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Abstract—This paper presents a machine learning (ML) frame-
work to improve the use of computing resources in the FPGA
compilation step of a commercial FPGA-based logic emulation
flow. Our ML models enable highly accurate predictability of
the final P&R design qualities, runtime, and optimal mapping
parameters. We identify key compilation features that may
require aggressive compilation efforts using our ML models. Ex-
periments based on our large-scale database from an industry’s
emulation system show that our ML models help reduce the total
number of jobs required for a given netlist by 33%. Moreover,
our job scheduling algorithm based on our ML model reduces
the overall time to completion of concurrent compilation runs
by 24%. In addition, we propose a new method to compute
“recommendations” from our ML model, in order to perform re-
partitioning of difficult partitions. Tested on a large-scale industry
SoC design, our recommendation flow provides additional 15%
compile time savings for the entire SoC.

I. INTRODUCTION

Modern System on Chip (SoC) designs are often larger and

more complex than can be competitively tested under tradi-

tional hardware/software co-validation methods. They require

billions of cycles of execution, which takes too long to simu-

late in software. Physical emulation using commercial FPGAs

can overcome the time constraints of software emulation of

an ASIC of up to a billion gates.

To achieve successful mapping of large ASIC designs, an

emulator integrates many hundreds of FPGAs. Commercial

FPGAs can provide larger capacity and faster runtime perfor-

mance (up to 5MHz) compared with custom FPGAs or special-

purpose custom logic processor-based architectures. However,

these FPGAs do not befit the very high pin-to-gate ratio

requirements of logic emulation systems [1]. Therefore, they

often suffer from a time-consuming Place and Route (P&R)

step that can quickly become the most dominating part of the

entire implementation time [2]. As a new compilation run of

hundreds of FPGAs might be needed for each design update,

a compile time of multiple hours each is crippling.

The use of machine learning (ML) is already benefiting

the semiconductor industry, with applications in formal ver-

ification and physical design [3] (e.g. yield modeling and

predicting congestion hotspots). Our research suggests that

ML can as well expedite the time-consuming P&R physical

emulation step for FPGAs. Recently, ML has been employed

to improve wirelength, delay or power of FPGA P&R solutions
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Fig. 1: Our multi-FPGA emulation scheme with FPGA recompilation.

using Design Space Exploration of CAD tool parameters [4],

[5], [6]. In [7], the authors show it is possible to predict

the best Quality-of-Results (QoR) placement flow among a

reduced set of candidate flows. However, none of these studies

focus on important issues related to compile time, nor have

been employed to predict compilation success of very high

utilization designs (e.g. up to 75% lookup table (LUT) usage).

Indeed, the basis of their exploration targets small traditional

benchmarks or small FPGAs, which is far from the reality

of crowded and complex consumer designs found in SoC

emulation. The key contributions of this paper are as follows:

• We build a complete ML data pipeline framework, allow-

ing for the extraction of numerous predictors.

• Using these predictors and our large-scale commercial

FPGA compilation database, we build models delivering

high predictability of P&R design qualities, runtime, and

optimal mapping parameters of complex designs.

• We show how—by predicting P&R compilation results—

we effectively improve the compile time and hardware

cost of the P&R step of the emulation process.

• Using our ML model, we demonstrate how our “design

recommendations” improve the quality of the partition-

ing, resulting in overall faster P&R steps.

II. MACHINE LEARNING INFRASTRUCTURE

This work is intended to improve the compilation flow of

multi-FPGA-based emulation systems, whose main steps are

shown in Figure 1. A given SoC RTL is first translated into

circuit representation. Next, the resulting netlist is partitioned

across multiple FPGAs using a multilevel hierarchical ap-
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Fig. 2: Our two-step FPGA P&R flow. EASY netlist finishes in Step
1, while HARD continues with the default run, along with new jobs
added, into Step 2.

proach. As simultaneous objectives need to be optimized dur-

ing partitioning (e.g. hop counts, cut-sizes, maximum FPGA

utilization, etc.), it is common that the required partitioning

quality cannot be met without user input.

