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Abstract— Resistive random access memory (RRAM)-based
compute-in-memory architecture helps overcome the bottleneck
caused by large memory transactions in the convolutional neural
network (CNN) accelerators. However, their deployment using
2-D IC technology faces challenges, as today’s RRAM cells
remain at legacy nodes above 20 nm due to high program-
ming voltages. Besides, power-hungry analog-to-digital con-
verter (ADC) units limit the throughput of RRAM accelerators.
In this article, we present the first-ever heterogeneous (multiple
technology nodes) mixed-signal monolithic 3-D IC designs of
the RRAM CNN accelerator. Our RRAM remains at legacy
40-nm nodes in one tier, but CMOS periphery scales toward
advanced 28/16 nm in another tier. Our 3-D designs overcome the
bottleneck caused by ADCs and offer up to 4.9× improvement
in energy efficiency in TOPS/W and up to 50% reduction in
footprint area over 40-nm 2-D IC designs. Compared with
existing 2-D works, our 3-D architecture offers up to 28.6×
improvement in energy efficiency.

Index Terms— Hybrid integrated circuits, neural network,
resistive random access memory (RRAM), three-dimensional
integrated circuits.

I. INTRODUCTION

DEEP neural networks (DNNs) have shown remarkable
success in various intelligent applications, including

computer vision, speech recognition, and natural language
processing. The state-of-the-art DNNs tend to aggressively
increase the depth and size of the model to achieve incre-
mental accuracy improvement, which poses grand challenges
to the hardware implementations on the edge platforms
with stringent power/area budget. To address the challenges,
CMOS ASIC-based accelerators have been developed, such as
Google’s TPU [1] and MIT’s Eyeriss [2], which demonstrates
higher area and energy efficiency, compared with the main-
stream graphics processing units (GPUs). However, the mas-
sive data communications between memory and processing
elements (PEs) remain as a roadblock to further improving
the throughput and energy efficiency. Therefore, it is of
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great interest to embed the computation into the memory
array itself, namely computing-in-memory (CIM), to minimize
the data communications. To implement CIM, SRAM-based
designs have been proposed [3]. However, one SRAM cell
consumes a significant area (>150 F2, F is the technology
node) and suffers from the increasing leakage power with
CMOS scaling, thus making the emerging nonvolatile mem-
ories (eNVMs) more preferable for inference applications.
Among the eNVM candidates, including resistive random
access memory (RRAM) [4], spin-transfer-torque magnetic
random access memory (STT-MRAM) [5], and phase-change
memory (PCM) [6], we adopt RRAM for its simple and
low-cost integration with CMOS process.

The multiply-and-accumulate (MAC) operation in CIM is
the dominant computation in DNNs. It is initiated by asserting
multiple or all the rows of the memory array simultaneously.
Then, the elementwise multiplication is realized as the mul-
tiplication between the input voltage and cell conductance,
and the sum is added up as the column current following
Kirchhoff’s law. Analog-to-digital converters (ADCs) are typi-
cally deployed at the edge of the memory array to convert the
analog current/voltage-to-digital code for further processing
(e.g., shift-and-add, activation, and pooling). To avoid a large
footprint, several columns of a memory array share the ADCs
through column multiplexing. This sharing of ADCs notably
undermines the superiority of CIM in terms of throughput
and energy efficiency [4]. To mitigate the ADC bottleneck,
monolithic 3-D (M3D) IC stacking is an attractive solution
that could not only spare more space to accommodate the
ADCs but also reduce the interconnect power consumption by
effectively reducing the wire length.

In M3D, minuscule monolithic intertier vias (MIVs) (diam-
eter < 400 nm) are used for the connections crossing the
tiers, leading to highly denser vertical integration compared
with through-silicon vias (TSVs) [7]. Unlike TSVs, MIVs are
highly reliable, as they are similar to metal-to-metal vias.
MIVs are as robust to defects as any metal-to-metal vias.
However, in the case of defective MIV, it is impossible to
single out them and fix them individually like any other vias,
and such defects are usually included in the yield calculation.
The work [8] pioneered an M3D-based CIM design with a
two-layer reconfigurable SRAM macro, but without imple-
menting complete functionalities for DNN inference. Studies
are carried out to use 3-D vertical RRAM for memory applica-
tions [9]. However, M3D-based CIM design with CMOS and
RRAM needs further exploration.
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Fig. 1. Our heterogeneous mixed-signal M3D-based RRAM CIM architec-
ture. The top tier contains RRAM at 40-nm process, while the bottom tier is
scaled down to 28 nm and then to 16 nm.

