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Abstract— In this two-part article, we propose a frame-
work for selecting ferroelectric oxide material for the design
of a negative capacitance field-effect transistor (NCFET).
The investigation is based on an exhaustive search of two
important ferroelectric material parameters: remnant polar-
ization and coercive field in the context of their negative
capacitance properties. The effects of these parameters are
first studied at the NCFET device level and systematically
extended up to the full-chip level. Based on this search,
we arrive at the notion of optimality of ferroelectric parame-
ters for a given “isoperformance full-chip benchmark”: The
power dissipation in a specific circuit/system is maximally
reduced by using optimized NCFETs while meeting the
target performance. In Part I, we develop the framework
for identifying optimal ferroelectric parameters at a given
VDD. This sets the stage for Part II, where we investigate the
optimal ferroelectric parameters as VDD is scaled.

Index Terms— Complementary metal–oxide–
semiconductor (CMOS) technology, high-performance,
low-power, negative capacitance transistor.

I. INTRODUCTION

THE negative capacitance field-effect transistor (NCFET)
with a ferroelectric oxide layer integrated into its

gate dielectric stack is an emerging device technology that
can significantly reduce power consumption in the com-
plementary metal–oxide–semiconductor (CMOS) electronics
by enabling dramatic voltage scaling, thanks to its steep
switching characteristics and the enhanced ON-current [1], [2].
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Experimental demonstrations of the fundamental physics
of negative capacitance in a wide range of ferroelectric
oxides and steep turn-on characteristics in CMOS-compatible
ferroelectric-gated NCFETs garnered significant interests into
this technology lately [3]–[6]. The design and perfor-
mance of NCFETs, and, to a lesser extent, NCFET cir-
cuits have been investigated through modeling and simulation
in [7]–[10]. Krivokapic et al. [3], Xuan et al. [11], and
Kwon Xuan et al. [12] experimentally show negative capac-
itance effects such as steep subthreshold slope, improved
power, and ON-current at transistor level and inverter level
in ferroelectrics of thickness 1.8–8 nm at the 14-nm CMOS
technology node. Most of these works are limited to the
transistor and circuit-level results.

In this two-part article, we perform an exhaustive, multi-
scale investigation of the impact of ferroelectric parameters
remnant polarization and the coercive field, on the NCFET
performance and power. We start at the transistor-level spice
simulations and systematically extend to the gate-level and
full-chip implementation. What underpins our study is that
ferroelectrics based on widely studied and CMOS compatible
fluorite type oxides—Hafnium and its doped/compositional
variants—provide a wide range of material parameters allow-
ing for a vast design space for NCFETs [13]–[34]. Based on
a comprehensive search through the material-level properties
of these ferroelectrics, we arrive at the notion of optimality of
ferroelectric parameters for a given “isoperformance full-chip
benchmark:” at a given power supply voltage VDD, the power
dissipation of a given circuit is maximally reduced by using
optimized NCFETs while meeting the target performance.
As the full-chip benchmark, we consider low-density parity-
check (LDPC) decoder circuit. LDPC decoders are a group of
functional modules used to decode the LDPC error correction
codes in high-speed communications. The benchmark used
here is a decoder for the IEEE 802.3 an standard-based
10-Gbit/s Ethernet networking. In Part I, we develop the
framework for optimization by implementing NCFET bench-
mark designs with a fixed area and power supply voltage
(VDD = 0.4 V). This sets the stage for Part II, where we inves-
tigate how the ferroelectric parameters should be optimized as
VDD is scaled.
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Fig. 1. (a) Schematic of a NCFET. (b) Experimentally reported combina-
tions of spontaneous polarization P◦ and coercive field EC in ferroelectric
HfO2 and its doped/compositional variants [13]–[34].