A. Target FPGA P&R Flow

After these steps, each individual design partition has to be

placed and routed within each FPGA using an EDA or FPGA

vendor software – Xilinx Vivado in our case. To perform P&R

for a given netlist or partition, we either run multiple parallel

explorations to find the best P&R solution, or launch Vivado

with a Default strategy (≡ default settings) first. As the server

grid used for compilation is occupied by multiple projects in

parallel, where each project requires hundreds of individual

compiles, limited machine resources can handle these P&R

jobs. Thus, it is critical to launch as few jobs as possible for

the given netlist. Hence, the Default strategy is initiated first

as a standard, as shown in Figure 2.

If the Default run fails or does not finish in N hours

(N = 5 hours, our “wall-time”), the compiler launches a

set of additional P&R jobs in parallel. When one of the jobs

terminates successfully, all the running tasks for this FPGA are

aborted, and the pending tasks are cancelled. Here, each job

implements a different strategy, i.e. a combination of Vivado

parameters. In a traditional flow, the strategies selected are not

design-related, but mostly dependent on the architecture of the

target FPGA. The particularities of a given design are not taken

into account, but the strategies that are launched are those that

have worked with most success in the past. The “best” knob

parameters of the P&R engine truly depend on many design-

related factors, more than just the target FPGA family. In this

paper, we will prove that these factors can be reduced to a

small set of key features. If the P&R of any partition still fails

despite using all these strategies, re-synthesis or re-partitioning

of the complete design is necessary. Dealing with such tasks
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Fig. 3: Our machine learning framework. We update our database
and ML models upon new compilation data being added.

requires an engineer in the loop and involves iterating through

the entire design cycle, which is time and effort-consuming.

It is therefore highly useful to determine the complexity

(compile time and failure rate of the Default mapping strategy)

of a given netlist before starting the long and critical P&R step.

It is also important to extract the features that constitute a

complex design, so that the emulation partitioner can perform

an educated and improved partitioning. These needs are the

primary goals of our machine learning framework.

B. Our Commercial Database

After every P&R run, we perform regular expression pat-

tern matching on the emulator logs to extract the features

of interest. To build the database we first retrieve almost

every feature that may be of valuable information about the

compilation process with little filtering. This initial effort, for

each netlist, leads to around 800 features that contain the

following information:

• multi-partitioning results (emulation environment)

• synthesized RTL design of each partition

• host machine used for compilation

• targeted FPGAs

• intermediate and final results of the P&R

The data pipeline integrated in our emulation tool is shown

in Figure 3. The database is updated daily with new data

coming from in-house consumer compilation runs. The ML

models are also updated in an off-line setting, by refitting them

on the entire database. To account for the frequent changes in

the compiler (e.g. partitioning settings), we weight designs

differently when building the models. Our weighting depends

on their recentness, so that our models perform better on what

is the current state of the compilation process. The ML models

are used to drive the netlists P&R: choice of appropriate

P&R strategies for each partition (see Section IV), and trigger

preemptive re-partitioning with balancing (see Section VI).

Table I shows typical values of some features found in our

database. Note that most of the design partitions are very

large with some having more than a million LUTs or tens

of thousands of Control (CTRL) sets.



TABLE I: Feature characteristics of our database (built for an
industry’s emulation system using commercial designs).

Single FPGA partition
- # LUTs # data wires # CTRL sets P&R time

Mean 520K 1.2M 10K 186min
Range [800, 1.9M] [8.7K, 3.6M] [100, 160K] [25m, 1day]

Complete SoC
- # LUTs # FFs # DSPs # Partitions

Mean 24M 19M 4.5K 40
Range [1M, 312M] [500K, 198M] [0, 82K] [4, 377]

C. Feature Selection & Data Processing

Our database currently has around 1 million FPGA com-

pilation entries of industry leaders’ designs and is growing.

Among them, we restrict ourselves to those designs with

more than 20% filling rate. In addition, we reject the features

that correspond to post-P&R knowledge (e.g. placement time,

memory usage during routing, etc.) as they are part of what

we want to predict. We then restrict our choice to 26 features

directly available from the synthesized netlists before any P&R

step, whose types are:

1) utilization based such as # LUTs, # Flip-Flops (FFs), #

data wires, # CTRL sets, etc.

2) FPGA-based such as family, generation and amount of

device resources

3) host machine-based such as # processors, CPU frequency,

memory available, etc.