The additional area obtained due to tier partitioning in M3D
design allows using one ADC per column of RRAM array,
thereby unleashing the maximum potential of the parallel CIM
architecture. Furthermore, the scaling of RRAM lags behind
that of traditional CMOS (the state-of-the-art 40-nm RRAM
process from TSMC [10] and 22-nm RRAM process from
Intel [11] compared with 7-nm CMOS [12]). Based on this
fact, for the first time, we propose an M3D-based CIM design
with CMOS and RRAM at hybrid nodes to further improve
the area and energy efficiency. In this M3D design, we retain
the RRAM tier at the relatively dated process and scale the
tier that holds CMOS peripheral circuits to a more advanced
node, as illustrated in Fig. 1.

The main contributions of this work are as follows.

1) We implement 2-D and M3D designs of full-chip CIM
tile consisting of nine PEs using multiple technology
nodes (TSMC 40, 28, and 16 nm).

2) We present a new mixed-signal physical design flow
for heterogeneous M3D integration involving sequential
integration of two different technology nodes at back-
end-of-line (BEOL).

3) We present a comprehensive comparison between
2-D and heterogeneous M3D designs in terms of power,
performance, and area (PPA).

4) We perform a detailed thermal analysis of M3D CIM
tiles and generate thermal maps to understand their
thermal behavior.

Our 3-D designs offer a staggering 3.4–4.9× improvement
in energy efficiency in TOPS/W and 43%–50% reduction
in footprint area over 40-nm 2-D IC counterpart, measured
with commercial-grade GDS designs and sign-off quality
simulations.

II. RELATED WORKS

Unlike most of the previous works, our design is not a
simple memory on logic M3D design. The prior designs
of CMOS and RRAM integration assume only one layer
of active transistors at the substrate, and the RRAM cells
are integrated at BEOL metal vias, as shown in Fig. 2(a).
There are rare M3D-based CIM designs reported with CMOS

and RRAM that employ two layers of active transistors. The
fabrication of two layers of active transistors is feasible by the
recent wafer-scale experimental demonstrations at advanced
technology nodes (e.g., using the laser-annealing technique to
crystallize the top-tier transistors [13], [14]), thus offering new
design opportunities for M3D integration. The tier consisting
of RRAM transistors also consists of CMOS transistors to
implement nonscalable analog peripheries to the memory,
which is discussed further in Section V-A.

Though the concept of RRAM + CMOS integration has
been familiar for a long time, this is the first detailed work on
such a heterogeneous implementation of M3D RRAM-based
CIM architecture integrating RRAM and CMOS transistors
together and providing complete PPA and thermal analysis
results. Our design stands out from traditional CMOS and
RRAM integration by placing CMOS cells in the top tier
along with RRAM cells, as shown in Fig. 2(b). This combined
placement of RRAM and CMOS cells in the same layer helps
in grouping cells operating at a particular voltage domain and
also in reducing the critical path delay by placing the analog
components (RRAM cell and controlling mux) closer to each
other in the same tier.

III. ARCHITECTURE AND DESIGN FLOW

A. Our CIM Architecture

Fig. 3(a) shows the diagram of our RRAM-based synaptic
subarray consisting of 128 × 128 one-transistor-one-resistor
(1T1R) RRAM cells and CMOS peripheries. Though multi-
level RRAM cells have been demonstrated in academia [15],
[16], the reliability and uniformity remain critical issues that
could introduce significant accuracy degradation for DNN
inference. Therefore, it is more practical to use a technologi-
cally more mature binary RRAM that has been demonstrated
at giga-bit chip-level in the industry. In our design, every
eight cells in a row are grouped as one weight to implement
8-bit weights, and eight sequential cycles of input vectors
of different significances are used to implement 8-bit neu-
ron activation. The input vectors are encoded as the digital
voltages (“0” or “1”) and applied to the wordlines (WLs).
WL switch matrix is used to assert all the WLs simultaneously
to initiate parallel MAC computation, and level shifters shift
up the voltage domain for RRAM. Partial sums are added up
as the column currents along the bitlines (BLs) accumulate
following Kirchhoff’s law. Next, they go through the ADCs
and thermometer-to-binary encoders, resulting in digital binary
codes. It is important to note that multiple columns of the
RRAM subarray share one ADC due to the large footprint
of ADCs. In our 2-D baseline design, eight columns share
one ADC. The shift-and-add modules shift and accumulate the
partial sums from eight weight columns during eight cycles to
obtain the final outputs.

Fig. 3(c) shows the diagram of one RRAM-based CIM tile
that is capable of performing one typical layer of convolu-
tional neural network (CNN) inference. The tile integrates
nine PEs to implement 3×3 convolution kernels using the
mapping strategy in [17], and each PE consists of 16 sub-
arrays, as shown in Fig. 3(b). At the tile level, accumulators
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Fig. 2. (a) Existing commercial integration of RRAM and CMOS. In this “pseudo-3D” integration, there exist no CMOS transistors in the “RRAM tier.”
(b) Our “true” monolithic integration of RRAM and CMOS M3D integration. CMOS transistors are present in the “RRAM tier,” and our RRAM module is
partitioned across the two tiers.

