
Breaking Barriers: Maximizing Array Utilization for
Compute In-Memory Fabrics
Brian Crafton†1, Samuel Spetalnick†1, Gauthaman Murali1,
Tushar Krishna1, Sung-Kyu Lim1, and Arijit Raychowdhury1

1Georgia Institute of Technology, Atlanta, GA
1School of Electrical and Computer Engineering

brian.crafton@gatech.edu, arijit.raychowdhury@ece.gatech.edu

Abstract—Compute in-memory (CIM) is a promising tech-
nique that minimizes data transport, the primary performance
bottleneck and energy cost of most data intensive applications.
This has found wide-spread adoption in accelerating neural
networks for machine learning applications. Utilizing a crossbar
architecture with emerging non-volatile memories (eNVM) such
as dense resistive random access memory (RRAM) or phase
change random access memory (PCRAM), various forms of
neural networks can be implemented to greatly reduce power and
increase on chip memory capacity. However, compute in-memory
faces its own limitations at both the circuit and the device levels.
Although compute in-memory using the crossbar architecture
can greatly reduce data transport, the rigid nature of these large
fixed weight matrices forfeits the flexibility of traditional CMOS
and SRAM based designs. In this work, we explore the different
synchronization barriers that occur from the CIM constraints.
Furthermore, we propose a new allocation algorithm and data
flow based on input data distributions to maximize utilization
and performance for compute-in memory based designs. We
demonstrate a 7.47× performance improvement over a naive
allocation method for CIM accelerators on ResNet18.

I. INTRODUCTION

Modern computing systems are heavily dependent on the

capacity and access time of expensive memory banks due to

the ever increasing performance gap between main memory

and logic. Furthermore, the cost of moving data has become

more expensive than operating on it [1], and thus not only has

the memory become the fundamental bottleneck of computing,

but both reading and transporting the data has become more

expensive than the operation we seek to perform. Populariza-

tion of data intensive applications like machine learning and

artificial intelligence have further exacerbated this problem.

To address these issues, new architectures based on traditional

CMOS attempt to minimize the transport of data by optimizing

for data reuse [1] and adopting constraints inspired by the brain

[2]. While these techniques yield strong results, they still face

the fundamental technological limitations of CMOS.

Fortunately a new class of embedded non-volatile mem-

ory (eNVM) is positioned to minimize data transport by

performing compute in-memory. In-memory computing seeks

to perform matrix multiplication (�y = W�x) in a crossbar
structure using Ohm’s law and the non-volatile conductance

† These authors contributed equally

state provided by the non-volatile memory. Using this tech-

nique, each weight of the matrix (Wij) is programmed as a

conductance to a cell and each value of the vector (�xi) is

converted to voltage and applied to the rows of the memory

crossbar. By Ohm’s law, the current through each cell is

proportional to the product of the programmed conductance

(Wij) and applied voltage (�xi). By Kirchhoff’s current law

(KCL), the resulting currents summed along the columns of

the crossbar are proportional to the product of the matrix

and vector, (�y). Under this procedure, the only data transport
required for matrix multiplication is the feature vector (�x)
from memory and result (�y) to memory. Therefore, in-memory
computing eliminates the majority of data transfer and thus

energy cost of data intensive operations.

Although compute in-memory using the crossbar architec-

ture can greatly reduce data transport, the rigid nature of these

large fixed weight matrices forfeits the flexibility of traditional

CMOS and SRAM based designs. Given that eNVM has

high density and unfortunately high write energy compared to

traditional SRAM, CIM-based inference-only designs avoid

writing to the eNVM cells once programmed. While this

is advantageous for data transport and energy efficiency, it

means each CIM processing element (PE) can only perform

operations it has the weights for. This implies that if there is an

unbalanced workload where some PEs operations take longer

than others, we cannot simply re-allocate these operations to

other PEs. Therefore, we must use synchronization barriers

for all PEs so distributed matrix multiplication completes

before another is started. In contrast, every CMOS and SRAM

based PE are computationally identical and can perform any

operation in the DNN graph.

Therefore a fundamental problem in CIM based designs is

array utilization, the percent of time an array is in use. Recent

large scale CIM designs [3], use weight duplication and layer

pipelining techniques to maximize performance. We describe

these techniques in detail in Section II. While impressive

performance is achieved, these techniques only perform well

when the workloads are deterministic. Circuit level techniques

like zero-skipping greatly increase performance, but create

non-deterministic workloads that compromise array utilization.