To further reduce the number of features, we try dimen-

sionality reduction methods such as PCA and Autoencoders.

But, they all result in a decrease of predictability performance.

After feature selection, the data is processed to impute missing

values, remove NaN and duplicate entries. Some benchmarks

are recompiled many times for test purposes and this is not

representative of the natural distribution of designs. Moreover,

depending on their cardinality, we encode categorical features

using one-hot or likelihood encoding. We scale numerical

features to zero mean and unit variance. Skewed numerical

features are also transformed by Box-Cox transformation.

III. PREDICTING EASY VS. HARD NETLIST

Our first goal is to predict before any P&R attempt, which

design partitions will end up being HARD (= hard-to-compile)

or EASY (= easy-to-compile) so that we can skip the unnec-

essary wall-time of N hours and proceed to launch multiple

strategies at time zero (see Figure 2). We state the formal

definition of this problem as follows:

P1: EASY vs. HARD Netlist Classification
Input Netlist, target FPGA, default P&R strategy, wall-time

Output Predict if the P&R using the default strategy will finish
within the wall-time (= EASY) or not (= HARD)

Why? If predicted right, we can skip step 1 in Figure 2 and
directly start step 2, thereby saving resources used.

From the compile time and winning strategy information

available in the database, we first compute the target variable

Fig. 4: Our model stacking strategy.

EASY vs. HARD of each entry depending on the wall-

time given. Our goal is to perform a supervised learning

classification task, where we learn the database first using a

training set. Next, for each new design in the test set, we use

our ML model to map it to a binary label {0, 1}, where 1
corresponds to a HARD design and 0 an EASY design.

A. Model Construction & Experiment Settings

We use a powerful method used in ML called “Stacking”

shown in Figure 4: 1st-level base models are fed to a 2nd-level

meta-model stacker which generates the final prediction. Our

base models are a combination of tree based models (XGBoost

Gradient tree boosting, scikit-learn Random Forest and Extra

Trees) and Artificial Neural Networks (built using Keras API).

All these models have strengths and weaknesses. But, the

Stacker, a simple Logistic Regression, outperforms each of

them because it can highlight the benefits of each base model

while discrediting where they perform poorly.

After data processing and filtering, we are left with a

dataset of around 100K designs out of 1 million originally.

We randomly shuffle the entries and select 90% of them for

training (96,165 instances) and the remaining 10% (10,685)

as the test set. We train and tune the hyper-parameters of the

base models on the training set using stratified 5-folds cross-

validation and Bayesian Search Optimization. The Stacker is

then trained by 4-folds cross-validation on the training out-of-

folds predictions of the base models. We use indexes different

from the first level folds to avoid “data leakage” (causing over-

fitting), and tune the Stacker manually.

Because of the imbalanced nature of the problem (typical

workload of 88% EASY vs. 12% HARD design partitions),

our objective function is a mixture of the Area Under Curve

(AUC, a rank statistic), and log-loss (a calibration statistic

and strictly proper scoring rule), rather than accuracy, a metric

that cannot grasp the pitfalls of imbalanced datasets. Here, the

rare HARD class is the class of interest. Thus, our goal is to

optimize the prediction capability on this class while staying

over a reasonable accuracy on the majority EASY class. The

F1-score captures this objective in our case.

B. Results & Analysis

1) Prediction Results: Depending on the request of the

user, we utilize three different feature sets. The first one

consists of building and testing the models using the features

presented in Section II.C (= our baseline). The second one



TABLE II: Confusion matrix with our baseline feature set.

Predicted Class
EASY HARD

Actual Class
EASY 9163 (98%) 230
HARD 260 1039 (80%)

TABLE III: Baseline vs. modified feature sets. We either remove CPU
info or add super logic region (SLR) info in our modified sets.

feature set accuracy F1-score AUC log-loss
+ SLR 96.3% 0.86 98.5% 0.10

baseline 95.4% 0.81 97.2% 0.13
- CPU 93.8% 0.75 95.4% 0.16

excludes the information related to the host machine, which

may not be easy to collect, e.g. the “free memory” feature

that dynamically changes depending on other tasks running

on the machine. Both of these levels can be categorized as

“fast” prediction as they can be performed before any P&R

step. The third one utilizes some information related to netlist

partitioning such as Super Logic Regions (SLR) and Super

Long Lines utilization of the FPGA devices.