Fig. 3. Diagram of our (a) RRAM-based synaptic subarray, (b) RRAM-based CIM PE consisting of 16 subarrays and control units, (c) RRAM-based CIM
tile consisting of nine PEs, control units, buffers, and a complete set of logic modules, including accumulators, activation modules, and pooling modules.

sum up the partial sums from each PE. Using these sums,
activation (ReLU) and max-pooling modules compute the final
output feature maps.

1) Programming RRAM Resistance for Efficient Computa-
tion: The RRAM resistance should be accurately programed
to achieve high inference accuracy; more specifically, the LRS
state is more critical than the HRS state as the BL current is
dominated by LRS cells. We typically enforce a closed-loop
write-verify protocol during programming to tighten the dis-
tribution of LRS state, meaning that multiple iterative write
operations will be performed to push the resistance of the
selected cell into the desired range. Since the basic RRAM
operations are not the focus of this work, please refer to
our prior work on a fabricated RRAM CIM chip for more
details on the programming scheme and related write-verify
measurement results [4].

2) Parasitic Effect on RRAM Computation: The RON resis-
tance of RRAM is 10 K�, and the wire resistance of WLs and
BLs for a 40-nm 128 × 128 RRAM array is approximately
141 �. Thus, the wire resistance being much smaller than

the RRAM ON resistance, IR drop is not a major concern.
Also, there have been prior works on addressing the IR drop
issue. For example, Liu et al. [18] proposed an adaptive
compensation method during training from algorithm end, and
Woo et al. [19] proposed to use a selector device to suppress
the impact of IR drop. Such optimizations are out of the scope
of this work, and the contribution of this work is to overcome
the ADC bottleneck by enabling more ADCs through an M3D
integration.

B. EDA for Mixed-Signal M3D ICs

Our heterogeneous mixed-signal M3D design flow is shown
in Fig. 4. The analog blocks (RRAM cells, level shifters,
and ADC) in the CIM tile are custom-made using Cadence
Virtuoso. The RRAM cells and the level shifters remain at
the older 40-nm node, whereas the ADCs scale down to
advanced nodes of 28/16 nm. Integrating digital and analog
blocks requires a mixed-signal design flow. We generate the
abstract models of analog blocks and integrate them as hard
macros with digital control logic in Cadence Innovus. A major
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Fig. 4. Our EDA flow for heterogeneous mixed-signal M3D ICs.

challenge is in generating accurate physical design models
for heterogeneous integration. Our 3-D flow uses a unique
technology Library Exchange Format (LEF) file to enable the
integration of two different technology nodes. We create our
technology LEF file by merging the 2-D technology LEF files
of both nodes, resulting in a hybrid 14 metal layer stack 3-D
technology. For example, our combined heterogeneous BEOL
stack consists of eight metal layers from the TSMC 28-/16-nm
node and six metal layers from the 40-nm node.

We also modify the standard cell LEF files according to
this new heterogeneous 3-D technology BEOL LEF file. The
goal is to use the appropriate metal layers for cell designs
and cell delay/power characterization. Our macro designs and
characterizations are done in the same way. Besides, the timing
and power optimization tools need a technology file that
contains the parasitics (resistance and capacitance) information
of each metal layer and the dielectrics between them. For
this purpose, we generate a heterogeneous technology file by
merging the corresponding parasitic details from both the top-
and bottom-tier technology nodes.

Once the heterogeneous 3-D library is ready, we perform
top-level physical design. The top tier only consists of custom
analog macros. We restrict the placement of any standard cells
on this tier. This way, the top tier contains 40-nm RRAM cells
and other custom analog blocks, while the bottom tier con-
tains digital logic, ADCs, and timing buffers. As commercial
3-D tools are unavailable, we perform the 3-D design using a
modified version of Shrunk-2-D flow [20], which uses 2-D IC
commercial tools to implement 3-D designs.

It is important to note that 2-D IC tools do not use multiple
tiers to place cells and macros. Instead, they put them into a
single tier. Each technology node has minimum allowed cell
dimensions (the smallest possible rectangle) called the site
size. We shrink the transistor layer of top-tier analog macros
into the site size at the bottom-tier technology node. However,
we retain the original pin locations in the 3-D BEOL structure.
This way, the placement of shrunk top-tier cells becomes a
familiar-looking 2-D placement problem, while the routing
connects pins from both tiers in an optimized fashion.

