
A Fault-Tolerant and High-Speed Memory
Controller Targeting 3D Flash Memory Cubes for

Space Applications

Anthony Agnesina1, Da Eun Shim1, James Yamaguchi2, Christian Krutzik2,

John Carson2, Dan Nakamura3, and Sung Kyu Lim1

1School of ECE, Georgia Institute of Technology, Atlanta, Georgia, USA
2Irvine Sensors Corporation, Costa Mesa, California, USA

3NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

{agnesina,daeun,limsk}@gatech.edu

{jyamaguchi,ckrutzik,jcarson}@irvine-sensors.com

daniel.i.nakamura@jpl.nasa.gov

Abstract—In this work, we develop a new 3D flash memory
cube architecture that integrates multiple flash dies and their
logic controller in a unique and optimized fashion for space
applications. In our Loaf-of-Bread (LOB) configuration, flash dies
are standing up and bonded laterally instead of the conventional
pancake-style vertical die stacking. Our LOB allows the flash dies
to be bonded without the use of through-silicon-vias and micro-
bumps. Instead, we insert a redistribution layer in between two
adjacent dies to bring the IO signals to the bottom, where a logic
controller die collects the IOs from all flash dies and coordinates
the communication with an off-cube host processor. Thus, our
LOB configuration allows the users to form flash memory cubes
using off-the-shelf 2D flash dies and complete the integration at
a packaging house instead of a fab. A key element in our LOB
flash cube is the logic controller architecture that supports fault-
tolerant and energy-efficient operation of the cube. We develop
the controller architecture and validate the functionality using
C++ emulation and FPGA prototyping. Compared with a state-
of-the-art space-grade flash memory module, our system shows
a 20X bandwidth improvement in a smaller form factor along
with a 25X better ratio of density per volume.

Index Terms—Aerospace and electronic systems, Computer
architecture, Disk drives

I. INTRODUCTION

Advances in non-volatile memory (NVM) have led to the

ability of creating high density flash-based storage systems

retaining information despite power loss. These systems have

been readily accepted by the commercial market in the form of

solid-state drives (SSDs). SSDs provide high memory density

per unit volume, low power and weight without the downsides

of their hard disk drives counterparts (e.g. mechanical parts).

These attributes make them compelling for use in the space

arena where more NVM applications for solid state recorders

are being pursued. In fact, SSDs have already been used in

a few space missions, including the Mars Global Surveyor

(1996), Cassini (1997) and New Horizons (2006). However,

This research is funded by the NASA SBIR Grant under the contract
number NNX17CP47P. A portion of the research was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

they have not yet been widely adopted inside embedded

systems for space, as the performance of space-qualified SSD

controllers does not measure up to those of the enterprise

server and consumer markets.

3D memory cubes have emerged over the last few years,

presenting solutions to the end of Moore’s law in terms of

size, performance and power efficiency. Typical solutions in

commercial applications such as Samsung’s V-NAND [14] and

IBM’s High Bandwidth Memory [11] use vertical channels

built into each die to connect chips together. However, the

behavior and resilience of such channels in a space environ-

ment is yet unclear. The authors of [17] propose a space-

qualified NAND flash memory cube, by stacking packaged

chips connected through flip chip bonding at the bottom

of the stack. In [1], the authors explore a novel way of

stacking, arranging the dies in a vertical fashion to allow direct

individual access to the bottom edge of each die. While these

new developments make NVM much more attractive for use

in space, the physical properties of NAND flash require a

complex extra layer of processing and control, making their

system integration difficult.

However, to the best of our knowledge, no specific con-

troller architecture has been proposed to take advantage of

the new cube characteristics as well as solve reliability and

performance issues of outdated space SSD controllers. The

contributions of this paper are as follows:

• We propose a new space-qualified SSD controller micro-

architecture targeting 3D memory cubes that renders the

memory system reliable while retaining state-of-the-art per-

formance characteristics.

• Our novel architecture combines a flash translation layer

(FTL) controller with RTL accelerators and MRAM caching

to offload critical processor tasks. It also includes several

error mitigation enhancements to address NAND flash defi-

ciencies in terms of radiation tolerance.