II. NEGATIVE CAPACITANCE FIELD-EFFECT TRANSISTOR

Fig. 1(a) shows the schematic of the NCFET structure,
in which a ferroelectric negative capacitance layer is intro-
duced in the gate dielectric stack. The device structure without
the ferroelectric layer is referred to as the baseline FET. We use
the industry-standard BSIM-CMG [35] to model our baseline
FET. The BSIM-CMG model is originally developed as a
compact model for multigate FinFET transistors that are used
in the advanced technology nodes like the FreePDK 15-nm
library [36] used here. The baseline FET is a single-fin tran-
sistor with the following dimensions: fin height Hfin = 42 nm,
fin thickness Tfin = 7 nm, fin pitch Pfin = 48 nm, equivalent
oxide thickness EOT = 0.8 nm, and gate length LG =
20 nm. The ferroelectric oxide layer has a thickness of tF =
2.5 nm to be feasible in the 15-nm CMOS fabrication process
and is modeled using a second-order Landau–Devonshire
relation: EF = αQ + β Q3, where EF is the electric field
across the ferroelectric layer, Q is the polarization/surface
charge density, and α and β are anisotropy constants of the
ferroelectrics. Hoffmann et al. [37] have recently demonstrated
that the intrinsic S-shaped polarization-electric field curve
fits well to the experimentally measured values of remnant
polarization P◦ and coercive field EC even in macroscopic
capacitors with tens of microns of lateral dimensions much
bigger than individual grains/domains. As such, we calculated
the values of α and β by fitting the experimentally measured
P◦ and EC values to the Landau–Devonshire equation i.e., α =
(−3

√
3/2)×(EC/P◦) and β = (3

√
3/2)×(EC/P3◦ ). Note that

the dielectric constant (=(1/�◦) × (d P/d E)) of the ferroelec-
tric is: 1) negative when the ferroelectric is in the negative
capacitance state and 2) nonlinear dictated the quiescent point
on the S-shaped P-E curve. The simulation methodology of
NCFET is described in [8], which includes the short-channel
behavior of the baseline. Ferroelectric-domain switching speed
is assumed to be faster than device switching speed as shown
in recent work [38], [39] , and so, the domain switching speed
is not considered. However, further experimental research is
needed to truly justify the NCFET speed. It is also worth
noting that, the NCFET simulations with the 15-nm transistor
model did not show a negative differential output resistance
using the BSIM model, similar to that in [4]. This is possible
if the natural positive slope of the output conductance is not
completely canceled by the ferroelectric gain.

In all these simulations, the OFF-current IOFF (defined as
drain current ID at gate voltage VGS = 0.0 V and drain

voltage VDS = 0.8 V) was set at 9.63 nA for the single-fin
n-type transitor by shifting the ID–VGS curves along the
VG axis [2]. HfO2 and its doped/compositional variants are
considered as the ferroelectric material [13]. Ever since the
discovery of ferroelectricity in these well-studied material
systems, a wide range of key ferroelectric parameters P◦
and EC has been reported in the literature. Fig. 1(b) plots
experimentally reported (P◦, EC ) pairs in HfO2 and its
doped/compositional variants by surveying [13]–[34]. Based
on these experimental values and the parameters that work
the best for the technology node, we use the following range
for NCFET parameters: 10 μC/cm2 ≤ P◦ ≤ 40 μC/cm2 and
1 MV/cm ≤ EC ≤ 4 MV/cm. The viscosity parameter and
multidomain effects have been explored previously in [40]
and [41], respectively. In this article, we do not deal with
these effects and assume that the negative effects of viscosity
and multidomain are not present. In all our studies, we fix
VDS = 0.4 V for NCFETs. In case of the baseline FET,
we use either 0.4 V (the voltage under consideration) or 0.8 V
(the nominal voltage for the FreePDK 15 nm technology),
depending on the experiment.

III. IMPACT OF MATERIALS ON NCFET DEVICE

Based on the capacitance matching formalism [2], the cri-
terion for a nonhysteretic operation of an NCFET is that
the minimum absolute value of the ferroelectric negative
capacitance (|CF |) must be larger than the gate capacitance of
the baseline FET (Cbase) (min |CF | ≥ max Cbase). The closer
the magnitude of the ferroelectric negative capacitance is to the
baseline capacitance, the steeper the switching characteristics,
and the higher the enhancement in ON-current of the NCFET.
The value of min |CF | is dictated by P◦, EC , and tF :
min |CF | ≈ (2/(3

√
3)) × (P◦/ECtF ) [42]. Fig. 2(a) maps out

the region of (P◦, EC ) phase space in which the criteria for
nonhysteretic operation is met. In this article, we only focus
on the nonhysteretic operation, which corresponds to the white
region in Fig. 2(a).

To understand the evolution of NCFET characteristics in the
(P◦, EC ) phase space, we first consider two sets of devices
indicated in Fig. 2(a): 1) A, B, and C in which P◦ varies
at a constant EC and 2) D, B, and E in which EC varies
at a constant P◦. Fig. 2(b) and (c) plot the drain current
ID versus gate voltage VGS characteristics for NCFET A, B,
C and NCFET B, D, E, respectively, along with the baseline
FET. For a given tF , we observe that progressively decreasing
P◦ or increasing EC leads to progressively steeper turn-on
characteristics and higher ON-current due to progressively
better capacitance matching. This observation is in agreement
with that in [42].