C. M3D Integration

Several 3-D integration techniques have been proposed [13],
[14], [21], [22]. Among these, the 3-D sequential integration
technique [13] provides a way to stack multiple layers with
a nanoscale resolution, leading to smaller 3-D interconnects
between multiple tiers. The 3-D sequential integration ensures
the stability of the bottom tier by limiting the thermal budget of
fabrication of the top tier to less than 500 ◦C. With CEA-Leti
moving 3-D sequential integration closer to commercialization
(CoolCube), this technique can be employed to manufacture
our proposed design.

D. Testing M3D RRAM Arrays

It is a general perception that the external I/O pins are to
be restricted for M3D IC. Nevertheless, in our design, the I/O
pins for RRAM cell-by-cell operations (SET/RESET/Forming)
have to be kept as those pins are needed to program the weight
pattern to the array before the deployment of the chip for
inference. Though testing circuits are not a part of our current
implementation, in future designs, the built-in-self-test (BIST)
on-chip module could be integrated to perform the write-verify
in principle.

IV. BASELINE 40-nm 2-D CIM TILE

We design our 2-D CIM tile using a bottom-up
approach. First, we implement a PE consisting of 16 128×128
RRAM subarrays. We then integrate nine such PEs to create
a CIM tile, capable of performing a typical layer of CNN
inference. Each PE consists of a 4 × 4 array of RRAM
subarrays. A single subarray consists of a digital periphery,
level shifters, and custom analog blocks, including RRAM
cells, high-voltage muxes, and ADCs. Fig. 5(a) shows the
layouts of these blocks.

RRAM cells and their muxes require a voltage of 3.3 V
for their operation, as described in TSMC 40-nm RRAM
process [10]. Besides, the smallest technology node that offers
such high-voltage I/O transistors is 40 nm. Hence, we use
TSMC 40 nm to implement our 2-D CIM tile. The digital
periphery in an RRAM subarray generates the control signals
to the RRAM cells and muxes while operating at 3.3 V
in the analog partition. However, the standard cells in the
digital block operate at 0.81 V. Hence, we place a level
shifter block between the digital and analog blocks of an
RRAM subarray, as highlighted in Fig. 5(a). One of the
major components determining the efficiency of a PE is its
ADC. However, the ADCs are power-hungry and occupy a
considerable amount of space in the design. Hence, using one
ADC for each column in an RRAM subarray leads to a huge
increase in the system power and area, thereby reducing the
efficiency. We achieve a tradeoff between the system efficiency
and power dissipation by using one ADC for every eight
columns of the RRAM subarray, similar to the prior reported
tape-out [4]. Therefore, there are 16 ADCs for each RRAM
subarray and 256 ADCs in a PE. Fig. 5(b) shows the final
layout of 2-D RRAM PE.

We integrate nine PEs into a single CIM tile to implement
a 3 × 3 convolution kernel in a typical CNN topology [17].
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Fig. 5. Our mixed-signal 2-D CIM tile design using a commercial 40-nm technology. (a) Single subarray (166 μm×140 μm). (b) Single PE (625 μm×650 μm).
(c) Overall tile design (2.4 mm × 2.4 mm).

We evenly distribute: 1) accumulators that calculate the partial
sum from each PE; 2) activation modules; and 3) max-pooling
modules among the nine PEs in the top-level tile design.
Our 2-D RRAM tile operates at a maximum frequency
of 100 MHz. It has a footprint of 2.4 mm × 2.4 mm and uses
ten metal layers to route the entire design. The total number
of ADCs in this 2-D tile is 2304. Fig. 5(c) shows the final
layout of our 2-D RRAM tile.

V. PROPOSED 28-+ 40-nm 3-D CIM TILE

Our 2-D tiles restrict the number of ADCs used due to
their high power and area overhead. This restriction, in turn,
reduces the throughput of CNNs to a great extent. Scaling
RRAM cells to a smaller geometry is extremely difficult as
of today due to the high programming voltage requirement.
Our solution is to adopt heterogeneous M3D IC technology to
effortlessly integrate multiple technology nodes together and
scale scalable modules to a more advanced node.

A. Advantages of Heterogeneous 3-D CIM Tile

In our CIM tile, the digital control logic and the ADCs
are capable of scaling down to a more advanced technology
node. This ability enables us to build a heterogeneous M3D
CIM tile with: 1) digital and ADC blocks on the bottom tier at
16-/28-nm technology node and 2) level shifters, RRAM cells,
and muxes on the top tier using 40-nm technology. There is
a massive number of connections (55 296) between the ADC
and the digital control logic. Thus, scaling ADCs down to a
smaller geometry helps place ADCs as close as possible to the
digital block. In our 2-D CIM design described in Section IV,
the area occupied by the digital control logic and ADCs is
equal to the combined area of level shifters, RRAM mux, and
RRAM cells.