• We design software and FPGA-based emulators to validate

combined operation of the memory cube and RTL controller.

425

2020 IEEE 38th International Conference on Computer Design (ICCD)

2576-6996/20/$31.00 ©2020 IEEE
DOI 10.1109/ICCD50377.2020.00078

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:53:47 UTC from IEEE Xplore. Restrictions apply.

Si Filler

NAND flash
Capacitor

MRAM
Logic

controller serdes TSV

memory

cube

Spare flash

Fig. 1: Schematic view of our 3D NAND flash cube. The Loaf-of-
Bread configuration allows heterogeneous stacking of COTS NAND
and COTS MRAM dies into a single cube structure and enables
individual die access for improved bandwidth and reliability.

Fig. 2: Completed 2-metal redistribution layer, bringing IOs to the
bottom of the die for electrically edge-connected attachment to the
logic controller.

The rest of this paper is organized as follows. Section

II reviews the overall cube and controller architectures as

well as our novel solutions to classical SSD/FTL limitations.

Section III presents RTL enhancements for built-in safety,

scalability and power-up performance. Section IV shows how

we integrate advanced memory management techniques to

make the whole system more notably efficient and reliable. In

Section V, we design a custom software emulator to confirm

our architectural choices, we validate our RTL controller

through simulation as well as verify the combined operation of

our custom firmware and RTL controller on a FPGA platform.

Finally, conclusions are given in Section VI.

II. OVERVIEW OF OUR SSD ARCHITECTURE

A. Overall Cube Structure

Our logic controller targets the memory cubes built using

the technique developed by [1], where bare memory dies are

stacked in a Loaf-of-Bread fashion. This configuration enables

heterogeneous integration of different memory types such as

DDR, NAND, MRAM, ReRAM or SRAM, as well as offers an

individual, short and direct point-to-point interface to each die.

This allows in particular parallelism in the execution of oper-

ations and individual die access for improved fault-tolerance.

The architecture of our 3D NAND flash memory system is

depicted in Figure 1. Individual Commercial-Off-The-Shelf

(COTS) single-level cell (SLC) NAND flash and MRAM dies

are stacked at wafer level in a vertical configuration. Die IOs

are routed to the bottom of the stack on a redistribution layer

applied on each die as shown in Figure 2. High-frequency

bypass capacitors are incorporated in-between the dies. The

stack is then attached to a controller chip with integrated

through-silicon vias (TSV) structure to allow bumping to the

3D stack (top side). A typical ball grid array interface (bottom

side) allows the cube to be further packaged (e.g. in ceramic

package) and connect to the underlying PCB and external host

system.

B. Overall Controller Architecture

Figure 3 shows an overall view of our state-of-the-art SSD

controller architecture centered around a logic driven imple-

mentation and integrated in the chip sitting underneath the

cube. The controller is composed of the following components:

• A host interface connects a host computer to the SSD and

allows multiple stacks to be chained together for scalability

and achieve higher memory capacity.

• A system processor implements FTL mechanisms, per-

forming I/O requests from the host and flash management

procedures. Many of the processor tasks are accelerated by

offload to RTL, an easy means to improve performance,

reliability and energy consumption without resorting to

complex software optimizations.

• A memory manager handles the data path, using external

MRAM to cache host data and FTL data structures.

• A flash multiplexer/demultiplexer connects the FTL and

MRAM cache decoupled command and data paths to each

of the low-level NAND flash controllers.

• The low-level controllers communicate with the NAND flash

chips in parallel for improved bandwidth and fault-tolerance.

A processor-driven implementation as found in consumer

SSDs requires a very high-performance processor to handle

high bandwidth in-line data processing, which complicates

the design and increases power requirements. For this reason,

we develop an all-logic data path to allow a low power/low

resource processor to handle necessary functions. The logic

driven implementation offers lowest power (minimize data

movement), lowest gate-count and optimal performance, at the

expense of flexibility and upgradeability.

