Tier Partitioning and Flip-flop Relocation Methods
for Clock Trees in Monolithic 3D ICs

Da Eun Shim!, Sai Pentapati', Jeehyun Lee!, Yun Seop Yu?, and Sung Kyu Lim!
School of Electrical and Computer Engineering, Georgia Institute of Technology, USA
2Department of Electrical, Electronic, and Control Engineering, Hankyong National University, Korea

Abstract—In this paper, we propose simple but effective clock
tree optimization algorithms for monolithic 3D ICs that are
based on tier partitioning and flip-flop relocation. Our algorithms
take into account 3D timing critical paths, clock skew, and the
clock tree hierarchy for a better quality 3D clock tree. We also
perform clock slew manipulation and buffer reduction to further
improve the 3D designs. We tested four industrial benchmarks
implemented using a commercial library and observed up to
34.3% clock skew, 35.9% clock wirelength, 10.0% combinational
clock power, and 15.5% total power savings compared to the
state-of-the-art [8].

I. INTRODUCTION

With 2D integrated circuits (ICs) gradually reaching their
limits due to device scaling challenges, the advent of 3D ICs
shows potential to be the new driving force to continue Moore’s
law. With shorter physical connections between cells, 3D ICs
stack dies with smaller footprints on top of each other. With
monolithic inter-layer vias (MIVs), the connections between
the dies are cheaper and a more fine-grained integration can be
implemented. With developments in machine learning/artificial
intelligence (AI) and virtual reality (VR), power reduction and
performance boost are becoming more important in IC design.

There have been various efforts throughout the years to
improve the quality of clock delivery networks. The clock dis-
tribution network/clock tree affects both the power consumption
and the performance of the IC. As the clock tree delivers clock
signals to all the flip-flops in a chip, any delay or skew can
cause delays in the path and thus affect the critical path of the
chip. The switching and internal power consumed by the clock
tree is also a non-trivial amount. Thus, overall a better quality
clock tree leads to better full chip quality.

In 2016, Wu et al. used the weighted k-means algorithm
to cluster and move flip-flops closer to the cluster centers in
2D ICs [3]. Their algorithm also balances the size of each
cluster to be within a certain range. This has proven to be
useful for improving clock tree quality. Also in 2016, Kahng et
al improved the flop-tray based design which has also shown
promise in power reduction [5].

With 3D ICs showing great potential for further improvement,
efforts to improve the 3D clock tree have also been seen. In
2012, Zhao developed a new power- and slew-aware 3D clock
router that does not make use of the commercial 2D EDA tools

This research was supported by the DARPA ERI 3DSOC Program under
Award HRO01118C0096, grant from Taiwan Semiconductor Manufacturing
Company, and the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education
(NRF-2016R1D1A1B03932711.

[9]. In 2014, along with the development of the state-of-the-art
3D IC shrunk2D flow, Panth et al. fixed the whole clock tree
backbone on one of the tiers while partitioning the leaf cells in
the clock tree (flip-flops) into different tiers using area balance
[7]. This was one of the first efforts to use commercial 2D
routers to improve 3D clock tree quality.

As an effort to further improve power savings while using
a commercial tool, we propose a novel clock tree clustering
and flip-flop relocation method for M3D that makes use of 2D
commercial EDA tools. This new method makes use of the
state-of-the-art shrunk2D flow and its clock tree for clustering
and relocates the flip-flops based on clock skew, clock tree
hierarchy, and critical path information.

II. STATE-OF-THE-ART M3D CLOCK ROUTER

Even though 3D ICs show potential for continuing Moore’s
law, there is currently no existing commercial 3D EDA tool
that can be used to design a 3D chip. For this reason,
we implemented our M3D designs using the state-of-the-art
Shrunk2D flow [7], which makes use of 2D commercial EDA
tools for the design of 3D ICs. Before the advent of the
shrunk2D-flow, the traditional approach for routing clock trees
in 3D ICs has been to construct a separate clock tree per tier
and connect them through a single via. This means that the
clock router will ignore the clock tree of the whole design and
instead create a new one for each tier after logic partitioning.
Unlike this conventional approach, the shrunk2D flow utilizes
the resulting shrunk2D clock tree instead of abandoning it.

