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We present a machine learning (ML) framework to improve the use of computing resources in the FPGA

compilation step of a commercial FPGA-based logic emulation flow. Our ML models enable highly accurate

predictability of the final place and route design qualities, runtime, and optimal mapping parameters. We

identify key compilation features that may require aggressive compilation efforts using our ML models. Ex-

periments based on our large-scale database from an industry’s emulation system show that our ML models

help reduce the total number of jobs required for a given netlist by 33%. Moreover, our job scheduling al-

gorithm based on our ML model reduces the overall time to completion of concurrent compilation runs by

24%. In addition, we propose a new method to compute “recommendations” from our ML model to perform

re-partitioning of difficult partitions. Tested on a large-scale industry system on chip design, our recommen-

dation flow provides additional 15% compile time savings for the entire system on chip. To exploit our ML

model inside the time-critical multi-FPGA partitioning step, we implement it in an optimized multi-threaded

representation.
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1 INTRODUCTION

Modern system on chip (SoC) designs are often larger and more complex than can be competitively
tested under traditional hardware/software co-validation methods. They require billions of cycles
of execution, which takes too long to simulate in software. Physical emulation using commercial
FPGAs can overcome the time constraints of software emulation of an ASIC of up to a billion gates.
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To achieve successful mapping of large ASIC designs found, for instance, in the automotive, 5G,
networking, artificial intelligence, and datacenter segments, an emulator integrates many hun-
dreds of FPGAs. Commercial FPGAs can provide larger capacity and faster runtime performance
(up to 5 MHz) compared with custom FPGAs or special-purpose custom logic processor-based ar-
chitectures. However, these FPGAs are not suited to the very high pin-to-gate ratio requirements
of logic emulation systems [18]. Therefore, they often suffer from a time-consuming place and
route (P&R) step that can quickly become the most dominating part of the entire implementation
time [7]. As a new compilation run of hundreds of FPGAs might be needed for each design update,
a compile time of multiple hours each is crippling.

The use of machine learning (ML) is already benefiting the semiconductor industry, with ap-
plications in formal verification and physical design [8] (e.g., yield modeling and predicting con-
gestion hotspots). Our research suggests that ML can as well expedite the time-consuming P&R
physical emulation step for FPGAs. Recently, ML has been employed to improve wirelength, delay,
or power of FPGA P&R solutions using design space exploration (DSE) of CAD tool parameters.
Grewal et al. [6] show that it is possible to predict the best quality-of-results (QoR) placement flow
among a reduced set of candidate flows, using supervised learning of previous P&R runs. The ap-
proach proposed by Mametjanov et al. [13] based on selective sampling allows finding parameter
configurations for improved timing and power consumption. They also show they can predict rel-
atively accurately performance and power across the entire design parameter space. Xu et al. [19]
and Yu et al. [22] use a state-of-the-art tool auto-tuner [1] to find tool parameter settings in the
FPGA and high-level synthesis compilation flows that optimize QoR. It is based on the multi-armed
bandit problem to organize and control a set of classical optimization techniques to explore design
space efficiently. Kapre et al. [9] use Bayesian learning to generate good-quality FPGA CAD tool
parameter configurations. Yanghua et al. [21] perform feature selection to reduce the number of
parameters to consider, and instead of predicting the best design points, Meng et al. [15] eliminate
the non-optimal design points by regression. Outside of DSE, examples of the use of ML to pre-
dict properties of a given netlist include estimations of several post-implementation metrics [4] or
routing congestion after placement [23] or during placement [16, 20]. ML has also been used to
improve CAD algorithms by incorporating reinforcement learning and support vector machines
to perform P&R in 3D-FPGAs [14].

Compared with the mentioned related work, we do not focus in this work on power or per-
formance metrics. In our case, designs are set to compile at low frequencies, and timing closure
is rarely an issue. As the purpose of the framework is to obtain an emulated FPGA version of
an ASIC design made for debug and validation purposes, working functionality dominates over
speed. Moreover, our goal is not DSE. Our approach revolves around predicting compile time given
a fixed netlist and parameter settings. Based on compile time prediction, we propose several ways
to enhance our emulation framework. The recommendation part devised here is unique to our
work and arises from the multi-FPGA nature of our problem where utilization balancing between
FPGAs is possible. Other approaches focus on optimizing a unique FPGA, and none of the pre-
sented studies target important issues related to compile time, nor have they been employed to
predict compilation success of very high utilization designs (e.g., up to 75% lookup table (LUT)
usage). Indeed, the basis of their exploration targets small traditional benchmarks or small FPGAs,
which is far from the reality of crowded and complex consumer designs found in SoC emulation.
The key contributions of this article are as follows:

• We build a complete ML data pipeline framework, allowing for the extraction of numerous
predictors.
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Fig. 1. Our multi-FPGA emulation scheme with FPGA re-compilation. Rare cases include re-partitioning.

• Using these predictors and our large-scale commercial FPGA compilation database, we build
models delivering high predictability of P&R design qualities, runtime, and optimal mapping
parameters of complex designs.

• We show how—by predicting P&R compilation results—we effectively improve the compile
time and hardware cost of the P&R step of the emulation process.

• Using our ML model, we demonstrate how our “design recommendations” improve the qual-
ity of the partitioning, resulting in overall faster P&R steps.