C. Our Answers to traditional SSD Design Tradeoffs

The SSD architecture involves many design tradeoffs. Its

central piece, the FTL, handles all the host commands and

manages the NAND flash to maximize performance, reliability

and endurance. It fills many duties such as the address mapping

of the logical block addresses (LBA) of the data from the

host to the physical page addresses (PPA) of the data in

the flash, garbage collection (GC) that frees invalid memory

space, wear-leveling that spreads flash writes across the entire

die to prevent premature burn-out of blocks, and bad-block

management that maps out corrupt blocks. A software-only

426

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:53:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Our flash-cube SSD controller architecture aiming to solve the limitations presented in Table I.

TABLE I: Our methods to increase performance, reliability and lifetime of space SSD systems, relying notably on the combination of LOB
cube structure, RTL accelerators, and MRAM caching.

Aspect Metrics of Interest/Limitations Our Solutions

Performance Bandwidth • Parallel interface of LOB structure supported by
individual low-level controllers
• RapidIO cube network scalability

Density • LOB structure enabling much taller stacks
• RapidIO cube network scalability

Address mapping latency • Accelerated hardware memory manager including caching
CPU processing overhead • Multi-level caching

• RTL Block Merger inside each low-level controller
Power-up wakeup time • RTL bootloader

• MRAM as main memory

Reliability COTS NAND radiation weaknesses • Advanced error mitigation techniques given in Table II
Unsafe shutdown • MRAM as cache and main memory

Lifespan Normal wearing • Hybrid-FTL offering efficient wear-leveling
• Data compression and scrambling

Write amplification • Caching
• Hot-cold data identification

implementation typically suffers many limitations in terms of

performance and safety features, as described in [2]. Table I

summarizes the main solutions that we present in the next

sections.

D. Our Reliability Management for Space

SLC NAND flash shows improved radiation tolerance to

total ionizing dose (20-150 krads (Si)) and single-event upset

with the reducing of feature size, due to thinner oxide required

for the device fabrication [9]. However, heavy ion and proton

irradiations still induce upsets and NAND flash is susceptible

to single-event effects (SEE) on the order of 10−11 bit/day.

With advanced technology nodes NAND flash reliability is

indeed at risk due to fewer electrons in the flash memory

cell floating gate and larger cell-to-cell interference and dis-

turbance effects [5]. Table II shows how our 3D memory

module provides robust protection against all forms of failures

of COTS NAND flash devices, including radiation induced in

case of long term storage in high dose environments.

E. Comparison

Table III compares our solution with the Radiation Tolerant

and Intelligent Memory Stack (RTIMS) from 3D Plus [4],

which was integrated on the NASA Curiosity rover for Mars

exploration. Compared with the RTIMS, our solution of-

fers a significantly higher Density×BandWidth/Volume ratio.

Table IV estimates worst case power consumption of our

memory solution, expected to remain under 9W. Note that

high-performance SSDs from the consumer market of similar

densities exhibit typical peak power consumption between 4-

8W. In our case, the 9W value is highly pessimistic. Indeed,

for example, MRAM current is heavily dependent on bank

activation rate. The worst case scenario of 100% non-repeating

bank access is mitigated with out-of-order execution of our

MRAM memory controller. Moreover, the MRAM is mainly

used for translation table lookup. Assuming sequential write

access with input data rate of 800MB/s would require about

102,400 lookups per second and another 102,400 writes (as-

suming all misses) which requires less than 8% active mode.

427

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:53:47 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Our mitigation of flash error sources.

Possible Error Our Mitigations

Raw bit error (read and write disturb, charge loss, stuck bit,
radiation event)

Bose–Chaudhuri–Hocquenghem (BCH) error-correcting
codes (ECC)

Bit error accumulation Scrubbing (read, correct and rewrite data)

Grown bad blocks Block replacement

Die failure Enable cold spare & rebuild using redundant array of
independent disks (RAID)

Logical block table error Reconstruct table using metadata

SEE causing bit upset during erase or write Partial read-back and block/die recovery using RAID in
case of failure

SEE during read Embed address with CRC into spare area and validate on
read-back

Controller SEE Radiation hardened process & checksum for address/data
path

TABLE III: Comparison of our solution with the RTIMS, which offers
significantly higher bandwidth in a smaller form factor.