We show in Table II the confusion matrix of our “baseline”

classifier. The matrix is built using the decision probability

threshold (to predict class membership) that maximizes the

F1-score on the training set. In addition, Table III gathers

the metrics of interest obtained by training and testing our

stacked model based on the three feature sets aforementioned.

We observe that if the user is willing to wait for the SLR

partitioner to complete, or at least until it returns gate counts

estimations, we can predict with even higher certainty the

EASY and HARD classes. All in all, all our metrics confirm

high predictability capability of our three ML models with

a very low False Positive Rate of less than 2.5%. We also

observed an expected gain of the stacked model in all the

considered metrics compared with the base models (+4%
accuracy, +6% F1-score, +3% AUC, and −0.07 log-loss).

2) Feature Importance: To highlight the key parameters

driving the FPGA compilation complexity of a netlist, we com-

pute from our models which features are the most important in

the final EASY vs. HARD prediction. Widely used importance

methods based on gain, weight or split count have showed to

lead to inconsistencies. We thus decide to use the Shapley val-

ues [8] as feature importance, an attribution method inherited

from coalitional game theory. Shapley values tell how to fairly

distribute the “payout” (the predicted probability) among the

different “players” (features). The feature importance of the

top features is shown in Table IV. Our main observations are:

• The information on the host machine such as free memory

and cache space are high impact features. It is expected

as a heavily-loaded machine is, by experience, slower.

• We observe a predominance of the features related to

LUT usage. This can be explained by the fact that about

30% of these LUTs are LUT6, spots of high connection

traffic that directly impact congestion. A typical mapper

usually reduces the competition for routing resources by

TABLE IV: Feature importance ranking based on their impact on
output prediction.

Rank Feature Imp. Rank Feature Imp.
1 #LUT 0.213 6 MemFree KB 0.050
2 #data wires 0.185 7 #CTRL sets 0.045
3 FPGA family 0.090 8 #clock wires 0.040
4 #LUT6 0.081 9 CPU cache KB 0.038
5 #FF 0.065 10 #Muxcy 0.036

mapping LUT6 to LUT4 in high-congestion areas.

• We note a large importance of the FPGA family. This

can be explained by the influence on runtime of the

differences in the internal architecture (routing, clock

network and logic blocks) of the FPGAs leveraged in our

emulation system, namely Xilinx Virtex-7 and UltraScale.

• After #LUT and #data wires, there is no clear outstand-

ing feature. This confirms the fact that dimensionality

reduction is detrimental, because any feature that we may

remove plays a part in the predicted probability.

C. Application to Wall-time Optimization

Earlier the EASY/HARD labels are originally computed for

a 5-hour wall-time. We now decide to investigate the effects

of reducing the wall-time (whose value can seem large and

arbitrary) on our compilation process in terms of the overall

compile time and hardware resources. However, the database

is originally built on the results of the framework without

prediction. We have no information on the “optimal” win-

ning strategy and associated compile time of EASY designs.

Instead, we only know that for the EASY jobs, the Default

strategy finished in less than 5 hours. It is nonetheless possible

to estimate from the database how much compile time we gain

by launching additional strategies. To do so, we first find an

upper bound of the compile time gain ratio α̂CT , defined as:

α̂CT = ECT∼pHARD(CT )

[
ALL (CT )

DEF (CT )

]
(1)

where ALL (CT ) is the compile time when all strategies are

tried concurrently (which then corresponds to the compile time

of the fastest strategy), and DEF (CT ) is the compile time of

the Default strategy only. To bound α̂CT , notice that HARD

designs—whose winning strategy is not Default—would have

ran using Default only for at least 5 hours more than the

recorded compile time. We use bootstrapping to show that

α̂CT ≤ 0.67 is verified almost surely.

