update, and the larger number of binary-state memristor constituents

in a synapse (M) increases the synaptic precision while decreasing the speed of synaptic adap-

tation. Similarly to Tables 1 and 2 tabulates the impact of synapse parameters on the number of

training repetition required to have at least 1 of 784 synapses fully matured; Nstep = 4 is used,

and experiments are done 10 times each. We observe that P affects the speed of synaptic adapta-

tion directly, and it corresponds to the learning efficiency in the standard neural network training

model. Too-small P leads to huge required repetition especially when M = 256. However, large

M helps to increase the weight precision by offering a higher number of synaptic weight states,

but a synapse needs to take more training repetition to be matured. To show the impact of synap-

tic weight precision more clearly, Figure 9 shows the receptive fields after full repetition. When

M = 256, a relatively large repetition count allows us to capture the most important feature of an

input image. However, when M = 4, small number of repetition allows fast learning, but it does

not fully capture the important features, which would degrade the learning performance.

Figure 10 shows how P affects the learning speed. For this experiment, M = 256 and Nstep = 4 is

set. After the full repetition, we feed the next training image only once and compare the receptive

field before and after the presentation of the new image. When P = 0.001, single presentation of

the new image does not affect the previous expertise. However, when P = 0.1, the neuron starts

to adapt to the new feature very quickly. Too-large P , therefore, does not help to converge the

learning performance, since it makes a neuron a fast learner but a fast forgetter at the same time.

Note that P can be affected by the device imperfection including manufacturing defects, aging, and

thermal impacts. Given that the stochasticity of resistive switching is controllable by updating the

weak programming condition, such microscopic device variations can be addressed by hardware

optimization to preserve the optimal P value experimentally.

5.4 Impact of the Number of Output Neurons

Table 3 shows the impact of the number of output neurons (Nexper t) on the simulation runtime

and testing accuracy with M = 256, P = 0.01, Nstep = 4 setup. Since the core usage increases

along with Nexper t in the same ratio, the training, labeling, and testing time are consistent. Note

that the testing accuracy increases when we use more experts. Using 1,600 experts, we achieve

8.3% accuracy enhancement compared to the testing result with 100 experts. If there are too few a

number of experts, then they might take frequent training overriding the existing expertise even

though the incoming feature comes from a different label. Therefore, a large number of experts is

favorable to preserve the previously learned expertise, and to deposit new features safely.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

Unsupervised Digit Recognition Using Cosine Similarity 38:13

Fig. 9. The receptive fields after full repetition. P denotes the switching probability and M the number of

binary-state memristor constituents in a synapse. We count the number of memristors in LRS (#Ron) to show

the synaptic precision. When M = 256, relatively large repetition count is required but it captures the most

important feature of an input image. However, when M = 4, small number of repetition allows fast learning,

but it does not fully capture the important features, which would degrade the learning performance.

Fig. 10. After the full repetition, we feed the next training image only once and compare the receptive field

before and after the presentation of the new image. When P = 0.001, single presentation of the new image

does not affect the previous synaptic states. However, when P = 0.1, the neuron starts to adapt to the new

feature very quickly. Too-large P , therefore, does not help to converge the learning performance, since it

makes a neuron s fast learner but a fast forgetter at the same time.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

38:14 B. W. Ku et al.

Table 3. The Impact of the Number of Output Neurons on the Simulation

Runtime and Testing Accuracy (M = 256, P = 0.01, Nstep = 4)

Expert

Count

Core

Usage

Training

(H:M:S)

Labeling

(H:M:S)

Testing

(H:M:S)

Accuracy

(%)

100 20 10:12:12 10:33:32 0:54:41 85.56

400 80 10:16:16 10:38:53 0:54:49 89.24

900 180 10:20:05 10:42:12 0:54:46 92.05

1600 320 10:26:09 10:54:24 0:54:59 92.64

Fig. 11. Accuracy vs. Synapse Parameters: (a) 100 neurons, (b) 400 neurons, (c) 900 neurons, and (d) 1,600

neurons.