Metric Our cube RTIMS [4]

Package Size (mm) 25×25×15 28×28×10
Density 96GB 3GB
#dies 24 3
Peak Bandwidth 800MB/s ∼40MB/s

Density×BW/Volume (arb.) 8.2 0.015

TABLE IV: Worst case peak active power consumption based on
values obtained from the datasheets.

Component Power

DDR MRAM (write mode) 2×300mW [6]
NAND flash (write mode) 24×180mW [13]
Cortex-M3 20mW [3]
SerDes (4) 1.6W [8]
Controller 2W

Total 8.5W

III. DATA MANAGEMENT IMPROVEMENTS

Figure 4 shows the main pieces of our FTL co-software/

hardware architecture integrating a low-power microprocessor

(ARM Cortex-M3). While we implement the more complex

tasks in software (e.g. external cache replacement policy,

FTL algorithms), the entire movement (made through simple

custom parallel interfaces with reduced signaling), protection

and processing of the data is done in hardware. This requires

a proper consideration of error-correcting codes, metadata

storage, host interface, and data hashing and compression.

A. Data & Data Path Protection

Data path connections are controlled in hardware and nec-

essary buffering is made through FIFOs to allow for fast, low-

latency and non-stalling communications. The data is stored

with strong BCH ECC on each page of the RAM cache and

Host Buffer

RTL

Accelerators

Wear Leveling

System Processor/FTL

Memory Manager

Garbage Collection

Bad Block Manager

Address Translation

Spare

Control

Fault Detection

/Correction

Rebuild

Logic

Bootloader

SHA256

Compressor

Microprocessor

Fig. 4: FTL co-software/hardware architecture. RTL accelerator mod-
ules connect as custom Advanced High-performance Bus (AHB)
peripherals to the CPU.

NAND flash, and passed through between modules with cyclic

redundancy checksums (CRC).

B. Optimized Metadata

A spare area is dedicated in each page to store information

necessary to rebuild the FTL logical block map and related

data structures at startup. It is also used to store health

metrics such as Program/Erase (P/E) cycles. A summary of our

advanced metadata layout is shown in Figure 5. It holds ECC

to recover bit errors and determine which pages are valid and

which blocks are failure-free. The address metadata is used by

the controller to validate page reads and the address translation

table. The timestamp is useful for scrubbing validation and

identification, and a data hash serves as additional verification

of boot data.

428

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:53:47 UTC from IEEE Xplore. Restrictions apply.

FTL info

protection codes

addressing

12 12 8 4 4 8

16 32

LBA PPA Timestamp Bad Block

Marker
Index P/E wear

count

Metadata

ECC

Hash of

Data

Data

ECC

118

214B

Fig. 5: Layout of metadata stored within each page, assuming 8KB
page size SLC with 448B spare area and strong BCH(9130, 8192,
67) encoding of user data.

Fig. 6: Our scalable and reliable SSD cube network architecture,
based on the space-qualified Serial RapidIO protocol. Each cube
stores 96GB of data (24-layers).

C. A Host Interface for Reliability and Scalability

The host interface logic is based on the high-speed and

fault-tolerant Serial RapidIO (SRIO) protocol. SRIO serves as

a standard RTL-based interface, serving similar functions as

SATA or NVMe, such as request scheduling. One principal

advantage of SRIO is its various fault-tolerance features. In

particular, it allows inter-module redundancy with no addi-

tional overhead required by the host processor, as the FTL is

handled mostly by the controller of each memory module. A

scalable and reliable network of cubes is then built as shown

in Figure 6. Technology of RAID is implemented among the

cubes, to enhance bandwidth and reliability, by spreading data

and parity across multiple disks. This way, we protect from

data loss in the event that one or more disks in the array fails

completely. This is a valuable feature to enhance mission life

since it allows for backup modules to take-over failed modules.

D. RTL Bootloader

A bootloader is stored as a read-only memory and preloads

the CPU instruction and data caches. For reliability and fault

prevention, the configuration data is stored in the lower block

of each NAND flash with built-in ECC SHA encoding. To

ensure that a valid copy was decoded, a hash table is stored

at the end of the data and instruction sections. The hash

table stores a SHA256 checksum for each page of the code

section. We accelerate the booting process by implementing

the SHA256 hash function in RTL. The system data is such

that the P/E cycle limit of the flash is ensured by design, with

no heavy writing on those pages (typically not a factory bad

block). Each block is 1MB in size, which allows for system

usage beyond the process code data.