2 ML INFRASTRUCTURE

This work is intended to improve the compilation flow of multi-FPGA-based emulation systems,
whose main steps are shown in Figure 1. A given SoC RTL is first translated into circuit representa-
tion. Next, the resulting netlist is partitioned across multiple FPGAs using a multi-level hierarchical
approach and a similar algorithm to hMetis [10]. As simultaneous objectives need to be optimized
during partitioning (hop counts, cut-sizes, maximum FPGA utilization, etc.), it is possible that the
required partitioning quality cannot be met without user input. In case of designs that are very
large for the number of available FPGAs inside the emulator, re-partitioning may be necessary to
successfully map on these highly utilized FPGAs. In this situation, P&R success is very sensitive
to the quality of the partitioning.

After partitioning, a system route step determines how the signals between FPGAs will be routed
using cables and connectors. Preliminary steps to prepare the SoC design for FPGA implementation
are also necessary, including RTL changes and addition of debug instrumentation.

2.1 Target FPGA P&R Flow

After these steps, each individual design partition has to be placed and routed within each FPGA
using an EDA or FPGA vendor software—Xilinx Vivado in our case. To perform P&R for a given
netlist or partition, we either run multiple parallel explorations to find the best P&R solution or
launch Vivado with a Default strategy (≡ default settings) first. As the server grid used for compila-
tion is occupied by multiple projects in parallel, where each project requires hundreds of individual
compiles, limited machine resources can handle these P&R jobs. Thus, it is critical to launch as few
jobs as possible for the given netlist. Hence, the Default strategy is initiated first as a standard, as
shown in Figure 2.

If the Default run fails or does not finish in N hours (N = 5 hours, our “wall-time”), the compiler
launches a set of additional P&R jobs in parallel. When one of the jobs terminates successfully,
all running tasks for this FPGA are aborted, and the pending tasks are cancelled. Here, each job
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Fig. 2. Our two-step FPGA P&R flow. EASY netlist finishes in step 1, whereas HARD continues with the
default run, along with new jobs added, into step 2.

implements a different strategy, such as a combination of Vivado parameters like area optimization,
QoR placement and routing parameters, or physical optimization.

In a traditional flow, the strategies selected are not design related but mostly are dependent
on the architecture of the target FPGA. The particularities of a given design are not taken into
account, but the strategies that are launched are those that have worked with the most success
in the past. The “best” knob parameters of the P&R engine truly depend on many design-related
factors, more than just the target FPGA family. In this article, we will prove that these factors can
be reduced to a small set of key features. If the P&R of any partition still fails despite using all of
these strategies, re-synthesis or re-partitioning of the complete design is necessary. Dealing with
such tasks requires an engineer in the loop and involves iterating through the entire design cycle,
which is time- and effort consuming.

It is therefore highly useful to determine the complexity (compile time and failure rate of the
Default mapping strategy) of a given netlist before starting the long and critical P&R step. It is also
important to extract the features that constitute a complex design so that the emulation partitioner
can perform an educated and improved partitioning. These needs are the primary goals of our ML
framework.

2.2 Our Commercial Database

After every P&R run, we perform regular expression pattern matching on the host workstation logs
to extract the features of interest. To build the database—a distributed NoSQL Apache Cassandra
database with a size of a few gigabytes—we first retrieve almost every feature that may be of
valuable information about the compilation process with little filtering. This initial effort, for each
netlist, leads to around 800 features that contain the following information:

• Multi-partitioning results (emulation environment)
• Synthesized RTL design of each partition
• Host machine used for compilation
• Targeted FPGAs
• Intermediate and final results of the P&R (particularly compile time and winning strategy).
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Fig. 3. Our ML framework. We update our database and ML models upon new compilation data being added.

Table 1. Feature Characteristics of Our Database (Built for an Industry’s
Emulation System Using Commercial Designs)

Single FPGA partition

- # LUTs # Data Wires # CTRL Sets P&R Time
Mean 520K 1.2M 10K 186 min
Range [800, 1.9M] [8.7K, 3.6M] [100, 160K] [25 m, 1 day]

Complete SoC

- # LUTs # FFs # DSPs # Partitions
Mean 24M 19M 4.5K 40
Range [1M, 312M] [500K, 198M] [0, 82K] [4, 377]

The data pipeline integrated in our emulation tool is shown in Figure 3. The database is updated
daily with new data coming from in-house consumer compilation runs.

The ML models are also updated in an offline setting, by re-fitting them on the entire database. To
account for the frequent changes in the compiler (partitioning strategy, time-division-multiplexing
(TDM) ratios, etc.), we weight designs differently when building the models. Our weighting de-
pends on their recentness so that our models perform better on what is the current state of the
compilation process. The ML models are used to drive the netlists P&R: choice of appropriate P&R
strategies for each partition (see Section 4) and trigger preemptive re-partitioning with balancing
(see Section 6).

Table 1 shows typical values of some features found in our database. Note that most of the
design partitions are very large, with some having more than a million LUTs or tens of thousands
of Control (CTRL) sets. If a large SoC is partitioned onto K FPGAs, it will account for K entries
of the database. The value of K can go up to 400 for very large SoCs. The FPGAs used in our
emulation system are Xilinx Virtex-7 2000T and Xilinx Virtex-UltraScale 440 FPGAs with 1.9M
and 5.5M available logic gates, respectively.