The impact of synapse parameters changes when we increase Nexper t . Figure 11 shows the

impact of P and M on the testing accuracy. We observe that using a small number of binary-state

memristors in a synapse limits the precision of expertise and directly degrades the testing accuracy.

Therefore, the synaptic precision turns out to be the critical factor to the learning performance.

However, the switching probability of the memristor has a dynamic impact on the testing accuracy.

Regardless of how we change the number of output neurons, we observe the sweet spot around

P = 0.01. However, it is found that increasing Nexper t makes the optimal switching probability

region larger. This is because when more experts exist, there are more places to store the expertise

so that fast learning does not affect the previously learned expertise.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

Unsupervised Digit Recognition Using Cosine Similarity 38:15

Fig. 12. Training count histogram. Bin size is 10. The X axis is training count, and the Y axis is the number

of output neurons that take the respective training count. A total of 1,120 output neurons takes fewer than

10 training chances.

Based on the extensive network simulations and parameter tuning, we find that 1,600 output

neurons, 256 memristor count per synapse, 4 spike encoding timesteps, and 0.01 memristor switch-

ing probability provides the 92.64% testing accuracy at its best. Now, we take a close look at the

training result with 1,600 output neurons. We count the training history of each expert as shown

in Figure 12. We find that 755 experts take only a single training and 2 for 153 experts and 2 for

73 experts. A total of 1,120 output neurons takes fewer than 10 trainings. The maximum training is

done as many as 646 on a single expert, whose expertise for the straight-up 1 digit. Figure 13 shows

a respective receptive fields of 1,600 experts after a single epoch of training. The background for

each cell is colored by its training count. Although many experts take only a single training, these

immature expertises are still found important, since the exceptional and new testing image could

be close to those minor expertises. With 10,000 testing images, Figure 14 presents the confusion

matrix, showing that 5 and 8 are commonly inferred by 3 and 4 and 7 by 9 easily. It also summarizes

736 failed testing images.

6 STATE-OF-THE-ART COMPARISON AND FUTURE WORKS

We tabulate unsupervised handwritten digit recognition learning performance of state-of-the-

art neuromemristive systems in Table 4. All studies listed up have trained and tested the entire

MNIST [30] dataset without any preprocessing. Most of previous works [33, 44, 47, 51] employed

rate code, which adds lots of complexity/runtime overheads for the hardware/software implemen-

tation of their architectures. Also they used multi-state memristors, whose stochastic switching

becomes the system noise to suppress and again increases hardware complexity. Furthermore, they

trained their networks with three epochs, which helps improve the learning performance but at

the expense of system resources.

Interestingly, Zhou et al. [63] presented a hardware-friendly neuromemristive architecture that

utilizes temporal code for spike encoding. Their neuron model was surprisingly simplified, such as

integrate-and-fire without leakage, single spike communication, no lateral inhibition, fixed thresh-

old. In addition, the network architecture was minimal (shallow two-layer WTA without homeosta-

sis) while achieving 94.6% learning performance with 6,400 neurons. However, their temporal code

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

38:16 B. W. Ku et al.

Fig. 13. Receptive fields of 1,600 output neurons after a single epoch of training. The background for each

cell is colored by its training count.

turns an input image into the time-domain feature only, and the time frame is still assumed to be

continuous while targeting digital implementation. Multi-state memristors are also used there,

which is susceptible to weight variation. Moreover, they assumed bounded exponential STDP,

which adds more parameters to set and does not sound hardware friendly. Last, their majority

voting process is not clear to determine the winner at ties.

Compared to Reference [63], our neuromemristive architecture presents single-spike tempo-

ral code that transforms input stimuli into both time and voltage-domain features. This en-

coding scheme makes STDP implementation and cosine similarity calculation straightforward.

Also we adopt the compound memristor model in our simulation so that we actively utilize

the stochastic switching characteristic of memristor devices. Our STDP implementation is more

hardware-friendly in that we only use step-wise learning curve, rather than using exponential

continuum. Last, our network size is only 25% of them, while achieving comparable learning

performance.