To better visualize the effects of P◦ and EC on impor-
tant device properties, we show the phase maps of the
minimum subthreshold swing Smin and ON-current ION in
Fig. 2(d) and (e), respectively. Smin is defined as the change
in VGS required to induce one decade change in ID (from
10-7 A to 10-6 A) with VDS = 0.4 V. The baseline FET
exhibits Smin = 80 mV. ION is defined as the ID at
VGS = VDS = VDD = 0.4 V. To generate these phase plots,
a total number of 496 NCFETs with different (P◦, EC )
combinations were simulated.
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Fig. 2. Analysis of device-level characteristics. We set VDS = 0.4 V
for both NCFETs and baseline FET. (a) Five (P◦, EC) combinations
(A, B, C, D, E) studied. (b) ID–VGS characteristics of NCFET A, B, C,
and baseline FET. (c) ID–VGS characteristics of NCFET B, D, E, and
baseline FET. (d) Phase map of the minimum subthreshold slope Smin.
(e) Phase map of the ON-current ION.

First, we observe that the lowest Smin and the largest
ION are both obtained at the boundary between hysteretic
and nonhysteretic operations. Similar observations were also
made in [43]. Moreover, we observe that the largest value
of ION corresponds to the upper right end of the boundary
line, where EC and P◦ are both the largest and on the
boundary. On the contrary, the smallest value of Smin is
obtained at the bottom left end of the boundary line, where
EC and P◦ are both the smallest. As we move perpendicular
to the boundary line toward the right in Fig. 2(d) and (e),
the value of min |CF | being proportional to P◦/EC increases,
resulting in progressively increasing difference between min
|CF | and Cbase. This, in turn, causes both Smin and ION to
degrade. From the phase plots, we observe that the maximum
ON-current and the minimum subthreshold slope regions lie
on the opposite ends of the hysteresis boundary. In devices
with very steep subthreshold slope, we observed that the
ferroelectric loses its negative capacitive effect quickly and
the current starts saturating. This leads to the wide variation
in ION at the hysteresis boundary where the subthreshold slope
is minimum.

IV. IMPACT OF MATERIALS ON NCFET INVERTER

In this section, we study the impact of the ferroelec-
tric parameters on various characteristics of an inverter.
We consider inverters comprised of complementary NCFETs

Fig. 3. Analysis of NCFET inverter. (1) Voltage transfer curves of
inverters made with (a) NCFETs A, B, and C. (b) NCFETs D, B, and
E. (2) Short circuit current transients and output voltage transients of
inverters made with (c) NCFETs A, B, and C. (d) NCFETs D, B, and E.
(3) Phase maps for: (e) pin capacitance. (f) Switching power. (g) Short
circuit current. (h) Internal power. (i) Total power. (j) Ratio of internal to
total power.

A–E and the baseline FET. The inverter model comes from
the minimum sized inverter in the FreePDK 15-nm Open
Cell Library (OCL). This netlist includes the transistors and
the RC-parasitics of the interconnects present in the inverter
layout. The transient characteristics are analyzed using an
FO-1 inverter where the inverter drives an identical inverter
as load.

A. NCFET Inverter Voltage and Current Transients

Fig. 3(a) and (b) shows the voltage transfer characteristics
(VTCs), and Fig. 3(c) and (d) shows the corresponding short
circuit current ISC transients for these inverters. The insets
in Fig. 3(c) and (d) show the corresponding output voltage
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VOUT waveforms. Due to the steep switching characteristics,
NCFETs A and E exhibit the lowest threshold voltages (Vt ).
As such, we note that inverters A and E start switching at
lower input voltages VIN, and the transition region in the
corresponding VTCs is extremely diffused compared with
other inverters. These two inverters also show the largest ON-
current among A–E and so have large peaks in the short-circuit
current, as shown in Fig. 3(c) and (d). As a high ON-current
also leads to high drive current to the load, inverters A and
E also switch the fastest, which is evident from transient
responses of VOUT shown in the insets of Fig. 3(c) and (d).

B. NCFET Inverter Power Analysis

Fig. 3(e)–(j) shows the power-related phase maps of NCFET
inverters like pin capacitance Cp,inv, switching power PSW,inv,
average short-circuit current, internal power, total power, and
the ratio of internal power to the total power. The pin capac-
itance plotted in Fig. 3(e) is the combination of effective
gate capacitance of n-FET and p-FET, which contributes to
the input pin capacitance of inverter. Switching power is the
power consumed in switching all the gate and wire capac-
itances, whereas the total power is composed of switching
power, short-circuit power, and leakage power. To generate
these phase plots, a total number of 496 inverters based on
n- and p-NCFETs with different (P◦, EC ) combinations were
simulated.