An alternative use of statistical methods can be found in the database collection in itself, by
helping us discard invaluable entries and improve feature extraction. In fact, we started storing
the EDIF netlists compressed in gzip format (each up to approximately 130 MB), not just the afore-
mentioned features, to let us explore later, if needed, the benefits of analyzing them. However, even
efficient hashing schemes still result in very large disk storage requirements. According to our up-
dating rate, storing the complete zipped compilation logs and netlists results in tens of terabytes
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of additional storage per year. Thus, discarding some netlists has become necessary. By discarding
the EDIF netlists of easy-to-compile (= EASY) designs that are predicted very accurately as such
by our ML models (whose further netlist analysis is then non-essential), we are able to save 86% of
the storage space. Moreover, statistical analysis is also beneficial in avoiding unnecessary feature
extraction steps. Indeed, we were able to identify features that require intensive computations to
be extracted, but are highly correlated to the simpler and more common features we describe in
the next section. In particular, we now avoid computing and collecting metrics related to groups
of tangled logics (GTLs) [5] (size, cut size, rent exponent, minimal GTL-SD score, etc.). These met-
rics were originally believed to be important in determining the complexity of a netlist, but data
analysis proved that they are non-essential. This is important, as their extraction is long (a lot of
effort is spent in performing multiple searches starting with different seeds to generate a large
population of linear orderings and candidate GTLs) and difficult (GTLs can be very varied in size
and the GTL-SD signal is often noisy).

2.3 Feature Selection and Data Processing

Our database currently has around 1M FPGA compilation entries of industry leaders’ designs and
is growing. Among them, we restrict ourselves to those designs with more than 20% of the filling
rate. In addition, we reject the features that correspond to post-P&R knowledge (placement time,
memory usage during routing, etc.) as they are part of what we want to predict. We then restrict
our choice to 26 features directly available from the synthesized netlists before any P&R step,
whose types are

(1) utilization based, such as # LUTs, # flip-flops (FFs), # data wires, # CTRL sets, etc.;
(2) FPGA based, such as family, generation, and amount of device resources;
(3) host machine based, such as # processors, CPU frequency, memory available, etc.

To further reduce the number of features, we try dimensionality reduction methods such as
PCA, recursive feature elimination, and autoencoders. However, they all result in a decrease of
predictability performance. After feature selection, the data is processed to impute missing values,
and remove NaN and duplicate entries. Some benchmarks are recompiled many times for test
purposes, and this is not representative of the natural distribution of designs.

Moreover, depending on their cardinality, we encode categorical features using one-hot or likeli-
hood encoding. We scale numerical features to a mean of zero and unit variance. Skewed numerical
features are also transformed by Box-Cox power transformation. Note that scaling is only required
for models such as neural networks but not tree-based algorithms.

3 PREDICTING EASY VS. HARD NETLIST

Our first goal is to predict, before any P&R attempt, which design partitions will end up being
HARD (= hard to compile) or EASY (= easy to compile) so that we can skip the unnecessary wall
time of N hours and proceed to launch multiple strategies at time zero (see Figure 2). We state the
formal definition of this problem next.

P1: EASY vs. HARD Netlist Classification

Input Netlist, target FPGA, default P&R strategy, wall time
Output Predict if the P&R session using the Default strategy will finish (= the

netlist fits into the FPGA) within the wall time (= EASY) or not (= HARD)
Why? If predicted right, we can skip step 1 in Figure 2 and directly start step 2,

thereby saving resources used.
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Fig. 4. Our model stacking strategy.

From the compile time and winning strategy information available in the database, we first
compute the target variable EASY vs. HARD of each entry depending on the wall time given. Our
goal is to perform a supervised learning classification task, where we learn the database first using
a training set. Next, for each new design in the test set, we use our ML model to map it to a binary
label {0, 1}, where 1 corresponds to a HARD design and 0 to an EASY design.

3.1 Model Construction and Experiment Settings

We use a powerful method used in ML called stacking, which is shown in Figure 4. The predictions
from the first-level base models are fed to a second-level meta-model stacker that generates the
final prediction. Our base models are a combination of tree-based models (XGBoost gradient tree
boosting, scikit-learn random forest, and extra trees) and artificial neural networks (built using
Keras API). All of these models have strengths and weaknesses—for example, tree-based meth-
ods are good with noisy, high-dimensionality data, and pretty insensitive to over-fitting. But, the
Stacker, a simple logistic regression, outperforms each of them because it can highlight the benefits
of each base model while discrediting where they perform poorly.

After data processing and filtering, we are left with a dataset of around 100K designs out of 1M
originally. We randomly shuffle the entries and select 90% of them for training (96,165 instances)
and the remaining 10% (10,685) as the test set. Given that some partitions belong to the same SoC, it
is most likely that the model “sees” all SoC designs during training. However, this is not important,
as our goal is to predict accurately each partition individually. Although some SoC designs might
be similar, the partitions of a given SoC are usually quite diverse (one partition will contain either
memory blocks, or host interface logic, or debug instrumentation, etc.). We train and tune the
hyper-parameters of the base models on the training set using stratified fivefold cross validation
and Bayesian search optimization. The Stacker is then trained by fourfold cross validation on
the training out-of-folds predictions of the base models. We use indexes different from the first-
level folds to avoid “data leakage” (causing over-fitting) and tune the Stacker manually. The total
training time of the stacked model is around 2 hours. The model is stored serialized in compressed
gzip format to reach the size of 5 GB.

Because of the imbalanced nature of the problem (typical workload of 88% EASY vs. 12% HARD
design partitions), our objective function is a mixture of the area under the curve (AUC, a rank
statistic) and log-loss (a calibration statistic and strictly proper scoring rule) rather than accuracy, a
metric that cannot grasp the pitfalls of imbalanced datasets. Here, the rare HARD class is the class
of interest. Thus, our goal is to optimize the prediction capability on this class while staying over a
reasonable accuracy on the majority EASY class. The F1-score captures this objective in our case.