In our heterogeneous M3D design, we scale the digital
modules along with ADCs down to a 28-nm node. This causes
the bottom 28-nm tier to occupy a smaller area than the top
40-nm tier. We leverage this area imbalance to add additional
ADCs in the design and improve the throughput of the CIM
tile. The area imbalance between the two tiers allows adding

8× more ADCs into the design. This way, each column in an
RRAM subarray has a dedicated ADC for itself, offering more
parallelism. Note that attempting this ADC addition in a 2-D
design or a homogeneous M3D design would cost us more
area and power consumption. In contrast, our heterogeneous
3-D stacking helps keep the area overhead to a minimum due
to the smaller geometry in 28 nm.

B. Heterogeneous 3-D CIM Tile Design

Similar to the 2-D design, we follow a bottom-up approach
for our 3-D design. We split a single PE consisting
of 16 RRAM subarrays into two tiers and design the two tiers
separately. Fig. 6(a) and (b) shows the bottom-tier (28 nm) and
top-tier (40 nm) layouts of 3-D RRAM PE. This 3-D PE has
2048 ADCs in it, which is 8× more than its 2-D counterpart.
Fig. 7 illustrates this difference.

Using the heterogeneous mixed-signal M3D flow described
in Section III-B, we integrate nine 3-D PEs into a single
3-D tile. In addition to the PEs, we integrate the tile-level
digital logic, comprising of the accumulator, activation, and
max-pooling blocks, into the bottom tier. Fig. 6(c) and
(d) shows the bottom-tier (28 nm) and top-tier (40 nm) layouts
of our 3-D CIM tile. Our 3-D tile has a footprint of 1.7 mm
× 1.7 mm and uses 14 metal layers to route the entire design.
The bottom tier uses eight metal layers, and the top tier uses
six metal layers. The total number of ADCs in the entire 3-D
tile is 18 432. Despite the 8× increase in the number of ADCs,
the total internal power of the design is 40% less than that of
the corresponding 2-D design, as we scaled the ADCs down to
28 nm. However, the switching power is 2.5× higher than the
corresponding 2-D design due to eightfold increase in ADC
count and an increase in the capacitance of wires connecting
to the ADCs. More details are provided in Table I.

VI. PROPOSED 16 + 40-nm 3-D CIM TILE

A. Motivation

To further reduce the power consumption and improve
the energy efficiency of 3-D CIM tiles, we scale the digital
logic and ADCs down to 16 nm. Once again, this scaling
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Fig. 6. Our heterogeneous mixed-signal 3-D CIM tile design using a commercial 28- and 40-nm technologies. (a) Single PE bottom tier (28 nm). (b) Single
PE top tier (40 nm). (c) CIM tile bottom tier (28 nm). (d) CIM tile top tier (40 nm).

Fig. 7. GDS layouts of ADCs (highlighted in blue) in (a) 2-D CIM tile
(40 nm) and (b) 3-D CIM tile (28 nm). We fit 8× more ADCs due to the
size reduction in 28 nm.

introduces an area imbalance between the top and bottom tiers
in the 3-D design. Currently, each convolutional kernel in a
CNN topology has to access an external DRAM to receive
the activation inputs and store the result of the computation.
However, accessing external DRAM is energy-consuming,
especially for a large volume of input feature maps on CNN.

We leverage the additional area available in the 16-nm
bottom tier to integrate four SRAM buffers within a tile to
store the input–output feature maps. Each buffer has a capacity
of 32 kB. The size of the input feature map determines
the capacity of SRAM buffers. Based on the data obtained
from Eyeriss accelerator [2], the normalized energy per bit of
DRAM is 33× higher than that of SRAM. Thus, integrating
SRAM buffers within the tile helps us achieve 33× energy
savings. For a fair comparison, we add SRAM buffers to both
2-D and M3D versions of our CIM tile.

B. 2-D CIM Tile Extension

Fig. 8 shows the floorplan and layout of the 2-D CIM tile
with the input buffers. We place SRAM input buffers generated
by a TSMC 40-nm memory compiler, as shown in Fig 8(a).
The 2-D tile has a footprint of 2.59 mm × 2.59 mm and uses
ten metal layers to route the entire design. Similar to the 2-D

Fig. 8. (a) Floorplan (2.59 mm × 2.59 mm). (b) Final layout of our 2-D
CIM tile. We add input SRAM buffers unlike our previous design shown
in Fig. 5(b). We use a commercial 40-nm technology.

CIM tile without SRAM buffers, eight columns of each RRAM
subarray share one ADC to achieve a tradeoff between power
dissipation and energy efficiency. Hence, the total number of
ADC in this 2-D CIM tile is 2304.