In this work we identify and profile these new challenges

using a simple simulator framework. We then propose a novel

algorithm, which makes use of input statistics to find optimal978-1-7281-5409-1/20/$31.00 ©2020 IEEE

12320
20

 IF
IP

/I
EE

E
28

th
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 V
er

y
La

rg
e

Sc
al

e
In

te
gr

at
io

n
(V

LS
I-S

O
C)

 |
 9

78
-1

-7
28

1-
54

09
-1

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

VL
SI

-S
O

C4
64

17
.2

02
0.

93
44

08
6

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:51:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Typical compute in-memory PE (processing engine) and sub-array
(SA) architecture. (A) NxN sub-array PE with L1 cache and psum buffer. In
this work N is 8. (B) Typical sub-array design with dual word line drivers,
ADCs, shift and add units, and an adder tree.

array allocation policies to maximize utilization and break syn-
chronization barriers. Furthermore, we introduce a new data
flow that generalizes CIM arrays to maximize their utilization.

We run our experiments on ImageNet using ResNet18 and

CIFAR10 using VGG11. Although we apply our techniques to

deep learning, we claim that the techniques we propose can be

extended to any compute in-memory application. We note that

a combination of these strategies yield 7.47× improvement in

performance over a baseline naive array allocation.

II. BACKGROUND AND MOTIVATION

Compute in-memory systems use binary or multi-level cells

as weights to perform matrix multiplication in memory. In

this work we will focus our attention to binary cells given the

current state of the art in eNVM [4] already struggles with

variance thus making multi-level cells even more difficult to

utilize. However, the same techniques demonstrated in this

work can easily be applied to multi-level cells as well. Given

binary cells, we must use 8 adjacent cells to form a single 8-bit

weight, like those shown in the columns of Figure 1. The 8-bit

vector inputs to this array are shifted in 1 bit at a time, and the

resulting binary product collected at the ADCs is shifted left

by the same amount the inputs are shifted right. In this way,

each array is able to perform an 8-bit matrix multiplication.

There are two common techniques for performing compute

in memory. The first technique, we call baseline, is simply
reading as many rows as the ADC precision allows (e.g.

for a 3-bit ADC, we read 8 rows simultaneously). The next

technique is commonly called zero skipping [5], where only

rows with ‘1’s are read. This technique exploits sparsity in

the input features or activations (for neural networks). Zero

skipping performs faster than the baseline technique because

for most cases it will process more total rows per cycle. In

Figure 2, we provide an example case for zero-skipping where

8 total rows are read using a 2-bit ADC. Baseline (2A) requires

2 cycles since it targets four consecutive rows at a time. Zero-

skipping (2B) is able to finish all 8 rows in a single cycle

because we only consider the ‘1’s in the input vector. There

are few reasons not to perform zero skipping, unless there is

limited input data bandwidth or the eNVM has high variance

and accumulated too many errors.

Fig. 2. Simplified breakdown of ADC reads in baseline and zero-skipping
with 2-bit ADC precision. (A) Baseline targets four consecutive rows at a
time since the 2-bit ADCs are capable of distinguishing 4 states. (B) Zero
skipping targets the next 4 rows where the word line is enabled. This way we
can read more rows and not overflow our ADC.

By encapsulating the array, ADCs, and shift and add logic,

a matrix multiplication engine can be created. Using these

arrays as building blocks, prior work has implemented CNNs

(Convolutional Neural Networks) where a group of arrays

implement a larger matrix multiplication. Despite performing

more complex operations, the core operations of CNNs are

converted into matrix multiplication. In Figure 1 we illustrate

this idea, showing how a group of arrays is tiled together to

form a PE. In Figure 3 we further depict how these arrays can

be pieced together to form a larger matrix. In this example,

both input feature maps and filters are vectorized with the

filters forming the columns of a matrix. The vectorized feature

maps are input to the crossbar to perform matrix multiplica-

tion, where the results are output feature maps for this layer

in a CNN.

Given the high density of these PEs, hundreds or thousands

of them can be tiled in the same area used by modern ICs.

Although similar in concept, CIM-based DNN accelerators

have numerous differences from traditional CMOS based

designs that introduce challenges in maximizing performance.

First off, a CIM-based PE has fixed weights that cannot

be reprogrammed due to the high energy cost of writing

eNVM. Traditional CMOS based PEs are generalized compute

units that can operate on any input data, since they do not

contain fixed weights. Thus a fundamental issue in CIM-based

accelerators is array utilization. Several works have addressed

this issue introducing ideas such as weight duplication and

layer pipelining.