Reducing the wall-time wt changes some previously EASY

designs to HARD designs. In this case, HARD designs—

whose winning strategy is not Default—do not see their com-

pile time modified. However, HARD designs—whose winning

strategy is Default—have their compile time modified as:

CT =

{
CT if CT ≤ wt/(1− α̂CT )

wt+ α̂CT · CT otherwise.
(2)

To show how our classifier improves the P&R process, we

build the graph shown in Figure 5 to show the estimated



Fig. 5: Compile time improvement using our ML model. The numbers
on the points indicate the wall time used. Our saving ranges from
25min to 80min depending on wall time used.

average compile time and number of jobs (#jobs) per netlist

required to complete P&R of all test designs. This calculation

is done based on our HARD/EASY prediction. We vary the

wall-time and compare our ML model to a Perfect Classifier

and to the non-ML framework presented in Figure 2. We

consider a worst case scenario of 12 strategies used on a

HARD design. Each wall-time corresponds to a new trained

and tested model, resulting in a new F1-score-maximized con-

fusion matrix. Our model deviates from the Perfect Classifier

as the wall-time rises, as it causes the number of HARD

designs available to decrease, producing a more and more

imbalanced and therefore difficult classification problem.

The graph shows, for a fixed wall-time, that our prediction

model improves the average compile time per design with

limited effect on the average #jobs launched. The largest

compile time gain is seen for a wall-time of 100min. However,

this would also yield ∼ 11.5 jobs per design, which is a too

high hardware cost. Reasonably, keeping our original wall-

time of 300min (5 hours) still yields a reasonable compile

time gain of 25min per design for less than one job launched.

IV. PREDICTING WINNING STRATEGY

As shown in the previous section, our ML model help re-

duce the time used for FPGA compilation. To reduce hardware

effort on top of that, we need to be able to predict the winning

strategy to avoid launching more strategies than needed. We

state the formal definition of this problem as follows:

P2: Winning Strategy Set Prediction
Input Netlist, target FPGA device, full strategy list

Output A variable size subset of strategies that are likely to win
(= finish FPGA compilation the fastest)

Why? If predicted right, we can reduce the compilation time
and the number of jobs required for the netlist.

TABLE V: Description of Default strategy and top 3 advanced
strategies with highest success rates.

Name Objectives

Default Balances between timing closure effort and com-
pile time. Runtime expensive algorithms are not
used.

Strategy-1 Runs multiple passes of optimizations, with ad-
vanced placement and routing algorithms.

Strategy-2 Timing-driven optimization of SLR partitioning
(by exploring SLR reassignments).

Strategy-3 Makes delays more pessimistic for long distance
and higher fanout nets with the intent to shorten
their overall wirelength.

A. Model Construction

We use the stacking and training/validation/testing method-

ologies presented in Section III.A, but modify the settings from

binary to multiclass classification with a One-Vs-Rest (OVR)

approach. We fit one classifier per class (≡ per strategy).

Then, for each classifier, the class is fitted against all the other

classes. Because the training sets are highly imbalanced with

OVR, we follow [9] that modifies the target values so that

the positive class has target +1 and the negative class has

target −1/(#classes − 1). Because we have 4 base models

and 21 classes, the input of our meta-model is 64 wide, which

is large. To help with dimensionality, we use as meta-model

a regularized version of the multinomial Logistic Regression.

Table V describes the objectives of the Default strategy as

well as of the three strategies with highest success rates (%

of times it is a Winner, excluding Default).

Our goal is to determine the winning strategy of HARD de-

signs among the 21 available Vivado strategies. This is difficult

in our framework for two reasons: First, the Default strategy

is winning more often than not as it was launched first and

kept running for 5 hours before any other strategy. The second

reason is that not all strategies are fairly represented. Indeed,

when the wall-time hits, not all 21 strategies are launched, but

rather 3 or 4 are chosen, depending on the machine resources

available and previous human experience with the strategies.

As mentioned in Section II.A, these strategies are not design-

related but rather decided by user experience.

B. Application to Job Minimization

Despite these complications, we find that predicting a set

of candidate winning strategies is possible and enough to

reduce the effort spent in FPGA compilation. Rather than

picking a unique winning strategy, we select multiple strategies

based on the probability vectors P = {Pi}i∈designs where

Pi = P(designi) = (pL0, . . . , pL20) given at the output of our

model. There are 21 contending thresholds, one per class Li.

The probabilities obtained yield a sense of confidence level.