In the shrunk2D flow, shown in Fig. 1, cells and metal
layer pitches are first scaled down by 0.707 and placed in a
halved footprint. This allows commercial 2D tools to be used
for PnR which will give the optimized x and y location of
the cells. After PnR, the cells and wires is transformed back
to their original sizes, which results in placement overlaps
between cells. These overlaps of cells are resolved through tier
partitioning using the Fidduccia and Mattheyses (FM) mincut
partitioning algorithm [4] to decrease the connections between
two dies. During this process, the clock tree is also partitioned.
The backbone of the shrunk2D clock tree (clock buffers and
clock gates) are fixed to a single tier and the flip flops are
partitioned into either tier using area balance. Since MIVs are
small and consume less power compared to the long wires
that was necessary in 2D ICs, the flow has no constraint in
adding MIVs. With the assistance of MIVs, the flow utilizes
the shrunk2D clock tree instead of building new ones for each
tier. The resulting M3D design based on this shrunk2D design
flow will be used as the baseline for comparison.

¢)

Fix clock gates and
buffers to one tier

NI | D
CCID | T
I | CITED

¢)= ()

Fig. 1: Baseline Shrunk2D [7] flow: CTS steps are in red

Although the shrunk2D flow aims for minimum variation to
the shrunk2D solution, during the process of resolving overlaps
and partitioning logic, the x, y location of each cell cannot
remain completely the same. Thus, the clock tree also needs

modification to adjust for the changes to provide better results.

With the clock related parameters considered, the quality of
the M3D design can be improved further. There have been
efforts to build better RTL-to-GDSII design flows for M3D
ICs such as the cascade2D flow which utilizes design and
micro-architecture insight and the compact2D flow that does
not require geometry shrinking but uses scaled interconnect
RC parasitics [1][6]. There have also been efforts to improve
the shrunk2D flow itself by applying parasitic adjustments for
more accurate estimates of RC parasitics of wires in M3D
design [2]. Although this technique provides power savings, it
requires the modification of RC parasitic lookup tables which
are often encrypted in proprietary PDKs.

Instead of coming up with an entirely new flow, we modified
the shrunk2D flow to include our newly proposed algorithm
that does not require any additional modification of proprietary
information. The new algorithm accounts for the hierarchy of
the clock tree as well as the final timing of the M3D design
(slack), clock skew, and flip-flop location.

III. M3D CLOCK TREE OPTIMIZATION
A. Clock Tree Clustering Method

The modified shrunk2D flow with the clock tree optimization
steps is shown in Fig. 2. Starting with a shrunk2D design, the
x and y location of each clock cell, as well as the clock
tree hierarchy of the shrunk2D design, is extracted. Using the
topological clock tree (refer to Fig. 7) information, we cluster
the buffers. With the shrunk2D design, an initial M3D design
will be implemented for purposes of extracting the top critical
paths. Using both the critical path information and topological
clustering information, flip-flops will be relocated so that they
will be closer to the center of each cluster. Once flip-flops
are relocated, tier partitioning is performed using FM mincut
partitioning with the exception of the clock tree. For the clock
tree, partitioning of the clock cells per cluster is performed.
Finally each tier is routed and a new M3D design with a new
clock tree is obtained.

B. Tier Partitioning Method

In the original shrunk2D flow, tier partitioning is done using
FM mincut partitioning to minimize the connections between

M3D clock tree
optimization

()

(Final M3D Design

Fig. 2: New flow for our M3D clock tree optimization.

(D (D ()

1. Clock Buffer/FF
clustering

2. Tier Partitioning

per Cluster

3. Flipflop Relocation

Fig. 3: Three steps involved with our M3D clock tree
optimization. Some steps can be skipped if desired.

all cells on the top and bottom tier. Our algorithm utilizes
this information from the shrunk2D flow and partitions the
flip-flops onto the majority tier. For example if there are 5
flip-flops in a cluster and only 1 of them is on the top tier
while the others are on the bottom, all of them will be fixed
to the bottom tier. This will remove MIVs on the clock path
which could have caused extra clock skew within that cluster.
Fig. 4 shows this concept.