Weight duplication [3] is used to maximize throughput in
large scale CIM accelerators where the amount of on-chip

memory exceeds the number of weights in the model. In [6],

24,960 arrays are used for a total on-chip memory capacity

of nearly 104 MB (2b cells), while only using an area of

250mm2. Using this enormous on-chip memory capacity, they

not only fit ResNet [7] but duplicate shallow layers up to 32×.
When weights are duplicated, the input data is divided equally

amongst each duplicate array so they can process in parallel.

124

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:51:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Convolutional layer mapped to a CIM array. Both input features
maps (IFM) and filters are vectorized with the filters forming the columns
of a matrix. The vectorized feature maps applied to the crossbar to perform
matrix multiplication, where the results are output feature maps (OFMs).

We illustrate this idea for a convolutional layer in Figure 3.

The input patches from the input feature maps (IFMs) are

divided into groups based on the number of duplicates, and

then mapped to each duplicate.

Layer pipelining [3] is used to maximize throughput in

eNVM CIM accelerator, where arrays are not re-programmed

due to large amounts of on-chip memory and high write

energy. At the same time, most modern neural networks

contain 20 or more layers that must be processed sequentially.

Given that most designs use 128 × 128 arrays, it becomes
infeasible to partition arrays such that they can be used for

each layer without being re-programmed. This implies that

the majority of PEs would sit idle waiting for their layer

to be processed. To solve this problem, images are pipelined

through the network to keep all arrays utilized. Although this

compromises single example latency, it maintains maximum

throughput.

III. BLOCK-WISE ARRAY ALLOCATION

In the previous section, we discussed several techniques that

are used in CIM accelerators to increase throughput, but each

introduces it’s own synchronization barrier that limits array

level utilization. In this work, we identify two of these barriers

and propose our solution to mitigate this problem. The two

techniques that create these barriers are weight duplication and

layer pipelining. In previous work these barriers were not a

problem because array performance was deterministic. When

zero-skipping is introduced, it instigates these barriers because

it introduces non-deterministic computation time for each ar-

ray. Zero skipping will only improve the performance of a CIM

accelerator because it simply means each array will perform

equal to or faster than the baseline algorithm. However, since

the number of ones in the input vector of the CIM operation

follows a random distribution, the amount of time to finish

a dot product is non-deterministic. This means that several

arrays performing a part of a larger matrix multiplication need

to be synchronized to the slowest preforming array. As the

size of the operation (and number of arrays) increases, the

more stalls occur. In the following section, we explore the

implications of zero skipping at the architectural level.

A. Identifying Synchronization Barriers

The non-determinism introduced by zero-skipping induces

the need for synchronization barriers. A synchronization bar-

rier is required when a group arrays are processing a dis-

tributed workload and finish at different times, but must be

synchronized before starting another task. The first barrier

occurs at the layer level and is a result of using layer

pipelining. When the arrays are distributed to each layer, we

attempt to divide them evenly so that all layers finish at the

same time. If any layer is consistently performing faster than

other layers, it will have to stall because layers downstream

will not be able to buffer its outputs. Previous work [6] have

allocated arrays to layers based on the number of duplicates

required such that all layers in the pipeline complete their

workload at the same time, and thus sustain full utilization.

This allocation method works under the assumption that all

arrays perform at the same rate and we can choose the number

of arrays on chip. However, as [5] points out neither of these

assumptions will hold in a realistic design. Prior works [3],

[6] assume 128 cells can be read at once using 5 and 8 bit

ADCs. Although feasible in theory, we note that such a design

will yield very high error given that the state of the art devices

have 5% device-to-device variance [4], [8], and thus at most 8

rows (3-bit) can be read at once. Such a design also yields very

poor memory density since large (5-8 bit) ADCs occupy over

10× the area of eNVM. Instead columns must be processed

in batches using zero-skipping, where current summation is

used for 8 rows and then intermediate results are stored and

accumulated using existing digital logic in the array.

When zero skipping is used, each array performs at a non-

deterministic speed that follows the distribution of input data it

receives. In Figure 4, we plot the average time for an array to

perform a 128×16 matrix multiplication versus the percentage
of ‘1’s in all the 8-bit input features for the 20 convolutional

layers in ResNet18. To compute the percentage of ‘1’s for a

layer, we average the 8 bits in all 8-bit input features together.