Considering great classification accuracy achieved by conventional deep learning algorithms

over the past few years [43, 57], it is true that learning algorithms for the neuromemristive archi-

tecture are a much less mature yet active field of research. Recall that one of the critical motivations

for the rebirth of the neuromorphic computing paradigm [13, 29, 36] is the great energy efficiency

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

Unsupervised Digit Recognition Using Cosine Similarity 38:17

Fig. 14. (a) Confusion matrix (Testing Label vs. Inferred Label). Of 10,000 testing images, we observe that 5

and 8 are confused with 3, and 4 and 7 with 9 easily. (b) Seven hundred thirty-six incorrectly inferred testing

images.

Table 4. State-of-the-art Unsupervised Handwritten Digit Recognition Learning Performance

of Neuromemristive Architectures

Works Encoding Spike Format Memristor Network Neuron# Epochs Accuracy
[33] Rate Poisson Train Multi-state Two-layer FCNN 100 3 82.0%
[47] Rate Poisson Train Multi-state RBM 300 3 89.4%
[44] Rate Poisson Train Multi-state Two-layer FCNN 300 3 93.5%
[51] Rate Poisson Train Multi-state Two-layer FCNN 500 3 94.0%
[63] Temporal Single Spike Multi-state Two-layer FCNN 6400 1 94.6%

This work Temporal Single Spike Compound Two-layer FCNN 1600 1 92.6%

on the learning tasks [22, 23]. Although we have focused on the network-level simulation to prove

the effectiveness of proposed neuromorphic architecture in this work, exploring both learning per-

formance and energy efficiency metrics based on actual hardware implementation will enable fair

justification of neuromemristive architecture over the convenctional deep learning systems in the

future work. In addition, hardware simulations along with advanced compact models of various

memristor devices will allow us to study the impact of practical system parameters on the learning

performance of neuromemristive systems.

7 CONCLUSION

In this work, we built a two-layer fully connected compound neuromemristive spiking neural

network with hard WTA network motif. For the spike encoding scheme, we presented single-spike

temporal code that turns the input image into the set of single spikes with different latencies and

voltage levels. We did not perform any pre-processing on the dataset and pixel values in an image

are directly transformed into the set of sparse spikes, resulting in specific sequence of spike arrival

time representing the input feature naturally. For the synaptic device, we adopted the compound

memristors, which connects the binary-state memristors in parallel to provide full scalability on

the weight precision. We proposed the integrate-and-fire neuron model while adopting the WTA

competition based on cosine similarity. By merging all these proposed models, our high-level C++

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

38:18 B. W. Ku et al.

network simulation results showed the impact of model parameters on the learning performance in

detail and finally offered successful unsupervised classification performance on the MNIST dataset

with up to 92.64% accuracy.

REFERENCES

[1] Gina C. Adam et al. 2017. 3-D memristor crossbars for analog and neuromorphic computing applications. IEEE Trans.

Electr. Devices 64, 1 (2017), 312–318.

[2] Edgar D. Adrian. 1926. The impulses produced by sensory nerve endings. J. Physiol. 61, 1 (1926), 49–72.

[3] Maruan Al-Shedivat, Rawan Naous, Gert Cauwenberghs, and Khaled Nabil Salama. 2015. Memristors empower spik-

ing neurons with stochasticity. IEEE J. Emerg. Select. Top. Circ. Syst. 5, 2 (2015), 242–253.

[4] Amir Babaie-Fishani and Pieter Rombouts. 2016. Highly linear VCO for use in VCO-ADCs. Electr. Lett. 52, 4 (2016),

268–270.

[5] I. G. Baek et al. 2011. Realization of vertical resistive memory (VRRAM) using cost effective 3D process. In Proceedings

of the IEEE International Electron Devices Meeting (IEDM’11). IEEE, 31–8.

[6] Johannes Bill and Robert Legenstein. 2014. A compound memristive synapse model for statistical learning through

STDP in spiking neural networks. Front. Neurosci. 8 (2014), 412.

[7] Romain Brette. 2015. Philosophy of the spike: Rate-based vs. spike-based theories of the brain. Front. Syst. Neurosci.

9 (2015), 151.