3.2 Results and Analysis

3.2.1 Prediction Results. Depending on the request of the user, we utilize three different fea-
ture sets. The first one consists of building and testing the models using the features presented
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Table 2. Confusion Matrix with Our Baseline Feature Set

Predicted Class
EASY HARD

Actual Class
EASY 9, 163 (98%) 230
HARD 260 1,039 (80%)

Table 3. Baseline vs. Modified Feature Sets

Feature Set Accuracy F1-score AUC Log-loss
+ SLR 96.3% 0.86 98.5% 0.10

Baseline 95.4% 0.81 97.2% 0.13
– CPU 93.8% 0.75 95.4% 0.16

Note: We either remove CPU info or add SLR info in our modified sets.

in Section 2.3 (= our baseline). The second one excludes the information related to the host ma-
chine, which may not be easy to collect—for example, the “free memory” feature that dynamically
changes depending on other tasks running on the machine. Both of these levels can be categorized
as “fast” prediction, as they can be performed before any P&R step. The third one utilizes some
information related to netlist partitioning, such as super logic region (SLR) and super long line
utilization of the FPGA devices. Before calling the Xilinx tool to perform P&R, the features are ex-
tracted or estimated at runtime by traversing the graph representation of the netlist. For instance,
the number of CTRL sets is estimated knowing that the Xilinx tool will ultimately optimize them
based on a few rules that we consider. To estimate SLR utilization, we perform a quick, multiple-
way h-Metis partitioning similar to that of the Xilinx engine. Feature collection is done in parallel
per bundle of 8 to 16 FPGAs, and takes a few seconds without SLR estimation and up to 12 minutes
with it.

We show in Table 2 the confusion matrix of our “baseline” classifier. The matrix is built using the
decision probability threshold (to predict class membership) that maximizes the F1-score on the
training set. In addition, Table 3 gathers the metrics of interest obtained by training and testing our
stacked model based on the three feature sets aforementioned. We observe that if the user is will-
ing to wait for the SLR partitioner to complete, or at least until it returns gate counts estimations,
we can predict with even higher certainty the EASY and HARD classes. All in all, all of our metrics
confirm high predictability capability of our three ML models with a very low false-positive rate of
less than 2.5%. We also observed an expected gain of the stacked model in all of the considered met-
rics compared with the base models (+4% accuracy, +6% F1-score, +3% AUC, and −0.07 log-loss).

3.2.2 Feature Importance. To highlight the key parameters driving the FPGA compilation com-
plexity of a netlist, we compute from our models which features are the most important in the
final EASY vs. HARD prediction. Widely used importance methods based on gain, weight, or split
count have been shown to lead to inconsistencies. We thus decide to use the Shapley values [12] as
feature importance, an attribution method inherited from coalitional game theory. Shapley values
tell how to fairly distribute the “payout” (the predicted probability) among the different “play-
ers” (features). The feature importance of some of the top features is shown in Table 4. Our main
observations are as follows:

• The information on the host machine, such as free memory and cache space, includes high-
impact features, which is expected, as a heavily loaded machine is, by experience, slower.
This showcases the reality of our framework where engineers battle for computing re-
sources. However, in a perfect scenario without contention, we still believe that the host
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Table 4. Feature Importance Ranking Based
on Their Impact on Output Prediction

Rank Feature Imp. Rank Feature Imp.
1 # LUTs 0.213 6 MemFree KB 0.050
2 # Data wires 0.185 7 # CTRL sets 0.045
3 FPGA family 0.090 8 # Clock wires 0.040
4 # LUT6 0.081 9 CPU cache KB 0.038
5 # FFs 0.065 10 # Muxcy 0.036

machine information affects compile time. EDA tools are memory intensive and built to
rely heavily on the parallelization of their inner algorithms. It is most often the case that
multi-core CPUs will place and route faster than single-core processors.

• We observe a predominance of the features related to LUT usage. This can be explained by
the fact that about 30% of these LUTs are actually LUT6, which are spots of high connection
traffic that directly impact congestion. A typical mapper usually reduces the competition
for routing resources by mapping LUT6 to LUT4 in high-congestion areas.

• We note a large importance of the FPGA family. This can be explained by the influence
on runtime of the differences in the internal architecture (routing, clock network, and logic
blocks) of the FPGAs leveraged in our emulation system, namely Xilinx Virtex-7 and Virtex-
UltraScale. Interested in further understanding the large importance of the FPGA family, we
also compute the feature importance on the different sets of data relative to the two FPGA
families. We find that the number of clock wires is two times more important in the Virtex-7
than in the Virtex-UltraScale. We believe that this can be explained by the integration of
better leaf clocking resources in the ultrascale device (i.e., “ASIC-like” clocking). Because
the selected features are not unique to Xilinx FPGAs, we believe that our framework can
be applied directly to other brands of FPGAs, such as Intel/Altera. Moreover, because of the
similarity in internal FPGA architectures, we also speculate that our built models could be
re-trained online with new compilation results on these different FPGAs and still achieve
relatively good accuracy.

• After #LUT and #data wires, there is no clear outstanding feature. This confirms the fact
that dimensionality reduction is detrimental, because any feature that we may remove plays
a part in the predicted probability.

If we look at the feature importance on the feature set including the SLR information (not re-
ported here), we find that the ranking in importance of SLR utilization is 3 − 2 − 1 − 0. Indeed, as
SLR crossings can induce non-negligible delays, the SLR partitioner tries to fill SLR0 first before
filling the contiguous one (SLR1 and so on), meaning that a design with SLR3 utilization is a very
large design (i.e., potentially HARD by experience).