For example, a 1000-entry 8-bit input vector contains 8000

bits and to determine the percentage of ’1’s, we average over

8000 bits to compute this percentage. From Figure 4, we infer

a linear relationship between the percentage of ‘1’s in the

input features to a layer, and the expected number of cycles

to perform the matrix multiplication.

Naturally, we can use this information to better allocate

duplicates to each layer in our design. We approach this

problem by quantifying the total number of multiply-and-

accumulate (MAC) operations in each layer, and the average

number of MAC operations per cycle an array can perform.

In prior works, performance per array is constant since each

array takes the same number of cycles to perform a matrix

multiplication. Therefore, arrays are allocated to each layer

based only on the total MACs per layer. When zero-skipping

is introduced and performance per array is not constant, this

allocation method fails to allocate evenly. To achieve equal

125

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:51:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Cycles per array versus the percentage of ‘1’s in all 8-bit input
features. Each point represents the average percentage for one of the 20 layers
in ResNet18.

utilization, we can instead allocate arrays to each layer based

on the expected number of cycles it will take to finish without

any duplicate arrays. We can compute the expected number

of cycles it will take a layer to finish by dividing the total

MACs in a layer by the average performance of each array in

the layer. We call this allocation method performance-based
allocation, whereas allocation that assumes all arrays perform

evenly is weight-based allocation.
While this technique ensures that all our layers will be

equally utilized, it does not ensure that the arrays inside

each layer will be equally utilized. Each layer in our DNN

(convolution or fully connected) is implemented as a matrix

consisting of eNVM arrays. We visualize this idea in Figure 5,

where a 3×3×128×128 filter is mapped to 72 arrays arranged
in a 9 × 8 grid. In each of the 9 rows, all 8 arrays share the
same input data and, consequently, the same word lines. This

implies that all 8 arrays will operate at the same speed and

form our minimal deterministic compute unit that we call a

block. Because the 9 different rows do not share the same input
vectors, they will operate at different speeds. If some arrays

receive fewer ‘1’s than other arrays, they will sit idle waiting

for arrays that receive more ‘1’s to finish. In Figure 6, we plot

the average cycle time of the arrays in each block of layers

10 and 15 (ResNet18) versus the percent of ‘1’s they receive.

Layer 10 is a 3×3×128×128 filter (Figure 5) that contains 9
different blocks, and Layer 15 is a 3×3×256×256 filter that
contains 18 different blocks. Just as before, we observe a linear

Fig. 5. The 3×3×128×128 filter used in layer 10 from ResNet18 converted
into a matrix with annotated blocks. This filter requires 72 128× 128 arrays
to store in a 9× 8 grid.

Fig. 6. Cycles per array versus the percentage of ‘1’s in all 8-bit input features.
The blue crosses represent the average percentage for 1 of the 18 blocks in
layer 15 of ResNet18. The black ×s represent 1 of the 9 blocks in layer 10.

relationship between cycle time and the percentage of ‘1’s.

Since layer 15 contains more blocks, it is more susceptible

to longer delays because the expected slowest block’s cycle

time increases with the number of arrays. In this figure, we

observe a 12% and 27% difference in cycle time for layers

10 and 15, which motivates a better allocation technique to

prevent significant idle time.

B. Optimizing Array Allocation

Finding the optimal allocation policy for blocks is more

difficult. We cannot add redundant blocks to the same layer,

because each layer only uses each weight once per operation.

Instead, we adopt a new grouping strategy for arrays: rather

than duplicating layers of arrays, we duplicate blocks of arrays.

To find the optimal array allocation policy, we propose a linear

time (O(N) complexity) solution. This is especially important
for larger networks like ResNet18, where there are 247 blocks

and finding an optimal solution could be quite difficult.

With this new grouping strategy, we can allocate using the

same technique as before. First we gather an approximation

of the average MAC per cycle for each block of arrays. We

can do this two ways. The first option, is running a cycle

accurate simulator on some example data to get a very accurate

approximation. The second option is to profile the distribution

of ‘1’s in the activations gathered from a large set of examples

run on a GPU. Once we have an approximation for the MAC

per cycle of each block, we can compute the expected number

of cycles each block will take to perform it’s partial dot

product. Once we have cycle approximations for each block,

we begin allocating arrays to each block. While we have free

(not allocated) arrays, we loop through and allocate arrays

to the block with the highest expected latency. Once we run

out of arrays or the number of arrays left over is not enough

to allocate to the slowest block we have found the optimal

allocation. We call this allocation method block-wise, whereas
allocation based on the layer is layer-wise.