First, we note by comparing Figs. 3(e) and 2(e) that the
boost in ION is associated with a concurrent increase in the
pin capacitance. This is because the voltage amplification due
to the negative capacitance gate oxide layer—which causes the
boost in the ON-current at a given VDD—does so actually by
boosting the gate charge and hence, the gate capacitance [44].
Second, the switching power map in Fig. 3(f) resembles
that of pin capacitance in Fig. 3(e), which is expected since
PSW,inv ∝ Cp,invV 2

DD. Third, in Fig. 3(g) and (h), we observe
that the NCFETs at the hysteresis boundary exhibit the largest
short-circuit current and the largest internal power, respec-
tively, as the power consumption is closely related to the max-
current. Fourth, the total power in Fig. 3(i) resembles that of
the short-circuit current, indicating that the total power is dom-
inated by the short-circuit power. This is further confirmed by
the ratio of internal to total power shown in Fig. 3(j). Note that
the OFF-state leakage power is the same for all the NCFETs
due to our threshold voltage adjustment procedure that ensures
OFF-current remains equal to the baseline FET OFF-current.
Therefore, a high subthreshold slope device that usually has
high ON-current will lead to a high power consumption in
NCFETs and is not very desirable if operated at the same
voltage as BaseFET.

C. NCFET Inverter Delay Analysis

Fig. 4(a) plots the phase map of NCFET inverter delay.
At VDD = [0.4] V, the delay of baseline inverter is 6.0 ps, and
all the NCFET inverters are faster than the baseline inverter.
We note that the minimum delay region in Fig. 4(a) does
not coincide with the maximum power region in Fig. 3(i) or
the maximum current region in Fig. 2(e): min-delay region
is larger than max-power region. This shows that the most

Fig. 4. (a) Delay phase map of NCFET inverters running at 0.4 V.
(b) Region in (a), where the delay is 2.55 ps. Any point in this region
gives a (P◦, EC) parameter pair for an NCFET inverter that runs at
0.4 V and has the same delay as the baseline inverter running at 0.8 V
(=2.55 ps). The total power saving of NCFET inverters (0.4 V) compared
with baseline inverter (0.8 V) in this region ranges from 73% to 78%.

power-consuming NCFETs do not necessarily correspond to
the fastest NCFETs; this point will be further elucidated in
Part II of our article.

We now set the supply voltage of baseline FET to 0.8 V.
The purpose is to optimize our NCFET transistors running
at 0.4 V by selecting the right set of (P◦, EC ) parameters
so that: 1) NCFET inverters running at 0.4 V operate as
fast as the baseline inverter at the nominal voltage of 0.8 V
and 2) consume the minimum power. At 0.8 V, our baseline
inverter delay becomes 2.55 ps. In Fig. 4(b), we extracted
the region from Fig. 4(a), where the delay is ≤2.55 ps
and the power reduction is between 78% (maximum power
reduction) and 73% (maximum-5% power reduction). From
an isoperformance point of view at a given VDD, an optimal
set of ferroelectric parameters (P◦, EC ) is the one for which
the corresponding NCFET maximally reduces the total power
dissipation in the circuit while running at the same speed as
the baseline FET. The total power dissipated in the baseline
inverter at VDD = [0.8] V is 5.8 μW. Fig. 4(b) shows
the (P◦, EC ) combinations for which the total power in the
corresponding NCFET inverters is less than 1.48 μW.

V. IMPACT OF MATERIALS ON NCFET FULL CHIP

Finally, we demonstrate the concept of optimality of ferro-
electric parameters using NCFET-based full-chip implementa-
tions using LDPC as the full-chip circuit. Using the FreePDK
15-nm OCL as the model, we use the Synopsys Siliconsmart
tool for characterizing all the libraries. The benchmark register
transfer level (RTL) is synthesized with Synopsys Design
Compiler and the placement and routing are done using
Cadence Innovus. We use Synopsys PrimeTime for power and
static timing analyses. Fig. 5 shows the full-chip placement
and routing layouts. Further details of the full-chip design and
simulation setup are provided in [10]. For the isoperformance
power analysis reported herein, we implemented LDPC using
NCFETs with 22 different (P◦, EC ) combinations at VDD =
0.4 V and achieve the same performance as the baseline FET
implementations at VDD = 0.8 V. In all designs including
NCFET and baseline FET full-chip designs, timing is closed
at 2.5 GHz.