C. Flip-Flop Relocation Method

High clock skew among close-by cells can potentially cause
timing violations or addition of buffers during PnR to close
timing which will end up consuming more power. In the
new flow, flip-flops are moved closer to each cluster center
depending on the clock skew average in order to achieve a
smaller clock skew. With flip-flop relocation, local clock skew
is reduced. For example, with the flip-flop pair shown in Fig. 5,
if FF2 is moved relatively closer to FF1 and the network of
buffers, the connecting wire for both the logic path and the
clock path becomes shorter. With a shorter connecting wire,
both the logic path delay and the clock path delay are decreased
which also results in less clock skew.

However, relocation of flip-flops, must be handled with care
as it may hurt a critical path or degrade the quality of a design.
Moving a flip-flop closer to the cluster center in order to reduce
delay and clock skew in one flip-flop pair could hurt another
path that one of the flip-flops is part of. Thus, we move the
flip-flops only if its clock skew is larger than the skew average
and if it is on the top 50 critical paths. Fig. 6 shows how the
flip-flop relocation works.

D. Slew Target Consideration

In order to find the parameters that are most relevant to
the clock tree, 400 implementations of the same benchmark

- on bottom tier
Fig. 4: Tier Partitioning: Flip-flops are partitioned into top
and bottom tier depending on which tier the majority of
the flip-flops in the cluster were partitioned into during

the previous iteration (left) with FM mincut partitioning.

Network of buffers

Clock Source Become shorter wire

Fig. 5: Benefits from flip-flop relocation: Moving a flip-
flop closer to the cluster center shortens a wire connection
which improves clock skew.

with randomly picked parameter values were designed. The
correlation between each parameter and the sequential power
and clock combinational power was found. Table I shows the
correlation values for each variable with sequential power and
Table II shows the correlation values for each variable with
combinational power. From Table I, we see that sequential
power has the highest correlation with the input max transition
of the leaf cells, which means the target slew has the highest
effect. Thus, target slew is also a considered variable that is
changed throughout the experiments.

E. Buffer Reduction

From Table II, we see that the buffer count has the highest
correlation with clock combinational power. Unlike 2D ICs,
M3D has shorter physical connections between cells on the
top and bottom tier. Thus, it is easier to close timing with
fewer buffers to obtain the same frequency as 2D. In order to
reduce the number of buffers inserted during the design, we
design M3D initially with a lower target frequency. This will
further reduce the clock combinational power of M3D while
still meeting timing.

F. Algorithm Description

As target slew is closely related to sequential power, the best
slew target is decided first by multiple M3D implementations of
the same benchmark. By sweeping with a couple slew targets,
we find the slew that gives the best power results. Then, a new
shrunk2D design is designed with the optimized slew target
and buffer reduction. With the resulting shrunk2D design, the
new algorithm performs topological clustering with shrunk2D
clock tree. As shown in Fig. 7, the extracted clock tree from
the shrunk2D design is clustered based on the level of the
cell within the tree. For example, if the optimized level for a
specific benchmark is level 4, all the clock trunks and leaves
below each level 4 clock cells will be grouped together.

Algorithm 1 shows the whole flow from the topological
clustering stage up to when tier partitioning and flip-flop
relocation is performed with the cluster information.

& e ®

Fig. 6: Flip-Flop Relocation: Flip-flops are moved closer to
the cluster center if the skew is larger than the average
skew of the design.

TABLE I: Correlation of variables with sequential power

Variable
Worst rising trunk slew
worst rising leaf slew |
CTS_MaxTran_trunk
CTS_MaxTran_leaf |
buffer count |

Correlation
0.006
0.256 |

0.069
-0.036
0.566
-0.211

Sequential Power
Sequential Power
Sequential Power
Sequential Power
Sequential Power

Sequential Power

G. Parameters Under Optimization

Sweeping was done for the following parameters to find the
optimal value for each parameter that yields the most power
savings and PDP benefits for each benchmark:

« Clock tree hierarchy: Since the sequential cells are clustered
based on the shrunk2D clock tree, the hierarchy of the
clock tree is strongly reflected in the newly found clock
tree solution. For each benchmark, the best level of the
clock tree at which a new cluster is formed is different.