E. Compression

We use a hardware GZIP compression engine, based on a

systolic architecture and LZ77 algorithm presented in [15].

Compressing the data saves space and has the benefit of

reducing write amplification and increasing write bandwidth.

Note that not all data is compressed, and this feature is only

used for radar imaging or audio in solid state recorders for

example.

IV. A HARDWARE-ONLY MEMORY MANAGEMENT

Our hardware accelerated memory system is shown in Fig-

ure 7. It includes components generally found in modern state-

of-the-art microprocessor designs that are rarely put together

in a SSD controller chip. A memory management unit (MMU)

handles the orchestration of data movement between the FTL,

the caches and the memory cube. Two levels of caching are

used for better performance. First-level is a non-blocking 4-

way associative SRAM cache with pseudo-tree least recently

used (LRU) policy. The SRAM content is protected by a

Hamming code single-error correction double-error detection

on each of the two ports. The last-level cache is the MRAM

which also serves as main memory for the FTL processor.

Caching speeds up the FTL tasks where frequent mapping

table lookups and updates are necessary (address translation,

bad block, free block list, metadata for health metrics, etc.)

and increase response time to the host for NAND bare data

read requests (e.g. hot pages), since fetching from the flash

requires more time.

A. Our Address Translation Scheme

To emulate a logical disk from the host point-of-view, the

FTL performs a mapping from the LBA of the host to the PPA

inside the NAND.

1) Hybrid Mapping: For mapping, we use a static scheme

provided at a page-granularity in page order by a block

sequencing from die-to-die. On each die, we use the hybrid

log-structured mapping of [10] where writes are appended to

the next free spot in the block that is currently being written

to. This way, writes are spreaded across all pages, performing

wear leveling and increasing the lifetime of the devices in the

cube.

2) Mapping Acceleration: A Translation-Lookaside Buffer

(TLB) caches the last LBA-PPA mappings. In case of a miss,

a hardware Page-Table Walker (PTW) “walks” the multi-

level Page Table Entry (PTE) stored in the L1 cache or the

MRAM to look for the mapping. If the mapping exists, it

automatically loads the translation into the TLB. Otherwise,

429

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:53:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Memory management in our SSD architecture, based on high-performance CPU architecture techniques.

Fig. 8: (a) MRAM cache architecture, (b) low-level controller archi-
tecture.

the FTL is notified which in turn provides a mapping to the

never-allocated page. For robustness against SEEs, parity bits

are added to the TLB contents. The TLB is also cached in

MRAM so that the CPU can restore the corrupted state of the

TLB from the MRAM in case an error is detected.

B. MRAM Caching & Buffering

We use the MRAM to store various controller metadata (e.g.

translation table, block map table) and frequently accessed/hot

pages. The organization of the MRAM cache is shown in

Figure 8(a). State-of-the-art DRAM caches store tags in the

DRAM itself [16]. Instead, we store tags on-chip for low

latency of tag lookups, which in turn incurs the need of a

large on-chip SRAM. Two MRAM dies are used in parallel

to protect against single event effects (the data is stored

with ECC and mirrored on writes and down-selected on

reads), and connected to the cache controller through a DDR4

interface. The non-volatile nature of MRAM optimizes power-

up and power-down sequencing and protects from sudden

power failures. These MRAM features optimize system energy

consumption, reduce the overhead of the controller (less

frequent journaling/checkpointing) and increase the lifetime

of the device: block table read/write operations from/to the

NAND flash array are done only when necessary, which

reduces write amplification. The MRAM device exhibits small

radiation effects at the storage cell level, as well as unlimited

endurance and extreme retention characteristics (20+ year) [7].

C. Hot-Cold Data Identification

We implement an efficient hot page identification scheme

presented in [12] in RTL, originally designed for software

implementation. It consists of two fixed-length LRU lists of

LBAs (hot list and candidate hot list), updated based on

write requests LBAs. This scheme is used to improve garbage

collection necessary to enumerate previously-used blocks that

must be erased or recycled. Our GC policy avoids copying

hot-live data, as pages that store hot data usually have a high

chance of becoming invalid in the near future.