[8] Geoffrey W. Burr et al. 2017. Neuromorphic computing using non-volatile memory. Adv. Phys.: X 2, 1 (2017), 89–124.

[9] An Chen. 2016. A review of emerging non-volatile memory (NVM) technologies and applications. Solid-State Electr.

125 (2016), 25–38.

[10] J. Anthony Deutsch. 1971. The cholinergic synapse and the site of memory. Science 174, 4011 (1971), 788–794.

[11] Peter U. Diehl and Matthew Cook. 2015. Unsupervised learning of digit recognition using spike-timing-dependent

plasticity. Front. Comput. Neurosci. 9 (2015), 99.

[12] Michael Epstein et al. 2003. Design and implementation of a true random number generator based on digital circuit

artifacts. In Proceedings of the International Workshop on Cryptographic Hardware and Embedded Systems. Springer,

152–165.

[13] Steve Furber and Steve Temple. 2008. Neural systems engineering. In Computational Intelligence: A Compendium.

Springer, 763–796.

[14] Tim Gollisch and Markus Meister. 2008. Rapid neural coding in the retina with relative spike latencies. Science 319,

5866 (2008), 1108–1111.

[15] J. Göltz et al. 2020. Fast and deep neuromorphic learning with first-spike coding. In Proceedings of the Neuro-Inspired

Computational Elements Workshop (NICE’20). 1–3.

[16] Stefan Habenschuss, Johannes Bill, and Bernhard Nessler. 2012. Homeostatic plasticity in Bayesian spiking networks

as expectation maximization with posterior constraints. In Advances in Neural Information Processing Systems, Vol.

25. 773–781.

[17] Raqibul Hasan and Tarek M. Taha. 2017. Memristor crossbar based winner take all circuit design for self-organization.

In Proceedings of the Neuromorphic Computing Symposium. 1–4.

[18] Donald Olding Hebb. 2005. The Organization of Behavior: A Neuropsychological Theory. Psychology Press.

[19] Miao Hu et al. 2016. Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate

matrix-vector multiplication. In Proceedings of the 53rd Annual Design Automation Conference. ACM, 19.

[20] YeonJoo Jeong, Jihang Lee, John Moon, Jong Hoon Shin, and Wei D Lu. 2018. K-means data clustering with memristor

networks. Nano Lett. 18, 7 (2018), 4447–4453.

[21] Sung Hyun Jo et al. 2010. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 4 (2010),

1297–1301.

[22] Norman P. Jouppi, et al. 2017. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the

ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA’17). IEEE, 1–12.

[23] Eric R. Kandel et al. 2000. Principles of Neural Science. Vol. 4. McGraw–Hill, New York.

[24] Samuel Kaski and Teuvo Kohonen. 1994. Winner-take-all networks for physiological models of competitive learning.

Neural Netw, 7, 6-7 (1994), 973–984.

[25] Saeed Reza Kheradpisheh et al. 2016. Bio-inspired unsupervised learning of visual features leads to robust invariant

object recognition. Neurocomputing 205 (2016), 382–392.

[26] Hyongsuk Kim et al. 2012. Memristor bridge synapses. Proc. IEEE 100, 6 (2012), 2061–2070.

[27] Yongtae Kim, Yong Zhang, and Peng Li. 2012. A digital neuromorphic VLSI architecture with memristor crossbar

synaptic array for machine learning. In Proceedings of the IEEE International SOC Conference. IEEE, 328–333.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

Unsupervised Digit Recognition Using Cosine Similarity 38:19

[28] Olga Krestinskaya, Alex Pappachen James, and Leon Ong Chua. 2019. Neuromemristive circuits for edge computing:

A review. IEEE Trans. Neural Netw. Learn. Syst. 31, 1 (2019), 4–23.

[29] Simon B. Laughlin and Terrence J. Sejnowski. 2003. Communication in neuronal networks. Science 301, 5641 (2003),

1870–1874.

[30] Yann LeCun. 1998. The MNIST Database of Handwritten Digits. Retrieved from http://yann.lecun.com/exdb/mnist/.