« Slack: Relocating flip-flops can potentially hurt a critical
path and further degrade the worst negative slack. This
can hurt the performance of the whole chip and needs to
be considered carefully. Therefore, the flip-flop relocation
happens only if the flip-flop is in the top 'n’ number of
paths. The number of paths (n) considered in this case also
differs depending on the benchmark.

e Clock skew: Clock skew can cause delays throughout
different paths in the circuit. Thus, a smaller skew among
local flip-flops is desired. If the clock skew is larger than
a percentage of the average of all the clock skews in the
chip, the cell will be relocated to a closer location to the
center of each cluster. A couple values for the percentage
of the clock skew average was tested.

« Displacement: Too much displacement of a flip-flop can
potentially harm a path and overall hurt the performance
of the chip. Thus, different percentages of relocations have
been tested. In algorithm 1, the cells are moved by one
third of the distance between the cell itself and the cluster
center. This percentage may differ per benchmark and was
tuned for the best result in each of them.

H. Effect On Runtime

In a typical ASIC design, clock cells constitute about 10
to 20% total cell count. The delivery of clock signals to flip-
flops is achieved by the clock tree where each node is split to
multiple nodes. Since the clock tree created by the APR tool
will be approximately balanced, we will assume a balanced k-
ary tree for calculation purposes. Thus, the time complexity of
sweeping through clock tree levels would be logy (0.2 % n) + ¢
depending on the percentage of clock cells, where n is the total
number of cells in the benchmark, and c is a constant added

TABLE II: Correlation of variables with clock combina-
tional power
Variable Correlation

Clock Comb. Power | worst rising trunk slew 0.135

Clock Comb. Power | worst rising leaf slew -0.089

Clock Comb. Power max skew 0.256

Clock Comb. Power | CTS_MaxTran_trunk 0.147

Clock Comb. Power CTS_MaxTran_leaf -0.198

Clock Comb. Power buffer count

sequential power

Clock Comb. Power

clock source (level 1)
level 2

e —]
(Y4 N

ﬁﬂt J

Fig. 7: Clustering of clock tree using topology: We show
clock tree clustering at level 2.

level 4

level n-1

level n

for the unbalanced part of the tree. For example, in the case
of a design with 10,000 cells using a 4-ary tree only needs 7
levels. In a more realistic clock tree the k is not a constant for
every node and is usually high for the last level of supply and
so our assumption is very conservative. For example, in the
case of VGA, there are 54,489 cells but the depth of the clock
tree is only 8. In run time, it only takes about 10-30 seconds
to run algorithm 1 depending on the size of the benchmark.

The other parameters considered does not add to the time
complexity as there are not too many values to be swept.
For example, in the case of the displacement parameter, we
have tried moving the clock cell by one third, one half, and
two thirds of the distance between the cell and the cluster
center. This is only three cases and thus should be considered
a constant in terms of time complexity. Similarly, the clock
skew parameter and the number of paths we consider for slack
should be considered a constant for time complexity as well.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

A commercial 28nm PDK was used for both the baseline
M3D and new algorithm based M3D designs. The algorithm
was tested on 4 different benchmarks from OpenCores.org:
VGA Controller, AES-128, AVC, and the JPEG Encoder. The
shrunk2D flow based M3D designs were used for baseline
comparison. A reasonable target frequency for each benchmark
was chosen and used for implementation of 2D, baseline
M3D, and our algorithm based M3D designs. All other design
parameters such as the size of the footprint and the number of
metal layers used are kept constant for all designs. For better
visualization of the effect of clocktree clustering and flip-flop
relocation, benchmarks with comparatively high sequential cell
percentages have been chosen. The sequential cell count and