D. Low-Level Controllers

To obtain high bandwidth and low latency, we implement

one channel controller per NAND device (= flash die), taking

advantage of the LOB cube structure offering individual die

connections. We operate dies in parallel, i.e. they are accessed

concurrently and carry out different operations independently.

This way, GC of multiple blocks are done in parallel when

needed. The block diagram of each low-level controller is

shown in Figure 8(b). When data is sent from the MMU/last-

level cache to the controller, it is buffered in its own internal

queue, rather than being stalled in the cache. This provides

increased performance and reduces cache accesses. Our low-

level controller architecture includes in particular the following

features.

1) Data Scrambling: We scramble the data so that stored

zeroes and ones are equally distributed to optimize binary data

distribution. This reduces cells interference with adjacent bits

(read/write disturb). This also aids in an even distribution of

cell voltages for each bit over the lifetime of the flash, reducing

430

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:53:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Custom interface C++ software for SSD architecture testing.

Fig. 10: Simulation of the repair of an inconsistent block map table
at powerup.

the stress on the tunnel oxide. This in turn maximizes flash

life. The scrambling and descrambling is based on a linear

feedback shift register, which uses the LPA as a seed value

so that descrambling is possible even after a page has been

moved (e.g. using internal copy-back operation).

2) Block Merger: Upon exhaustion of log blocks where

updated data is stored, the hybrid mapping requires expensive

merging operations in order to allocate new log blocks. Merg-

ing will reunite pages from many blocks through page copies

and block erases and is a critical performance bottleneck. To

limit the CPU processing during merging that would involve

passing around large pages through the Channel Mux/Demux

from a NAND device to an other, we perform these expensive

merge operations during GC inside each low-level controller

in hardware.

V. VERIFICATION OF THE PROPOSED ARCHITECTURE

A. Software Emulator

In order to test the correct functioning of the FTL firmware

and help in the design of the RTL controller, we develop

a custom C++ trace-driven emulator of the flash controller,

NAND stack with MRAM caching and SRIO daisy-chainable

interface. While executing the trace, we observe the status

of each die in the stack using the monitoring GUI shown in

Figure 9. This helps demonstrate functionality of our various

flash management features (firmware with GC, wear leveling,

etc.), the capability to recover flash corruptions (e.g. rebuild

table in case of power-loss scenario as shown in Figure

10), and optimizes memory tables and processor interaction.

Furthermore, the code stores a “golden” copy of all data trans-

actions to assist debugging and perform runtime validation of

operations on the cube.

TABLE V: Design metrics of the FPGA SSD controller. The ARM
processor and host interface are mapped onto a Cyclone V while the
rest of the design is placed onto a Virtex Ultrascale.

Module LUTs FFs Memory bits

on Intel Cyclone V

Cortex-M3 22k 16.6k 3.9M
Serial RapidIO 9.6k 10k 150K

on Xilinx Virtex UltraScale

Memory Manager 14.9K 14.7K 5.5M
Compressor 28K 46K 33K

SHA256 2.1K 1.8K 0
24 NAND controllers 82K 39K 860K

Total 158K 128K 10.4M

B. RTL Simulation & FPGA Implementation

We perform extensive Verilog simulations of most hardware

functions by building advanced testbenches for each module.

Figure 11 shows correct parallel operations of the low-level

controllers connected to NAND Verilog models from Micron.

We verify the operation of the firmware with the bare-metal

code exercising the AHB RTL peripherals correctly.

We implement the Cortex-M3 and Serial RapidIO interface

on Intel Cyclone V due to licensing reasons. We build the

prototype board shown in Figure 12 to test the processor. It

comprises a single socketed flash package connected to an

expansion header on a ARM MPS2+ board. The rest of the

SSD controller including the 24 low-level controllers and RTL

accelerators is mapped onto a Xilinx XCVU440 FPGA. The

fabric utilization of the FPGA resources is shown in Table V.

Figure 13 shows the two aforementioned mappings.