Deciding how to use these values is up to the user. In Table

II and Section III.C, we chose to use a probability threshold

to distinguish classes that maximized the F1-score. However,

in our grid farm framework, time and effort embody our true



TABLE VI: Job minimization with our strategy predictor.

# jobs improve
no prediction 2.4 baseline
EASY/HARD classifier 2.9 -21%
perfect EASY/HARD classifier 2.2 8.3%
strategy predictor 1.6 33.3%
perfect strategy predictor 1.0 58.3%

utility functions, and optimizing these objectives will likely be

at the detriment of the F1-score.
We perform thresholds tuning to minimize the overall #jobs.

This problem can be mathematically formulated as:

argmin
T

#jobs(CL(T,P), Strue) (3)

where Strue corresponds to the true winning strategies, and

CL(T,P) is the set of proposed strategies for each design

obtained using thresholds T on the probability vectors P . The

#jobs function is expressed as:

#jobs =
∑

i∈designs
J(i) with (4)

J(i) =

{
card(CL(T,Pi)) if {Strue}i ∈ CL(T,Pi)

12 otherwise.
(5)

As this function is non-linear and not differentiable, we use

Powell’s method with an initial start point found by optimizing

the F1-score of each class independently:

T0 = (argmax
T

F1(L0), . . . , argmax
T

F1(L20)) (6)

During training, we solve Equation (3) for each model and

fold. The threshold vector used on the test set is then computed

as the average of the cross-validation-folds thresholds. We

obtain an accuracy on the test set of 67%, coinciding with

an average size of strategy set proposed of card(CL) ≈ 1.8
and resulting #jobs ≈ 5.2 spent on HARD designs. We then

use this strategy predictor in Step 2 of our pipeline shown in

Figure 2 to see how the overall number of jobs is reduced.

Comparison is done at original 5-hour wall-time. The new

average #jobs is shown in Table VI and compared with the

other flows. We observe that our strategy predictor combined

with our EASY/HARD predictor provides 33% jobs savings.

V. PREDICTING COMPILE TIME

To show how ML can beneficially affect productivity, we

test our framework in regressing the compile time of P&Rs.

We present how using the predicted values can improve

computing farm utilization by optimizing the scheduling of

jobs fired on the grid. We state the formal definition of this

problem as follows:

P3: Compile Time Prediction
Input Netlist, target FPGA device, strategy used

Output How long will the netlist compilation take?

Why? If predicted right, we can assign it to the right server
and thus make the best use of the computing resources.

A. Model Construction

The same model stacking and training/validation/testing

methodology presented before is used but with regression ver-

sions of the models. In addition, the objective scoring becomes

the Mean Absolute Error (MAE). We obtain a satisfactory R2

of 0.85, showing enough correlation between predicted and

actual compile times. A MAE value of 18min shows that on

average the prediction is very accurate. But, a Root Mean

Square Error of 37min shows it also exhibits large variations

of correctness.

B. Application to Job Scheduling

Using the built ML model presented above, we predict first

hand how much time each P&R job is going to take. Even if

the prediction is not perfect, we use this value to our advantage

to perform an improved scheduling of the jobs fired on the

server grid. By that, we mean reduce the makespan of the

logical schedule, i.e. the time difference between the start

and finish of the sequence of jobs. We employ a modified

version of an enhanced heuristic Longest Processing Time-

based scheduling algorithm called SLACK [10], with time

complexity of O(n log n) and whose description is:

ML-based SLACK heuristic

Input: m machines and n jobs, predicted compile times ˜CT j

Output: near-optimal job schedule

1. Sort jobs by non-increasing ˜CT j .
2. Consider �n/m� tuples of size m given by jobs

1, . . . ,m;m + 1, . . . , 2m, etc. If n (mod m) �= 0, add
dummy jobs with null compile time in the last tuple.