3.3 Application to Wall-Time Optimization

Earlier, the EASY/HARD labels were originally computed for a 5-hour wall time. We now decide
to investigate the effects of reducing the wall time (whose value can seem large and arbitrary) on
our compilation process in terms of the overall compile time and hardware resources. However,
the database is originally built on the results of the framework without prediction. We have no
information on the “optimal” winning strategy and associated compile time of EASY designs.
Instead, we only know that for the EASY jobs, the Default strategy finished in less than 5 hours.
It is nonetheless possible to estimate from the database how much compile time we gain by
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Fig. 5. Compile time improvement using our ML model. The horizontal axis represents the average compile
time per partition. The numbers on the points indicate the wall time used. Our saving ranges from 25 to
80 minutes depending on wall time used.

launching additional strategies. To do so, we first find an upper bound of the compile time gain
ratio α̂CT , which is defined as

α̂CT = ECT∼pHARD (CT)

[
ALL (CT)

DEF (CT)

]
, (1)

where ALL (CT) is the compile time when all strategies are tried concurrently (which then
corresponds to the compile time of the fastest strategy), and DEF (CT) is the compile time of the
Default strategy only. To bound α̂CT , notice that HARD designs—whose winning strategy is not
Default—would have ran using Default only for at least 5 hours more than the recorded compile
time. We use bootstrapping to show that α̂CT ≤ 0.67 is verified almost surely.

Reducing the wall timewt changes some previously EASY designs to HARD designs. In this case,
HARD designs—whose winning strategy is not Default—do not see their compile time modified.
However, HARD designs—whose winning strategy is Default—have their compile time modified
as

CT =
{
CT if CT ≤ wt/(1 − α̂CT )
wt + α̂CT ·CT otherwise.

(2)

To show how our classifier improves the P&R process, we build the graph shown in Figure 5
to show the estimated average compile time and number of jobs (#jobs) per netlist required to
complete P&R of all test designs. This calculation is done based on our HARD/EASY prediction.
We vary the wall time and compare our ML model to a perfect classifier and to the non-ML frame-
work presented in Figure 2. We consider a worst-case scenario of 12 strategies used on a HARD
design. Each wall time corresponds to a new trained and tested model, resulting in a new F1-
score-maximized confusion matrix. Our model deviates from the perfect classifier as the wall time
rises, as it causes the number of HARD designs available to decrease, producing a more and more
imbalanced and therefore difficult classification problem.

The graph shows, for a fixed wall time, that our prediction model improves the average compile
time per design with limited effect on the average #jobs launched. The largest compile time gain
is seen for a wall time of 100 minutes. However, this would also yield approximately 11.5 jobs per

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 5, Article 46. Pub. date: July 2020.



Improving FPGA-Based Logic Emulation Systems through Machine Learning 46:11

Table 5. Description of the Default Strategy and the Top 3 Advanced
Strategies with the Highest Success Rates

Name Objectives
Default Balances between timing closure effort and compile time.

Runtime expensive algorithms are not used.
Strategy-1 Runs multiple passes of optimizations, with advanced placement

and routing algorithms.
Strategy-2 Timing-driven optimization of SLR partitioning (by exploring

SLR re-assignments).
Strategy-3 Makes delays more pessimistic for long distance and higher

fanout nets with the intent to shorten their overall wirelength.

design, which is a too high of a hardware cost. Reasonably, keeping our original wall time of 300
minutes (5 hours) still yields a reasonable compile time gain of 25 minutes per design for less than
one job launched.

4 PREDICTING WINNING STRATEGY

As shown in the previous section, our ML model can help reduce the time used for FPGA compila-
tion. To reduce hardware effort on top of that, we need to be able to predict the winning strategy
to avoid launching more strategies than needed. We state the formal definition of this problem as
follows:

P2: Winning Strategy Set Prediction

Input Netlist, target FPGA device, full strategy list
Output A variable size subset of strategies that are likely to win

(= finish FPGA compilation the fastest)
Why? If predicted right, we can reduce the compilation time and

the number of jobs required for the netlist.

4.1 Model Construction

We use the stacking and training/validation/testing methodologies presented in Section 3.1 but
modify the settings from binary to multi-class classification with a one-vs.-rest (OVR) approach.
We fit one classifier per strategy (≡ per class). Then, for each classifier, the strategy is fitted against
all of the other strategies. Because the training sets are highly imbalanced with OVR, we follow
the work of Lee et al. [11], which modifies the target values so that the positive strategy has target
+1 and the negative class (i.e., the remaining strategies) has target −1/(#strateдies − 1). Because
we have four base models and 21 strategies, the input of our meta-model is 64 wide, which is large.
To help with dimensionality, we use as the meta-model a regularized version of the multinomial
logistic regression.

Table 5 describes the objectives of the Default strategy, as well as those of the three strategies
with the highest success rates (percentage of times it is a winner, excluding Default). The strat-
egy Flow_RuntimeOptimized is not one of them, as it has in fact a very low success rate. Despite
targeting a faster runtime, this strategy often fails to compile on difficult netlists.

Our goal is to determine the winning strategy of HARD designs among the 21 available Vivado
strategies. This is difficult in our framework for two reasons. First, the Default strategy is winning
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Table 6. Job Minimization with Our Strategy Predictor
(Wall Time = 300 minutes)

# Jobs Improve
No Prediction 2.4 baseline
EASY/HARD Classifier 2.9 –21%
Perfect EASY/HARD Classifier 2.2 8.3%
Strategy Predictor 1.6 33.3%
Perfect Strategy Predictor 1.0 58.3%

more often than not, as it was launched first and kept running for 5 hours before any other strategy.
The second reason is that not all strategies are fairly represented. Indeed, when the wall time hits,
not all 21 strategies are launched, but rather 3 or 4 are chosen, depending on the machine resources
available and previous human experience with the strategies. As mentioned in Section 2.1, these
strategies are not design related but rather are decided by user experience.