A. Full-Chip Metric Comparison

Table I compares key full-chip metrics. First, we note that
LDPC full-chips built with NCFETs A, B, and E provide up
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Fig. 5. Full-chip layout using 15-nm NCFET gates.

TABLE I
FULL-CHIP ISOPERFORMANCE RESULTS. THE COLUMNS IN RED FAIL

TO MEET THE TARGET FREQUENCY. THE BLUE YIELD THE MAXIMUM

POWER REDUCTION. POWER VALUES ARE IN mW, CAPACITANCE

IN pF, WIRELENGTH IN mm, CELL AREA IN µm2 ,
AND SLACK IN ps

to 40 ps of positive slack, thereby over-achieving the corre-
sponding target frequency. On the other hand, NCFETs C and
D still fail to meet the timing goal even after using significantly
more buffers and larger gates, which is evident from higher
gate count and larger cell area. NCFET B implementation
leads to the maximum power reduction (76%), while NCFET
E implementation actually worsens power by 33% compared
with the baseline FET.

Second, we note that the pin capacitance in all NCFET
designs is higher than the baseline, which naturally fol-
lows from the conclusion we obtained from inverter designs.
In particular, NCFET E design has a significantly larger pin
capacitance—which agrees with Fig. 3(e)—and hence, a much
larger switching power (PSW) than other NCFET designs. Yet,
NCFET E shows smaller switching power than the baseline,
thanks to the dramatic supply voltage scaling (0.4 V vs.
0.8 V). The total power for NCFET is still worse than the
baseline mainly due to the excessive internal power, which
mainly comes from large short-circuit current [see Fig. 3(g)].
Internal power is the dynamic power consumed inside the
standard cell (NAND, NOR, INV, BUF, Flip-Flop, etc.). It is
a sum of the short-circuit power and the power consumed due
to switching the parasitics present inside the standard cell.

Third, the net capacitance does not follow this pin capac-
itance trend. This is expected as negative capacitance does
not directly impact interconnects. An exception is NCFET D,
where even the net capacitance (304 pF) is significantly larger

TABLE II
NCFET COMPARISON AT THE DEVICE, GATE, AND FULL-CHIP

LEVEL AMONG THE FIVE NCFETS A–E

than the baseline (201 pF). This is mainly due to the extra nets
connecting excessive buffers added to meet the timing. The
overall wirelength also increased (1008 mm vs. 1436 mm)
due to the excess nets.

B. Device, Gate, and Full-Chip Comparison

Table II shows an overall comparison among 5 NCFET
types we investigated so far at the device, gate, and full-chip
level. We use key metrics at these design hierarchies and select
the best NCFET flavor among A, B, C, D, and E. At the device
level, NCFET E shows the best quality as it provides the best
subthreshold slope and ON-current values, whereas NCFET D
is the worst. At the gate level, however, the conclusion splits:
NCFET E is the worst in terms of power while being the
best in terms of delay. This clearly demonstrates power versus
performance tradeoff existing in NCFET gate designs.

At the full-chip level, we observe an interesting trend:
NCFET E remains the worst in terms of power and the
best in terms of performance. However, the winner in power
consumption is no longer NCFET D, but NCFET B this time.
The main reason is that, as Table I demonstrates, NCFET D
gates are too slow that they require more buffers and larger
gates to close timing at the full-chip level. NCFET B offers
a good tradeoff between power and performance, where the
gates are fast enough for easier timing closure while note
consuming high power.

Finally, but most importantly, we observe that NCFET E,
although it offers the best subthreshold slope and ON-current
values at the device level, is the worst option for power
reduction in our isoperformance full-chip study. This again
stems from the fact that this NCFET device is primarily
optimized for performance but not for power. NCFET B
offers the best power saving instead, which we obtain from
judiciously tuning the two key device parameters, namely,
remnant polarization and the coercive field.

VI. CONCLUSION

We performed a comprehensive analysis of how the fer-
roelectric parameters—(P◦, EC )—impact the performance
of full-chip implementations with NCFETs. Based on this,
we developed a framework for identifying the optimal ferro-
electric parameters to achieve the maximal reduction of power
dissipation while meeting the performance targets. In Part II,
we will investigate how the optimal ferroelectric parameters
change as VDD is scaled and provide overall limitations and
conclusions of the study.
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