3. For each tuple, compute the associated slack, namely
˜CT 1−˜CTm,˜CT (m+1)−˜CT 2m, . . . ,˜CT (n−m+1)−˜CTn.

4. Sort tuples by non-increasing slack and then fill a list with
consecutive jobs in the sorted tuples.

5. Apply List Scheduling to this job ordering.
6. Return makespan computed using the actual matching CTj .

In the interest of simplicity, we assume that at a given

time, one job is associated to one machine and this machine

only. We repeat scheduling 5000 times on n = 100 (a typical

value in our grid) randomly sampled concurrent design parti-

tions/individual compiles of the test set. The mean makespan

obtained using our scheduling is shown in Figure 6. We

compare with what was done in a non-ML environment, which

by lack of knowing the P&R times, was utilizing a greedy

scheduling based on the #LUTs. To see how the number of

machines affects the scheduling benefits, we vary the number

of machines and carry out the experiments again. We observe

that our ML-based scheduler shows makespan improvements

regardless the number of machines, with the largest savings

of 24% obtained at m = 40 with roughly 200min savings on

a 900min makespan. Cumulated over a 7-day week, this leads

to savings of more than one and a half days.

VI. ML-BASED DESIGN RECOMMENDATIONS

Partitioning quality can influence tremendously the P&R

runtime and success rate. A poor partitioning can result in



“optimal”

SLACK
non-ML

Fig. 6: Makespan improvement of our runtime regression-based
SLACK scheduler. The “optimal” conducts SLACK scheduling using
known, not ML predicted, compile time. The “non-ML” method
assigns the largest netlist (in terms of # LUT) to the first available
machine.

a large number of HARD partitions. If even one partition

remains unroutable, the emulation flow shown in Figure 1 must

be restarted from the partitioning step. If feature importance

gives fundamental insights on the compilation features that

largely make designs complex, these values are relative to

the complete model and dataset. Here, we search to improve

the compilation framework from “inside” the tool. This starts

with providing “recommendations” on how to modify a given

HARD partition to turn it into an EASY one. We state the

formal definition of this problem as follows:

P4: Design Recommendation
Input HARD netlist, target FPGA device, trained ML model

Output Recommendations on feature modification so that the
given HARD netlist becomes EASY

Why? The overall compilation time reduces with the new
EASY netlist.

A. Construction of Recommendations

The authors of [11] show how individual decisions can

be explained using class probability gradients. Motivated by

their approach, we propose to construct recommendations

based rather on probability “vectors”. If the gradient indicates

the direction of the steepest move from the test point, this

information is local and the change in probability is mostly

infinitesimal. In our case, we are interested in significant

probability changes (to go under the HARD/EASY threshold),

while changing the netlist as little as possible: First, to provide

simple and practical recommendations to the partitioning en-

gine (∼ 2 to 3 features to change together at most). Secondly,

to avoid under-populating the FPGAs too much, which cannot

be done when constrained to a fixed number of partitions.

The main components of the algorithm are:

• We only consider “likely” moves by sampling from the

learned distribution of the data, estimated using Kernel

Density Estimation (KDE). The best kernel found is the

radially symmetric kernel and the optimal bandwidth

matrix H is selected by Least squares cross-validation.

The KDE Probability Density Function and kernel are

defined as such:

f̂(x;H) = n−1
n∑

i=1

KH(x−Xi) (7)

where

KH(u) = |H|−1/2K(H−1/2u) (8)

and

K(u) ∝ (1− ‖u‖2)�(‖u‖2 ≤ 1) (9)

• We use a similarity distance between two partitions of

the form

d(a, b) =
∑

i∈features

|ai − bi|αi (10)

A small αi corresponds to a prioritized feature to select.

Using such a distance allows us to fix features that cannot

change (e.g. FPGA) and to translate our priorities when

re-partitioning. In particular, it is easier for us to generate

constraints on LUT/FF/IO counts rather than net counts.

• We move recursively in a greedy manner, selecting

at each iteration the one feature providing the largest

ΔP(a, b)/d(a, b), subject to a sufficiently large ΔP(a, b).
Thereby, we avoid changing too many features.