C. 3-D CIM Tile With SRAM Input Buffers

Our 3-D CIM tile with SRAM buffer integrates digi-
tal control logic, ADCs, and SRAM buffers at the 16-nm
tier, level shifters, RRAM cells, and their muxes at the
40-nm tier. We generate 16-nm SRAM buffers using a TSMC
16-nm memory compiler. The top tier of this CIM tile and
its PEs, and the number of ADCs (18 432) remains unaltered
from those of the 3-D CIM tile without the buffers pre-
sented in Section V-B. Similar to the 3-D tile design without
SRAM, we begin designing the 3-D tile by designing the PEs.
Fig. 9(a) and (b) shows the bottom-tier (16 nm) and top-tier
(40 nm) layouts of a single PE. We then integrate nine 3-D
PEs to implement a 3×3 convolution kernel. Besides, we place
the SRAM buffers and tile-level digital control logic among
the nine PEs in the bottom tier.

Fig. 9(c) and (d) shows the bottom-tier (16 nm) and top-tier
(40 nm) layouts of the 3-D CIM tile with SRAM input buffers.
The footprint of this 3-D tile is 1.7 mm × 1.7 mm, which is
the same as that of the 3-D CIM tile without buffers. The
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Fig. 9. Our heterogeneous mixed-signal 3-D CIM tile design using a commercial 16- and 40-nm technologies. (a) Single PE bottom tier (16 nm). (b) Single
PE top tier (40 nm). (c) CIM tile bottom tier (16 nm). (d) CIM tile top tier (40 nm).

footprint of the 3-D designs is mainly determined by the
top-tier dimensions, as the top tier is at an older technology
node. The 3-D CIM tile with input buffers uses 14 metal layers
to route the entire design, eight metal layers for the bottom
tier, and six metal layers for the top tier. From Table I, it can
be observed that scaling down the bottom tier to 16 nm not
only allows packing additional gates and SRAM buffers but
also reduces the wirelength by 14.7% compared with the 3-D
design without buffers (28-/40-nm CIM tile).

VII. EXPERIMENTAL RESULTS

A. Energy Efficiency Calculation

Each MAC operation in the CNN involves the multiplication
of an 8-bit weight with 8-bit input. We store the weights in
every 128 × 128 RRAM subarray, and therefore, a single
RRAM subarray can hold 128 × 16 weights. Each MAC
computation involves two operations. Thus, the total number
of operations occurring in a subarray is 128 × 16x2. The
total number of operations in a PE with 16 subarrays is
128 × 16x2 × 16, and the total number of operations in
a tile with nine PEs is 128 × 16x2 × 16x9. To perform
a multiplication operation between 8-bit weights and 8-bit
inputs, we feed in a 1-bit input vector to each ADC and
every clock cycle. In the case of a 2-D tile, which involves
8-to-1 ADC sharing, processing 1-bit input takes eight cycles
to read out the columnwise partial sums for shift-and-add.
Therefore, 64 cycles are needed in total to perform the
MAC operation on 8-bit input. However, the dedicated ADCs
for each column in 3-D tile reduce the read-out latency to
eight clock cycles. The following equation gives the energy
efficiency of a tile

EE = # of ops

Total Energy
= # of ops

cycles × period × Total Power
. (1)

Table I shows the energy efficiency of both variants of 2-D
and 3-D tiles calculated using (1). In the case of RRAM tiles
without input buffers, the 3-D design is 3.4× energy-efficient
than the corresponding 2-D design. With input buffers, the 3-D
design is 4.9× energy-efficient than its 2-D counterpart. The
power breakdown of the CIM tiles is shown in Fig. 10.

Fig. 10. Power breakdown of CIM tiles.

B. Overall 2-D Versus 3-D CIM Tile Comparison

Table I summarizes the design details of two variants of
our 2-D and 3-D CIM tiles (without versus with SRAM
input buffers). The footprint of a 3-D tile without input
buffers is 43% smaller than that of its 2-D counterpart. The
footprint of a 3-D tile with input buffers is 50% of that of its
2-D counterpart. Despite the huge reduction in footprint, 3-D
tiles are still able to integrate 8× more ADCs than the
2-D tiles. However, this increases the total routing length and
power dissipation of the 3-D tiles. However, at the same time,
the number of operations performed by 3-D tiles is several
folds higher than the 2-D ones. Therefore, we compare the
number of operations performed per unit power dissipated
(energy efficiency) instead of comparing the absolute power
dissipated. In summary, our 3-D design (no SRAM case) over-
comes the bottleneck caused by ADCs. It offers a staggering
3.4× improvement in energy efficiency in TOPS/W and 43%
reduction in footprint area over 40-nm 2-D IC counterpart,
measured with commercial-grade designs and sign-off quality
simulations.