4.2 Application to Job Minimization

Despite these complications, we find that predicting a set of candidate winning strategies is pos-
sible and enough to reduce the effort spent in FPGA compilation. Rather than picking a unique
winning strategy, we select multiple strategies based on the probability vectors P = {Pi }i ∈designs,
where Pi = P (designi ) = (pL0, . . . ,pL20) given at the output of our model. There are 21 contend-
ing thresholds, one per strategy Lk . The probabilities obtained yield a sense of confidence level.
Deciding how to use these values is up to the user. In Table 2 and Section 3.3, we chose to use a
probability threshold to distinguish classes that maximized the F1-score. However, in our grid farm
framework, time and effort embody our true utility functions, and optimizing these objectives will
likely be at the detriment of the F1-score.

We perform thresholds tuning to minimize the overall #jobs. This problem can be mathemati-
cally formulated as

argmin
T

#jobs (CL(T ,P ), Strue ), (3)

where Strue corresponds to the true winning strategies, andCL(T ,P ) is the set of proposed strate-
gies for each design obtained using thresholds T on the probability vectors P. The #jobs function
is expressed as

#jobs =
∑

i ∈designs
J(i ) with (4)

J(i ) =

{
card(CL(T ,Pi )) if {Strue }i ∈ CL(T ,Pi )
12 otherwise.

(5)

As this function that we ought to minimize is non-linear and not differentiable, we use Powell’s
method with an initial start point found by optimizing the F1-score of each class independently:

T0 = (argmax
T

F1(L0), . . . , argmax
T

F1(L20)). (6)

During training, we solve Equation (3) for each model and each fold. The threshold vector used
on the test set is then computed as the average of the cross-validation-folds thresholds. We obtain
an accuracy on the test set of 67%, coinciding with an average size of strategy set proposed of
card(CL) ≈ 1.8 and resulting #jobs ≈ 5.2 spent on HARD designs. We then use this strategy pre-
dictor in step 2 of our pipeline shown in Figure 2 to see how the overall number of jobs is reduced.
Comparison is done at the original 5-hour wall time. The new average #jobs is shown in Table 6
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and compared with the other flows. We observe that our strategy predictor combined with our
EASY/HARD predictor provides the 33% jobs savings mentioned in the abstract.

5 PREDICTING COMPILE TIME

To show how ML can beneficially affect productivity, we test our framework in regressing the
compile time of P&Rs. We present how using the predicted values can improve computing farm
utilization by optimizing the scheduling of jobs fired on the grid. We state the formal definition of
this problem as follows:

P3: Compile Time Prediction

Input Netlist, target FPGA device, strategy used
Output How long will the netlist compilation take?
Why? If predicted right, we can assign it to the right server

and thus make the best use of the computing resources.

5.1 Model Construction

The same model stacking and training/validation/testing methodology presented earlier is used
but with regression versions of the models. In addition, the objective scoring becomes the mean
absolute error (MAE). We obtain a satisfactory R2 of 0.85, showing enough correlation between
predicted and actual compile times. An MAE value of 18 minutes shows that on average the predic-
tion is very accurate. However, a root mean square error of 37 minutes shows that it also exhibits
large variations of correctness.

5.2 Application to Job Scheduling

Using the built ML model presented previously, we predict firsthand how much time each P&R job
is going to take. Even if the prediction is not perfect, we use this value to our advantage to perform
an improved scheduling of the jobs fired on the server grid. By that, we mean reduce the makespan
of the logical schedule—that is, the time difference between the start and finish of the sequence
of jobs. We employ a modified version of an enhanced heuristic longest-processing-time-based
scheduling algorithm called SLACK [3], with time complexity ofO (n logn) and whose description
is as follows:

ML-based SLACK heuristic

Input:m machines and n jobs, predicted compile times C̃T j

Output: near-optimal job FIFO schedule for each machine

1. Sort jobs by non-increasing C̃T j .
2. Consider �n/m� tuples of sizem given by jobs 1, . . . ,m;m + 1, . . . , 2m, etc. If

n (modm) � 0, add dummy jobs with null compile time in the last tuple.
3. For each tuple, compute the associated slack, namely

C̃T 1 − C̃Tm , C̃T (m+1) − C̃T 2m , . . . , C̃T (n−m+1) − C̃T n .
4. Sort tuples by non-increasing slack.
5. Create a job ordering by filling a list with consecutive jobs in the sorted tuples.
6. Apply list scheduling to this job ordering, and obtain a FIFO schedule per machine.
7. Return makespan computed using the actual matching CTj .
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Fig. 6. Makespan improvement of our runtime regression-based SLACK scheduler. The “optimal” conducts
SLACK scheduling using known, not ML predicted, compile time. The “non-ML” method assigns the largest
netlist (in terms of # LUT) to the first available machine.