[31] Can Li et al. 2017. Three-dimensional crossbar arrays of self-rectifying Si/SiO 2/Si memristors. Nat. Commun. 8 (2017),

15666.

[32] Z. Li, B. Yan, and H. Li. 2020. ReSiPE: ReRAM-based single-spiking processing-in-memory engine. In Proceedings of

the 57th ACM/IEEE Design Automation Conference (DAC’20).

[33] F. Liu and C. Liu. 2018. A memristor based unsupervised neuromorphic system towards fast and energy-efficient

GAN. arXiv:1806.01775. Retrieved from https://arxiv.org/abs/1806.01775.

[34] Chunjie Luo, Jianfeng Zhan, Xiaohe Xue, Lei Wang, Rui Ren, and Qiang Yang. 2018. Cosine normalization: Using

cosine similarity instead of dot product in neural networks. In Proceedings of the International Conference on Artificial

Neural Networks. Springer, 382–391.

[35] Timothée Masquelier and Simon J. Thorpe. 2007. Unsupervised learning of visual features through spike timing

dependent plasticity. PLoS Comput. Biol. 3, 2 (2007), e31.

[36] C. Mead. 1990. Neuromorphic electronic systems. Proc. IEEE 78, 10 (Oct. 1990), 1629–1636.

[37] Jagan Singh Meena et al. 2014. Overview of emerging nonvolatile memory technologies. Nanosc. Res. Lett. 9, 1 (2014),

526.

[38] Cory Merkel, Raqibul Hasan, Nicholas Soures, Dhireesha Kudithipudi, Tarek Taha, Sapan Agarwal, and Matthew

Marinella. 2016. Neuromemristive systems: Boosting efficiency through brain-inspired computing. Computer 49, 10

(2016), 56–64.

[39] Cory Merkel and Dhireesha Kudithipudi. 2015. Unsupervised learning in neuromemristive systems. In Proceedings

of the National Aerospace and Electronics Conference (NAECON’15). IEEE, 336–338.

[40] Rawan Naous, Maruan Al-Shedivat, and Khaled Nabil Salama. 2016. Stochasticity modeling in memristors. IEEE

Trans. Nanotechnol. 15, 1 (2016), 15–28.

[41] Joost Pieterse and Decebal Constantin Mocanu. 2019. Evolving and understanding sparse deep neural networks using

cosine similarity. arXiv:1903.07138. Retrieved from https://arxiv.org/abs/1903.07138.

[42] Steven A. Prescott and Terrence J. Sejnowski. 2008. Spike-rate coding and spike-time coding are affected oppositely

by different adaptation mechanisms. J. Neurosci. 28, 50 (2008), 13649–13661.

[43] Junfei Qiao, Gongming Wang, Wenjing Li, and Min Chen. 2018. An adaptive deep Q-learning strategy for handwritten

digit recognition. Neural Netw. 107 (2018), 61–71.

[44] Damien Querlioz et al. 2013. Immunity to device variations in a spiking neural network with memristive nanodevices.

IEEE Trans. Nanotechnol. 12, 3 (2013), 288–295.

[45] Pamela Reinagel and R. Clay Reid. 2000. Temporal coding of visual information in the thalamus. J. Neurosci. 20, 14

(2000), 5392–5400.

[46] Pau Rodríguez, Jordi Gonzalez, Guillem Cucurull, Josep M. Gonfaus, and Xavier Roca. 2016. Regularizing cnns with

locally constrained decorrelations. arXiv:1611.01967. Retrieved from https://arxiv.org/abs/1611.01967.

[47] Mahyar Shahsavari, Pierre Falez, and Pierre Boulet. 2016. Combining a volatile and nonvolatile memristor in artificial

synapse to improve learning in spiking neural networks. In Proceedings of the IEEE/ACM International Symposium

on Nanoscale Architectures (NANOARCH’16). IEEE, 67–72.

[48] Carla J. Shatz. 1992. The developing brain. Sci. Am. 267, 3 (1992), 60–67.

[49] Ahmad Muqeem Sheri et al. 2015. Contrastive divergence for memristor-based restricted Boltzmann machine. Eng.

Appl. Artif. Intell. 37 (2015), 336–342.