C. Block-wise Data Flow

To make use of our new allocation policy, a new data flow

strategy is required. Since arrays from the same layer are not

126

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:51:22 UTC from IEEE Xplore. Restrictions apply.

grouped together, we treat these blocks as generalized compute

units rather than being bound to a specific duplicate. Therefore,

we no longer stall for the slowest block in a layer, but rather

just send work to the next available block. This means that

the same blocks will no longer be working together on the

same input data, and thus will not be part of the same gather

and accumulate procedure. As a result, a new routing and

scheduling policy is required because blocks will not always

send their partial sums to the same accumulator for every

input feature map. To implement this idea, we include output

feature destination addresses in the packet containing data

when sending input features to each block. Upon completing a

partial dot product, a block sends their computed partial sums

to the designated accumulator and requests additional work

from the memory controller.

IV. CIM-BASED ARCHITECTURE

Although our allocation policy will work for any general

CIM based accelerator, we adopted a similar architecture to

previous work [3], [6]. Our basic processing element (PE)

contains 64 128×128 arrays. We choose 64 arrays because
it provides each block with sufficient network bandwidth

and SRAM capacity, while maintaining good SRAM density

and low interconnect overhead. Our input data, weights, and

activations are all 8 bits. Each array has 1 3-bit ADC for

every 8 columns where a single column is pitch-matched with

a comparator. We choose 3-bit because state of the art devices

[4] have 5% variance and 3-bits is the maximum precision

that can be read with no error. We shift one bit from each of

the 128 inputs in one at a time which takes 8 cycles. In the

best case scenario, we perform all 128 rows at the same time.

In the worst case scenario, it takes 16 cycles since we enable

every single row. Therefore, each array takes anywhere from

64 to 1024 cycles and performs a 128×16 dot product. In all
designs we consider, we use use the same 64 array PE and

simply increase the count per design.

The activation inputs to the RRAM sub-arrays are stored

in on-chip SRAM, while the input images are read in from

external DRAM. Matrix multiplication is performed by the

Fig. 7. Block-wise network architecture with 1 router (R) per PE. All input
features are routed from the global buffer to PEs. All partial sums are routed
from PE to vector unit (V), and vector unit to output feature buffer.

Fig. 8. Inference performance for ResNet18 and VGG11 by algorithm and
design size assuming 100MHz clock. For ResNet18, block-wise allocation
sustains a 8.83×, 7.47×, and 1.29× speedup over baseline (no zero-skipping),
weight-based, and performance-based layer-wise allocation. For VGG11,
block-wise allocation sustains a 7.04×, 3.50×, and 1.19× speedup.

PEs, while custom vector units are used to perform vector-

wise accumulation, bias addition, quantization, and relu. We

use a N × N mesh network for communication between

PEs, memory, and vector units shown in Figure 7. Since

blocks vary in size and no block contains 64 sub-arrays,

we have to partition the PE to contain several blocks. This

configuration implies that the different blocks share the same

virtualized input and output ports. As discussed in Section III,

input and output vectors are packetized to include destination

information. Each block in the PE is given an id that is used

to route packets to and from. Upon completing a partial dot

product, a block sends its partial sum to vector units where

they are accumulated and activation functions and quantization

is applied.

V. RESULTS

To benchmark block-wise allocation, we compare with sev-

eral other techniques: weight-based allocation, performance-

based layer-wise allocation, and the baseline algorithm which

does not use zero-skipping. We empirically evaluate perfor-

mance and array utilization for the three techniques on Ima-

geNet using ResNet18 and CIFAR10 using VGG11. We run

these techniques in a custom simulation framework designed

to evaluate performance and power of compute in-memory

using standard CMOS and RRAM models from [9]. In this

work we focus on performance evaluations, however higher

array utilization will result in less leakage power and improved

energy efficiency.