Topological Clustering: ;

for cell in clock tree do

if clock cell is target level in clock tree then
| create new cluster

end

end
Find average of clock skew of all cells in clock tree ;
Flip-Flop Relocation : ;
for cell in cluster do
if clock skew > clock skew average then
if cell is in top 50 critical paths then
Xlocation = Xlocation + (clusterCenterX -
Xlocation)/3 Ylocation = Ylocation +
(clusterCenterY - Ylocation)/3

end
end
end
Tier Partitioning with Cluster Result: ;
for each cluster do
if number of cells in cluster on top die > number of cells in
cluster on bottom die then
| move all cells in cluster to top die
end
else if number of cells in cluster on top die < number of
cells in cluster on bottom die then
| move all cells in cluster to bottom die
else
move all cells in cluster depending on entire cell
balance

en
end
ALGORITHM 1: Our M3D clock tree optimization

TABLE III: Sequential cell percentage of each benchmark

VGA [AES-128 | TATE | JPEG

Seq. Cell Count | 17,055 | 10,688 | 31,416 | 37,665

Cell Count | 54,489 | 101,957 | 210,220 | 227.406
Percentage 10.5 14.9 16.6

the percentage of sequential cells of each benchmark are shown
in Table III. The benchmark VGA shows the highest percentage
of sequential cells.

B. Clock Tree Optimization Results

The effect of our new tier partitioning and flip-flop relocation
algorithm on clock tree quality and total power is shown
in Table IV. Three methods are compared in the table: tier
partitioning only, flip-flop relocation only, and the result from
performing both methods at the same time. All designs for a
single benchmark were compared at iso-performance and the
last row for each benchmark compares the best method out
of the three to the baseline M3D design. All 4 benchmarks
show great savings in clock tree wirelength, clock skew, and
buffer count. Overall, the benchmark AES showed the most
improvement in clock tree quality with a 35.9 % saving in clock
tree wirelength and 34.3 % less clock skew. This also leads to
a 15.5 % saving in total power compared to the baseline.

VGA clock tree quality is improved using both methods
as shown in Table IV. With both methods performed, we
achieve up to 28.3% clock skew saving and 33.6% better
latency compared to the baseline M3D. With our algorithm,
the clock tree wirelength is also reduced by 30.8%. The number
of buffers increased slightly in order to meet the optimized slew
target, but with the addition of 1.8% buffers, the internal power

TABLE IV: Clock Tree Quality Comparison. A negative A % value means improvement.

Freq | WNS | Seq pwr | Clk Comb. pwr | Total pwr | clk WL | clk skew | clk latency | # Buffer
Options MHz | ps mW mW mW m ps ps -
baseline [7] 2,250 | 934 203.2 349 276.1 0.0172 104.9 202.4 6,223
VGA tier partitioning | 2,250 | 59.2 180.3 36.3 254.8 0.0119 86.4 144.6 6,336
FF relocation | 2,250 | -20.3 180.4 40.6 258.0 0.0193 81.7 149.3 6,336
2250 | -6.9 180.1 25477 0.0119 752 134.4 6,336

decreased and thus the overall total power decreased. With the
optimized parameters, a better clock tree is obtained overall
and a the design also consumes less power. Although there
is a small WNS of -6.9 ps, this does not affect the operating
frequency by too much.

AES-128 clock tree quality is best when only tier partitioning
is applied. Flip-flop relocation does not have much effect in
the case of this specific benchmark. With tier partitioning
only, max clock skew and the clock tree wirelength are
improved significantly from the design using the original M3D
design flow showing -34.3% less clock skew and 35.9% clock
tree wirelength saving. With the healthy amount of clocktree
wirelength saving and 22.8% buffer reduction, we achieve
15.5% reduction in total power as well. The clock trees for
AES with all four methods are shown in Fig. 8. Flip-flop
relocation did not change the clock tree dramatically, but tier
partitioning made a visible change in the clock tree. This is
because flip-flop relocation in the x-y plane can be risky and
is moved only when the conditions described in section 3.3 are
met. With tier partitioning, we see that there are few locations
where flip flops are on both the top and bottom tiers.

TATE does not show too much clock combinational power or
sequential power savings but with a better clock tree, it shows
up to 6.1% total power savings compared to the baseline M3D
design. JPEG shows the least amount of power savings with
only 4.7% power reduction. Although the power did not reduce
significantly, the overall quality of the clock tree is improved
with 32.3% less clock tree wirelength and 5.5% saving in clock
combination power.

Fig. 9 show the clock trees with sequential cells and clock
tree routing for the benchmark VGA. The left shows the original
M3D design and the right shows the new design completed
with the new algorithm. In this case, performing both tier
partitioning and flip-flop relocation showed the best results and
thus the clock tree shown on the right is the result of both
methods. The best results for VGA are found when most of
the clock tree is moved to the bottom die.