This scheduling is performed offline, and no job balancing between machines is done at runtime.
Although this may be suboptimal at runtime, the list scheduling still results in a FIFO schedule per
machine incurring zero downtime and under-utilization. In the interest of simplicity, we assume
that at a given time, one job is associated to one machine and this machine only. We repeat sched-
uling 5,000 times on n = 100 (a typical value in our grid) randomly sampled concurrent design
partitions/individual compiles of the test set. The mean makespan obtained using our scheduling
is shown in Figure 6. We compare with what was done in a non-ML environment, which by lack
of knowing the P&R times was utilizing a greedy scheduling based on the #LUTs. To see how the
number of machines affects the scheduling benefits, we vary the number of machines and carry
out the experiments again. We observe that our ML-based scheduler shows makespan improve-
ments regardless the number of machines, with the largest savings of 24% obtained atm = 40 with
roughly 200-minute savings on a 900-minute makespan, as mentioned in the abstract. Cumulated
over a 7-day week, this leads to savings of more than 1 and a half days.

6 ML-BASED DESIGN RECOMMENDATIONS

Partitioning quality can tremendously influence the P&R runtime and success rate. A poor parti-
tioning can result in a large number of HARD partitions. If even one partition remains unroutable,
the emulation flow shown in Figure 1 must be re-started from the partitioning step. If feature im-
portance gives fundamental insights on the compilation features that largely make designs com-
plex, these values are relative to the complete model and dataset. Here, we search to improve the
compilation framework from “inside” the tool. This starts with providing “recommendations” on
how to modify a given HARD partition to turn it into an EASY one. We state the formal definition
of this problem as follows:

P4: Design Recommendation

Input HARD netlist, target FPGA device, trained ML model
Output Recommendations on feature modification so that the

given HARD netlist becomes EASY
Why? The overall compilation time reduces with the new EASY

netlist.
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6.1 Construction of Recommendations

Baehrens et al. [2] show how individual decisions can be explained using class probability gra-
dients. Motivated by their approach, we rather propose to construct recommendations based on
probability “vectors.” If the gradient indicates the direction of the steepest move from the test
point, this information is local and the change in probability is mostly infinitesimal. In our case,
we are interested in significant probability changes (to go under the HARD/EASY threshold) while
changing the netlist as little as possible: first, to provide simple and practical recommendations to
the partitioning engine (approximately two to three features to change together at most), and sec-
ond, to avoid under-populating the FPGAs too much, which cannot be done when constrained to
a fixed number of partitions.

The main components of our algorithm are the following:

• We only consider “likely” moves by sampling from the learned distribution of the data, esti-
mated using kernel density estimation (KDE). The best kernel found is the radially symmet-
ric kernel, and the optimal bandwidth matrixH is selected by least squares cross validation.
The KDE probability density function and kernel are defined as such:

f̂ (x ;H ) = n−1
n∑

i=1

KH (x −Xi ), (7)

where
KH (u) = |H |−1/2K (H−1/2u) (8)

and
K (u) ∝ (1 − ‖u‖2)1(‖u‖2 ≤ 1). (9)

• We use a similarity distance between two partitions of the form

d (a,b) =
∑

i ∈features

|ai − bi |αi . (10)

A smallαi corresponds to a prioritized feature to select. Using such a distance allows us to fix
features that cannot change (e.g., FPGA) and to translate our priorities when re-partitioning.
In particular, it is easier for us to generate constraints on LUT/FF/IO counts rather than net
counts.

• We move recursively in a greedy manner, selecting at each iteration the one feature provid-
ing the largest ΔP (a,b)/d (a,b), subject to a sufficiently large ΔP (a,b). Thereby, we avoid
changing too many features.

Compared with other approaches, such as LIME [17], our method provides a definite value to
change rather than just a direction of change. In addition, in LIME, data points are sampled from
a fixed distribution that ignores the correlation between features. This can lead to unlikely data
points that can then be used to learn local explanation models.

The description of our algorithm, which runs in less than 5 minutes, is as follows:

VECTOR (x0, S , M , Xtrain, ϵ)

Input: partition x0, feature set S , model M : x �→ P (x ) train data
Xtrain, class probability threshold ϵ

Output: modified partition xrecom

1. Define similarity distance d ;
2. F = LEARN_DISTRIBUTION_DATA (Xtrain);
3. Current point: xrecom ← x0;
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Fig. 7. Our recommendation flow. The model built in Section 3 is used to identify with high confidence
the HARD partitions. Then, the algorithm VECTOR generates the recommendations used to define new
hierarchical mapping constraints.

4. Sampling boundary: δ ← α ;
5. while (P (xrecom) ≥ ϵ)
6. for (each s in S)
7. Q (s ) = SAMPLE (F , xrecom (s ),δ );

8. V (s ) = max
x ∈Q

P (xrecom) − P (x )

d (xrecom,x )
subject to ΔP ≥ t ;

9. Select feature f = argmax
s ∈S

V (s );

10. if (f empty)
11. increase δ ;
12. else

13. update xrecom ← x ( f ) : x ∈ Q ( f ) =̂V ( f );
14. endwhile

15. return xrecom;

6.2 Re-partitioning Results

We generate recommendations to the partitioning engine inside the flow as shown in Figure 7,
before any P&R step. Once a first automatic partitioning completes, we identify HARD partitions
using the predictor of Section 3. Our algorithm VECTOR then provides the recommended changes
in these partitions, translated each to simple rules such as remove x LUT6 and remove y BRAMS

from partition Pz. Based on the topology of the multi-FPGA system (positions of FPGAs and inter-
FPGA communication resources), the hierarchical netlist, and the resources available on EASY
partitions, a new partition mapping file is generated. To fasten re-partitioning, the partitioner
uses as input the resulting assignments from the previous partition with the balanced modules
obtained from the recommendations so that most of the design is set in place. This provides a
high level of stability in the results. For example, if a recommendation shows that one partition
has critical utilization of LUTs, a typical constraint is to remove a highly combinational module
from the HARD partition. This module has to be placed on a EASY partition without endangering
the fixed system constraints (maximum hop count, TDM ratios, etc.). This trade will most likely
make the receiving EASY partition “harder.” As even minor FPGA changes can affect the P&R, the
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Table 7. Compile Time (CT) Improvements in Minutes
Using Our Recommendation Flow

Total Worst HARD-0 HARD-1 EASY-0
CT CT Netlist Netlist Netlist

Init. Partition 2205 524 524 361 35
After Re-partition 1879 357 357 115 139

Note: We use a commercial SoC design partitioned to 14 netlists. LUTs and FFs are

re-partitioned across HARD-0, HARD-1, and EASY-0.

resulting changes in probability of involved partitions are computed from the trained model and
the viability of the recommendation is assessed.