Our simulator performs cycle-accurate implementations of

convolutional and fully connected layers. It is based in Python,

but runs array level operations in C for faster evaluation. We

model components in the design in object oriented fashion,

127

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:51:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Array utilization by layer for ResNet18 on ImageNet. Baseline not shown because zero skipping is not used.

iterating through all components in all PEs each cycle. We em-

bed performance counters in our ADC and sub-array objects

to track metrics like stalls so we can calculate utilization. As

input, the simulator takes the network weights, input images,

PE level configuration, and chip-level configuration. The PE-

level configuration includes details like the precision of eac

ADC and size of the sub-array. The chip-level configuration

contains the number of PEs and details about array allocation

and mapping. As output, the simulator produces a table with

all desired performance counters and all intermediate layer ac-

tivations that are verified against a TensorFlow implementation

for correctness.

To show how our algorithm scales by the size of the

design, we have evaluated the different allocation algorithms

on several different designs with increasing numbers of PEs.

In Figure 8, we plot performance versus the number of PEs

in the design for both ResNet18 and VGG11. For ResNet18,

we begin at 86 PEs since this contains the minimum number

of arrays (5472) required to store ResNet18. At 86 PEs, all

algorithms yield the same result since no duplication can be

done and weights are simply allocated to store ResNet18.

From there, we begin increasing the design size by 1
2 powers of

2. Block-wise allocation performs the best achieving 29% im-

provement over layerwise-allocation and 7.47× improvement

over both weight-based and baseline (not zero-skipping) algo-

rithms. We follow the same procedure for VGG11, however

we observe that block-wise allocation yields less performance

advantage. This is because VGG11 has roughly half the layers

that ResNet18 has. It is more difficult to allocate evenly

amongst a deeper network and therefore, block-wise allocation

yields better results on deeper networks.

To better understand why we get these large performance

improvements, it is useful to analyze array utilization. In

Figure 9, we visualize layer-wise utilization of the 20 convo-

lutional layers from ResNet18 using the different techniques.

It is clear that block-wise allocation sustains the highest

array utilization across nearly all layers in the network, easily

outperforming the other techniques. Weight-based allocation

performs very poorly because of the very different speeds of

each layer and block we showed in Figures 4 and 6.

VI. CONCLUSION

In this paper we demonstrate the efficacy of a new technique

and data flow to improve array utilization in CIM accelerators.

Given that the write energy of eNVM is high, CIM arrays

contain fixed weights unlike CMOS PEs which can perform

any operation in a DNN. Thus array utilization becomes a

key challenge since only some arrays can perform particular

operations. By profiling input statistics and relaxing our data

flow, we can allocate arrays to maximize utilization and as

a result, performance. The proposed allocation algorithm and

data flow performs 7.47× better than naive allocation and a

layer-wise dataflow.

VII. ACKNOWLEDGEMENT

This work was funded by the U.S. Department of Defense’s
Multidisciplinary University Research Initiatives (MURI) Pro-
gram under grant number FOA: N00014-16-R-FO05 and the
Semiconductor Research Corporation under the Center for
Brain Inspired Computing (C-BRIC) and Qualcomm.

REFERENCES

[1] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
2017.

[2] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday,
G. Dimou, P. Joshi, N. Imam, S. Jain, et al., “Loihi: A neuromorphic
manycore processor with on-chip learning,” IEEE Micro, vol. 38, no. 1,
pp. 82–99, 2018.

[3] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[4] J. Wu, Y. Chen, W. Khwa, S. Yu, T. Wang, J. Tseng, Y. Chih, and C. H.
Diaz, “A 40nm low-power logic compatible phase change memory tech-
nology,” in 2018 IEEE International Electron Devices Meeting (IEDM),
pp. 27–6, IEEE, 2018.

[5] T.-H. Yang, H.-Y. Cheng, C.-L. Yang, I.-C. Tseng, H.-W. Hu, H.-S.
Chang, and H.-P. Li, “Sparse reram engine: joint exploration of activation
and weight sparsity in compressed neural networks,” in Proceedings of the
46th International Symposium on Computer Architecture, pp. 236–249,
2019.

[6] X. Peng, R. Liu, and S. Yu, “Optimizing weight mapping and data flow for
convolutional neural networks on processing-in-memory architectures,”
IEEE Transactions on Circuits and Systems I: Regular Papers, 2019.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[8] B. Crafton, S. Spetalnick, and A. Raychowdhury, “Counting cards: Ex-
ploiting weight and variance distributions for robust compute in-memory,”
arXiv preprint arXiv:2006.03117, 2020.

[9] P.-Y. Chen, X. Peng, and S. Yu, “Neurosim: A circuit-level macro
model for benchmarking neuro-inspired architectures in online learning,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 12, pp. 3067–3080, 2018.

128

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:51:22 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