The critical path delay of the proposed design is 8.926 ns,
which limits the frequency to 100 MHz. The critical path
mainly consists of the latency for activating RRAM WLs, volt-
age developing on BLs, sensing of ADCs, and thermometer-
to-binary encoding. Such a memory-access delay is typical
in the reported RRAM-based prototype chips. The frequency
could potentially be boosted by inserting additional pipeline
stages (e.g., between ADCs and encoders) or using a smaller
array to reduce the RC parasitic of WLs and BLs. How-
ever, those design optimizations are out of the scope of this
work.
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TABLE I

COMPARISON OF 2-D AND 3-D CIM TILES

Fig. 11. Schematic of the VSA-based sensing scheme. We consider the
parasitics of additional metal vias incurred by M3D integration to analyze
their impact on the sensing latency. The HSPICE simulation results show a
negligible increase in sensing latency (∼8 ps).

C. Impact of 3-D Integration

To analyze the impact of the parasitics of additional metal
vias incurred by M3D integration on the sensing latency of
ADCs, we run HSPICE simulations with TSMC 40-/16-nm
PDKs. Fig. 11 presents the schematic of the voltage-mode
sense amplifier (VSA)-based sensing scheme, which is the
basic unit of ADCs. The pull-up transistor (PU), clamping
transistor (CLAMP), and BL essentially form a voltage-divider
structure, where the voltage level of node Vin is determined
by the number of activated low-resistance state cells (RON)
along the corresponding BL. Then, Vin is compared with the
reference voltage Vref at the assertion of enable signal (SAEN)
to generate the final output Vout. We add additional parasitics
(including the metal vias between each metal layer and the

MIV, e.g., RMIV = 12.5 � and CMIV = 0.037 fF) between
two partitions of the circuit, as depicted in blue in the figure.
We run the simulations for the worst case where only one
RON is activated in the column, and the HSPICE simulation
results show a negligible increase in sensing latency (∼8 ps),
meaning that the latency overhead induced by M3D integration
on ADC sensing is not a problem. This is as expected as the
value of parasitics of vias is much less than the BL capacitance
(∼15 fF) and RRAM cell resistance (RON assumed to be
10 K�).

VIII. THERMAL ANALYSIS OF M3D CIM TILES

One of the primary concerns of M3D designs is the thermal
performance of 3-D ICs. Integrating RRAM and CMOS on
different technology nodes into an M3D IC is an emerging
methodology to implement CIM-based CNN accelerators.
Thus, we performed thermal analysis on our two different
versions of 3-D CIM tiles to inspect if our designs have
any heating issues. In our thermal analysis flow, we divide
the entire 3-D design into several small thermal cubes and
associate them with a consolidated power density and thermal
conductivity based on different cells, and gate and interconnect
layers within the thermal cubes. The 3-D stack used to model
our CIM tiles for thermal analysis is shown in Fig. 12.

We use Ansys Fluent to evaluate the temperature gradient
across the entire 3-D design by inputting the thermal cube
structure associated with the power density and thermal con-
ductivity values. Based on the temperature gradient across
different areas of the die, Ansys Fluent generates a thermal
map of the entire design. The thermal maps of the bottom and
top tiers of 28-/40-nm CIM tile are shown in Fig. 13, and
those of 16-/40-nm CIM tile are shown in Fig. 14.

The 28-/40-nm CIM tile reaches a maximum temperature
of 309.58 K, and the 16-/40-nm CIM tile reaches a maximum
temperature of 305.50 K, when operated at a frequency
of 100 MHz. The major heat spots in both the designs are at
the center of the die, as expected in any M3D design. However,
the overshoot in the temperature is still under control, thereby
making our M3D designs less susceptible to thermal issues.
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Fig. 12. 3-D die stack model used for thermal analysis.

Fig. 13. Thermal maps of 3-D CIM tile without SRAM buffers (28/40 nm).
(a) Bottom tier (28 nm). (b) Top tier (40 nm).

Fig. 14. Thermal maps of 3-D CIM tile with SRAM buffers (16/40 nm).
(a) Bottom tier (28 nm). (b) Top tier (40 nm).

This small increase in the temperature across the M3D dies is
due to low power dissipation. The overall power consumed
by both the designs does not exceed 1 W in total, which
is very small compared with the large scale of the design.
It is important to note that small variations in temperature

across the die do not significantly affect the read/write cycles
of RRAM. Also, RRAM retention is usually affected by drift
in resistance at a temperature of 100 ◦C or greater [23]. As the
temperature across our designs does not exceed 37 ◦C, RRAM
retention capability remains unaffected.