We show in Table 7 the results of our recommendation flow applied to a commercial SoC de-
sign that contains 12.5M LUTs, 5.3M FFs, and 155K multiplexed IOs. The chosen benchmark is
harnessing 14 partitions, where 6 of them are HARD. For fair comparison of the runtimes, the
partitions are all compiled in the same settings (i.e., on the same machines and all using Default
strategy). Our ML model classified the hardness of all partitions correctly. Our algorithm VECTOR
identified two partitions with critical utilization of LUTs (↓500K) and FFs (↓300K), respectively;
modules adding to such sizes were found and displaced to an EASY partition without too much
increase in IO cut. After re-partitioning, the compile time of the considered HARD partitions re-
duces by 32% and 68%, respectively. However, the EASY partition degrades reasonably. Overall, the
compilation time of the complete design reduces by 15% as mentioned in the abstract, with sav-
ings of 326minutes. Note that the re-partitioning step only takes approximately 45minutes. Thus,
our recommendations-augmented partitioning flow provides more FPGA-P&R-friendly partitions,
resulting in overall faster P&R steps.

7 RUNTIME INFERENCE

We seek to use our EASY vs. HARD prediction during the initial partitioning step shown in Figure 7
to assess partitioning quality very early in the flow. This step iteratively improves a starting ran-
dom partitioning by moving modules around, until a sufficiently good solution is found, where
the quality is usually scored in terms of total cut size. This process is repeated multiple times to
obtain a set of potential candidates. A candidate partitioning is a bundle of partitions of size at
most approximately 400. To predict the quality of a candidate during that step, the predictions on
all partitions of that candidate must be obtained extremely fast in a few milliseconds. However,
our generated trained Python models are too slow for that particular task. Thus, we decide to
transform our ML models into a more efficient C++ representation.

Because our methodology stacks many different base models together, migrating all of the mod-
els from Python to C++ is a considerable effort. Therefore, as a first approach, we choose to trans-
form random forest first, as it is the most accurate stand-alone model. Using this model alone
causes a drop in accuracy of 4% compared with stacking.

From the sklearn random forest Python model, we extract the decision rules of each decision
tree, which we store in a text file. This file is then parsed to fill in our C++ object as described
in Figure 8. The chosen C++ random forest representation is a standard template library vector
of “flattened” trees, where flattened refers to their layout in memory. The vector representation is
coherent with the algorithm of a random forest, which is an ensemble of decision trees where the
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Fig. 8. Our Python model transformation pipeline for high-speed inference.

Table 8. Improvements in Runtime of Prediction by Model
Conversion and Multi-Threading (#threads = 10)

Prediction Time Speed-Up
Model per Partition (us) vs. Python
Python 500 —

C++ flattened 20 25
Parallelized forest 11 45

Parallelized bundles 2.2 230

final prediction is the average of the prediction of the trees. Each flattened tree is itself a vector of
“flat” nodes, whose structure is as follows:

struct FlatNode {
int feature_index;
float threshold;
int left_child_index;
int right_child_index;

};

For a given set of features, the decision path consists of moving from one node to the next
by jumping in the vector from the node index to left_child_index or right_child_index, de-
pending on the value of the predicate features[feature_index] < threshold. Because of the
flattened data layout, this path most likely corresponds to memory locations available in the same
cache line. The nodes indexes in the vector are set using breadth-first search (BFS) of the trees
as in binary heaps. This initial implementation is improved with the addition of multi-threading
performed in two ways: we either parallelize for each partition the calculation of the forest’s pre-
diction among the trees or parallelize among the partitions of a bundle. The second solution was
found largely superior as shown in Table 8 and scales almost linearly with the number of threads.
The runtime of the multi-threaded forest computation is crippled by the large discrepancy in the
depths of the different trees composing the forest. All in all, our flattened tree C++ representation
provides fast inference of the partitioning quality in the largest emulation systems, with 400 par-
titions predicted in a few milliseconds.

8 CONCLUSION

Our ML framework allows accurate handling of runtime-intensive netlists, as well as appropri-
ate compilation strategies. Our study derives an effective way to improve the trade-off between
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compile time vs. number of jobs by varying the wall time. Integrated in our emulation system,
our ML models prove to reduce compilation cost by optimally schedule runs on the server grid.
This results in 24% makespan savings. Our automatic strategy selection results in 33% jobs savings.
Our new method to propose recommendations is shown to be effective in improving the quality
of the partitioning, consequently speeding up the overall compile time. Our high-speed random
forest implementation allows the use of the model in the time-critical initial partitioning step.
Considering the “chaos” present in EDA tools, with unpredictable behaviors of P&R heuristics in
complex advanced nodes, these results are encouraging in demonstrating the benefits of ML in
FPGA compilation.
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