VI. CONCLUSION

SSD performance is impacted by many design tradeoffs due

to the circuit limitations of NAND flash. NAND flash also

suffers from reliability issues such as cell wear-out, charge

leakage, etc. These issues are intensified in the space radiation

environment. In this work, we propose a mostly hardware

space SSD controller architecture for a new 3D NAND flash

memory cube, where dies can be operated in parallel. The

novelty of our work is to combine a FTL controller with RTL

acceleration and MRAM cache in a single architecture. The

enhancements we propose in terms of reliability and high-

speed features help SSDs stand out as the most sensible option

for data storage in modern interplanetary spacecraft.

REFERENCES

[1] A. Agnesina et al. A Novel 3D DRAM Memory Cube Architecture for
Space Applications. In 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), June 2018.

[2] N. Agrawal et al. Design Tradeoffs for SSD Performance. In USENIX
2008 Annual Technical Conference, ATC’08, pages 57–70, Berkeley,
CA, USA, 2008. USENIX Association.

[3] ARM. ARM Cortex Series Documentation.
[4] M. Bagatin et al. SEE Tests of the NAND Flash Radiation Tolerant

Intelligent Memory Stack. In 2015 IEEE Radiation Effects Data
Workshop (REDW), July 2015.

431

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:53:47 UTC from IEEE Xplore. Restrictions apply.

Instruction Sequence from FTL

die 0

die 1

die 2

Programming Page Erasing Block

Reading Page

Fig. 11: Simulation of the parallelism of low-level controllers, where dies are operated concurrently.

Fig. 12: Cortex-M3 based prototyping system with Cyclone-V FPGA.

[5] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu. Errors in Flash-
Memory-Based Solid-State Drives: Analysis, Mitigation, and Recovery.
ArXiv, abs/1711.11427, 2017.

[6] Everspin. Using MRAM to Optimize System Energy Consumption.

[7] J. Heidecker. MRAM Technology Status, 2013.

[8] Honeywell. HXSRD02 Slider 1x/4x sRIO PHY and SERDES Quad
Transceiver Radiation Hardened.

[9] F. Irom et al. Single Event Effect and Total Ionizing Dose Results of
Highly Scaled Flash Memories. In 2013 IEEE Radiation Effects Data
Workshop (REDW), pages 1–4, July 2013.

[10] J. Kim et al. A space-efficient flash translation layer for CompactFlash
systems. Consumer Electronics, IEEE Transactions on, 2002.

[11] D. U. Lee et al. 25.2 A 1.2V 8Gb 8-channel 128GB/s high-bandwidth
memory (HBM) stacked DRAM with effective microbump I/O test
methods using 29nm process and TSV. In 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb
2014.

[12] Li-Pin Chang et al. An adaptive striping architecture for flash memory
storage systems of embedded systems. In Eighth IEEE Real-Time and
Embedded Technology and Applications Symposium, Sep. 2002.

[13] Micron. NAND Flash Die 32Gb Die: x8 300mm SLC, MT29F32G08AB.

[14] K. Park et al. Three-Dimensional 128 Gb MLC Vertical nand Flash

P&R RTL accelerators

memory

system

low-level

controllers

sha

compressor

P&R processor/SRIO

Fig. 13: FPGA layouts of SSD controller for memory cube.

Memory With 24-WL Stacked Layers and 50 MB/s High-Speed Pro-
gramming. IEEE Journal of Solid-State Circuits, Jan 2015.

[15] O. Plugariu et al. FPGA systolic array GZIP compressor. In 2017
9th International Conference on Electronics, Computers and Artificial
Intelligence (ECAI), June 2017.

[16] M. K. Qureshi et al. Fundamental Latency Trade-off in Architecting
DRAM Caches: Outperforming Impractical SRAM-Tags with a Simple
and Practical Design. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 235–246, Dec 2012.

[17] Tak-kwong Ng et al. Radiation tolerant intelligent memory stack
(RTIMS). In 2nd IEEE International Conference on Space Mission
Challenges for Information Technology (SMC-IT’06), July 2006.

432

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on February 20,2021 at 20:53:47 UTC from IEEE Xplore. Restrictions apply.