IX. COMPARISON WITH EXISTING WORKS

Several RRAM-based CIM prototypes have been proposed
in recent years. Table II compares two such previous works
with our 3-D CIM tile. Xue et al. [24] designed a macro of size
256×512 on a 55-nm process that showed an energy efficiency
of 53.17 TOPS/W with 1-bit activation and 2-bit weights.
Since only nine rows of the memory array are activated
simultaneously during the MAC operation, the parallelism was
significantly undermined. Yin et al. [4] presented a macro at
the 90-nm node that activated all the 128 rows simultaneously
to improve the throughput. Nevertheless, since every eight
columns shared one ADC in this design, the throughput
was still limited. The energy efficiency was reported as
24.1 TOPS/W with 1-bit activation inputs and weights. The
MAC operation in this array is between the 1-bit weights and
activation compared with 8-bit activation and weights in our
design. Besides, the other two designs are much smaller 2-
D designs, whereas our design is a complete 3-D system,
including PEs, pooling/activation modules, and interconnects.
The reported energy efficiencies from [4] and [24] only
account for one macro array. If 8-bit activation and weights
are considered for [4] and [24], then their energy efficiencies
would drop approximately by 64 and 32 times to 0.37 and
1.66 TOPS/W, respectively.

It should be pointed out that here we are evaluating an 8 bit
× 8 bit MAC operations in this study; 1 OPS is 2 MAC
(8 bit × 8 bit). Some articles in the literature may report
>100 TOPS/W for low-precision MAC (even binary neural
network). If we convert our energy efficiency for binary neural
network, it will be 640 TOPS/W. To make a fair comparison,
the precision should be kept the same. Table II contains
several such comparisons. It can be seen that, when the energy
efficiencies are scaled for 8-bit activation and 8-bit weights,
our work provides the highest energy efficiency.

In addition to this, the energy consumption of our design
is dominated by ADCs. On the one hand, increasing the
ON-resistance of RRAM cells can effectively reduce the BL
current during ADC sensing, thus reducing the energy con-
sumption. On the other hand, we used the traditional Flash
ADC in this work without any low-power techniques. The
deployment of such low-power ADCs [31] can also help on
improving energy efficiency. In addition, given the typical high
sparsity in both weights and activations in DNNs, leveraging
this high sparsity by skipping “0”-involved computations can
also improve the energy efficiency [32]. These potential opti-
mizations are all applicable to our proposed architecture.

X. IMPLEMENTING PRACTICAL DNN

Fig. 15 shows the top-level diagram of our RRAM CIM
architecture that exploits multiple PE tiles to implement prac-
tical DNNs. Activation units and pooling units are needed
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TABLE II

COMPARISON OF OUR 3-D CIM TILES WITH PREVIOUS WORKS

Fig. 15. Top-level diagram of RRMA CIM architecture consisting of PE
tiles, activation units, pooling units, and global buffers. As an example, eight
tiles are utilized to implement the largest layer of ResNet-18.

to postprocess the weighted sum results after the accumu-
lation of the partial sums from each tile. Global buffers
are used to store intermediate results between each layer.
As a case study, we benchmark the hardware performance
of our 2-D design (40 nm) and M3D design (40/16 nm) on
implementing ResNet-18 [33], a representative CNN designed
for ImageNet classification. Table III summarizes the energy
and area consumption of two design options to map the
whole network. The results for PE tiles are based on the
synthesis results, as shown in Table I, and the results for
the other modules are from NeuroSim [34], a benchmarking
framework that supports flexible CIM array design options
with different memory technologies with various peripheral
circuit modules. It can be seen that PE tiles and global buffers
are dominating energy and area consumption. The overall
energy efficiency drops to 1.28 and 6.47 TOPS/W, respectively,
due to the additional energy consumption of activation units,
pooling units, and global buffers at the top level. We note that
the energy-efficiency improvement over 2-D baseline design

TABLE III

BENCHMARK RESULTS ON RESNET-18

further increases from 4.93× to 5.05× as the additional
top-level modules (i.e., activation/pooling units and global
buffers) are scaled to 16 nm that induces more savings.

Our proposed design implements nine PEs to intrinsically
accommodate up to 3 × 3 kernels, which covers the most
typical kernel sizes in practice. However, a larger kernel can
be implemented by stacking multiple 3 × 3 kernels, as intro-
duced in [35]. Therefore, our proposed design is capable of
supporting larger kernels as well.

XI. CONCLUSION

Our 3-D CIM tiles not only offer a smaller footprint than
2-D tiles but also show a manyfold improvement in energy
efficiency. The number of ADCs limits the performance of
the 2-D CIM tile. However, a heterogeneous M3D technology
allows scaling of the digital logic and ADCs irrespective
of any changes in the RRAM technology node. With the
16-nm control logic tier, we were able to integrate the
activation input buffers within the tile. Further performance
improvements can be achieved by scaling down the digital
logic tier and integrating weight input buffers within the
design.
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