[50] Patrick Sheridan, Wen Ma, and Wei Lu. 2014. Pattern recognition with memristor networks. In Proceedings of the

IEEE International Symposium on Circuits and Systems (ISCAS’14). IEEE, 1078–1081.

[51] Yuhan Shi et al. 2018. Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays. Nat.

Commun. 9, 1 (2018), 1–11.

[52] Daniel Soudry, Dotan Di Castro, Asaf Gal, Avinoam Kolodny, and Shahar Kvatinsky. 2013. Hebbian Learning Rules

with Memristors. Israel Institute of Technology, Haifa, Israel.

[53] Spyros Stathopoulos et al. 2017. Multibit memory operation of metal-oxide bi-layer memristors. Sci. Rep. 7, 1 (2017),

17532.

[54] Toni Stojanovski, Johnny Pihl, and Ljupco Kocarev. 2001. Chaos-based random number generators. Part II: practical

realization. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 48, 3 (2001), 382–385.

[55] Dmitri B. Strukov, Duncan R. Stewart, Julien Borghetti, Xuema Li, M. Pickett, G. Medeiros Ribeiro, Warren Robinett,

G. Snider, John Paul Strachan, Wei Wu, et al. 2010. Hybrid CMOS/memristor circuits. In Proceedings of the IEEE

International Symposium on Circuits and Systems (ISCAS’10). IEEE, 1967–1970.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1806.01775
https://arxiv.org/abs/1903.07138
https://arxiv.org/abs/1611.01967

38:20 B. W. Ku et al.

[56] Jonathan D. Victor and Keith P. Purpura. 1996. Nature and precision of temporal coding in visual cortex: A metric-

space analysis. J. Neurophysiol. 76, 2 (1996), 1310–1326.

[57] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. 2013. Regularization of neural networks using

dropconnect. In Proceedings of the International Conference on Machine Learning. PMLR, 1058–1066.

[58] Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon Yuille. 2017. Normface: L2 hypersphere embedding for face

verification. In Proceedings of the 25th ACM International Conference on Multimedia. 1041–1049.

[59] Chris Yakopcic, Md Zahangir Alom, and Tarek M. Taha. 2016. Memristor crossbar deep network implementation

based on a convolutional neural network. In Proceedings of the International Joint Conference on Neural Networks

(IJCNN’16). IEEE, 963–970.

[60] Shimeng Yu and Pai-Yu Chen. 2016. Emerging memory technologies: Recent trends and prospects. IEEE Solid-State

Circ. Mag. 8, 2 (2016), 43–56.

[61] Shimeng Yu, Ximeng Guan, and H.-S. Philip Wong. 2011. On the stochastic nature of resistive switching in metal

oxide RRAM: Physical modeling, Monte Carlo simulation, and experimental characterization. In Proceedings of the

IEEE International Conference on Electron Devices Meeting (IEDM’11). IEEE, 17–3.

[62] Yang Zhang, Xiaoping Wang, and Eby G. Friedman. 2017. Memristor-based circuit design for multilayer neural net-

works. IEEE Trans. Circ. Syst. I: Regul. Pap. 65, 2 (2017), 677–686.

[63] Errui Zhou, Liang Fang, and Binbin Yang. 2018. Memristive spiking neural networks trained with unsupervised

STDP. Electronics 7, 12 (2018), 396.

[64] Ruohua Zhu, Shizhuo Ye, Zhiri Tang, Peng Lin, Qijun Huang, Hao Wang, Jin He, and Sheng Chang. 2019. Influence

of compact Memristors’ stability on machine learning. IEEE Access 7 (2019), 47472–47478.

[65] Mohammed Affan Zidan et al. 2013. Memristor-based memory: The sneak paths problem and solutions. Microelectr.

J. 44, 2 (2013), 176–183.

[66] Mohammed A. Zidan, John Paul Strachan, and Wei D. Lu. 2018. The future of electronics based on memristive systems.

Nat. Electr. 1, 1 (2018), 22.

Received August 2020; revised April 2021; accepted June 2021

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 2, Article 38. Pub. date: March 2022.