The description of our algorithm, which runs in less than

5min, is as follows:

VECTOR (x0, S, M , Xtrain, ε)
Input: partition x0, feature set S, model M : x �→ P(x)

train data Xtrain, class probability threshold ε
Output: modified partition xrecom

1. Define similarity distance d;
2. F = LEARN DISTRIBUTION DATA (Xtrain);
3. Current point: xrecom ← x0;
4. Sampling boundary: δ ← α;
5. while (P(xrecom) ≥ ε)
6. for (each s in S)
7. Q(s) = SAMPLE (F , xrecom(s), δ);

8. V (s) = max
x∈Q

P(xrecom)− P(x)

d(xrecom, x)
subject to ΔP ≥ t;

9. Select feature f = argmax
s∈S

V (s);

10. if (f empty)
11. increase δ;
12. else
13. update xrecom ← x(f) : x ∈ Q(f) =

∧
V (f);

14. endwhile
15. return xrecom;

Compared with other approaches, such as LIME [12], our

method provides a definite value to change rather than just a

direction of change. Also, in LIME data points are sampled

from a fixed distribution that ignores the correlation between

features. This can lead to unlikely data points which can then

be used to learn local explanation models.
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Fig. 7: Our Recommendation flow. The model built in Section III is
used to identify HARD partitions. Then, the algorithm VECTOR gen-
erates the recommendations used to define new mapping constraints.

B. Re-partitioning Results

We generate recommendations to the partitioning engine in-

side the flow as shown in Figure 7, before any P&R step. Once

a first automatic partitioning completes, we identify HARD

partitions using the predictor of Section III. Our algorithm

VECTOR then provides the recommended changes in these

partitions, translated each to simple rules such as: remove x
LUT6 and remove y BRAMS from partition Pz. Based on the

topology of the multi-FPGA system (positions of FPGAs and

inter-FPGA communication resources), the hierarchical netlist,

as well as the resources available on EASY partitions, a new

partition mapping file is generated. To fasten re-partitioning,

the partitioner uses as input the resulting assignments from the

previous partition with the balanced modules obtained from

the recommendations, so that most of the design is set in

place. This provides high level of stability in the results. For

example, if a recommendation shows one partition has critical

utilization of LUTs, a typical constraint is to remove a highly

combinational module from the HARD partition. This module

has to be placed on a EASY partition without endangering the

fixed system constraints (maximum hop-count, time-division-

multiplexing ratios, etc.). This trade will most likely make

the receiving EASY partition “harder”. As even minor FPGA

changes can affect the P&R, the resulting changes in prob-

ability of involved partitions are computed from the trained

model and the viability of the recommendation is assessed.

We show in Table VII the results of our recommendation

flow applied to a commercial SoC design that contains 12.5M

LUTs, 5.3M FFs and 155K multiplexed IOs. The chosen

benchmark is harnessing 14 partitions, where 6 of them are

HARD. For fair comparison of the runtimes, the partitions are

all compiled in the same settings, i.e. on the same machines

and all using Default strategy. Our ML model classified

the hardness of all the partitions correctly. Our algorithm

VECTOR identified two partitions with critical utilization of

LUTs (↓500K) and FFs (↓300K) respectively; modules adding

to such sizes were found and displaced to an EASY partition

without too much increase in IO-cut. After re-partitioning, the

TABLE VII: Compile time (CT) improvements using our recom-
mendation flow. We use a commercial SoC design partitioned to 14
netlists. Instances are re-partitioned across HARD-0, HARD-1, and
EASY-0.

total worst HARD-0 HARD-1 EASY-0
CT CT netlist netlist netlist

init. partition 2205 524 524 361 35
after re-partition 1879 357 357 115 139

compile time of the considered HARD partitions reduces by

32% and 68% respectively. On the other hand, the EASY

partition degrades reasonably. Overall, the compilation time of

the complete design reduces by 15%, with savings of 326min.

Note that the re-partitioning step only takes ∼ 45min. Thus,

our recommendations-augmented partitioning flow provides

more FPGA-P&R-friendly partitions, resulting in overall faster

P&R steps.

VII. CONCLUSIONS

Our machine learning framework allows accurate handling

of runtime intensive netlists as well as appropriate compilation

strategies. Our study derives an effective way to improve the

trade-off between compile time vs. number of jobs by varying

the wall-time. Integrated in our emulation system, our ML

models prove to reduce compilation cost by optimally schedule

runs on the server grid. This results in 24% makespan savings.

Our automatic strategy selection results in 33% jobs savings.

Our new method to propose recommendations is shown to

be effective in improving the quality of the partitioning,

consequently speeding up the overall compile time.
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