1,600 | 91.7 303.5 811.6 0.0647 180.5 339.5 29,604

JPEG 1,600 | 90.6 297.5 65.7 773.2 0.0438 145.2 298 24,686
FF relocation 1,600 | 57.3 297 72.3 775.9 0.0674 152.9 299.9 24,686

both 1,600 | 65.2 297.6 67.8 776.2 0.0467 163.4 308.6 24,686

TABLE V: Comparison of our M3D clock tree optimizer
with commercial 2D (Cadence Innovus) clock router. A
negative A % value means improvement.

Metric 2D | Best M3D | A %
Clock Skew (ps) 81.1 75.2
VGA Clock Latency (ps) | 177.4 134.4
Total Power (mW) | 281.9 254.7
Clock Skew 43.6 37.8
AES-128 Clock Latency 189.6 143.6
Total Power 411.7 330.7
Clock Skew 46.4 35.7
TATE Clock Latency 223.3 181.4
Total Power 623.7 565.7
Clock Skew 180.4 145.2
JPEG Clock Latency 347.6 298
Total Power 851.3 773.2

C. Comparison with Commercial 2D PNR Tool

The best M3D results are also compared to their 2D
counterparts in Table V. AES shows the most power savings
compared to 2D with 19.7% total power savings. VGA and
TATE each show 11.9% and 9.3% savings respectively. JPEG
shows the smallest power savings with 8.9% reduction in total
power compared to 2D. The clock skew and latencies are also
compared in the table. Although there are some outliers in the
trend, overall, M3D designs show better clock skew and clock
latency compared to the 2D designs.

D. Summary

Observations from the clock tree clustering methods are
summarized below:

o Our method shows better power and clock skew compared
to the baseline M3D design.

« Power savings from buffer reduction is larger at higher
target frequencies because more effort is necessary to close
timing in 2D IC designs.

o For M3D, reducing buffer count by initially designing with
a lower target frequency is a valid design decision. With
vertical connections, timing is still met unlike in 2D.

(a) AES original (b) tier partitioning only

(c) Flip-flop relocation only (d) Both combined

Fig. 8: Clock tree comparison for AES. Tier partitioning method show the best results with 15.5% total power saving.

top tier

bottomtier

VGA with partitioning
and FF relocation

VGA original

Fig. 9: Clock tree comparison for VGA. The clock tree on
the right has 29.6% better clock latency.

« Different benchmarks show better results with different
methods, e.g using both tier partitioning and flip-flop
relocation works best for VGA, but only performing tier
partitioning works best for AES-128.

o Clock tree tier partitioning is effective in reducing clock
skew and clock combinational power.

« With change in target slew, further improvement in clock
latency and sequential power can be achieved.

o A tighter clock slew target does not always result in
sequential power saving and thus the optimized slew target
must be found to achieve the best results.

V. CONCLUSIONS

In this paper, we explored clock tree optimization methodolo-
gies and their impact on power. Main ideas include topological

clock tree clustering and using the clock tree hierarchy for
tier partitioning and flip-flop relocation. Slew considerations
and buffer reduction through lower target frequency further
improve total power. We re-confirmed the effect of clock tree
quality on full chip power and provided various methodologies
to improve clock tree and full chip power for M3D designs.
For further work, machine learning could be used to find the
optimal parameters since optimizing the parameters considered
in our algorithm take time and effort.

REFERENCES

[1] K. Chang et al. Cascade2D: A design-aware partitioning approach to
monolithic 3D IC with 2D commercial tools. In Proc. IEEE Int. Conf. on
Computer-Aided Design, 2016.

[2] K. Chang, S. Pentapati, D. E. Shim, and S. K. Lim. Road to
high-performance 3d ics: Performance optimization methodologies for
monolithic 3d ics. In Proceedings of the International Symposium on Low
Power Electronics and Design, ISLPED *18. ACM, 2018.

[3] G. W. et al. Flip-flop clustering by weighted k-means algorithm. In 2016

53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1-6,

June 2016.

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In 79th Design Automation Conference, June 1982.

A. B. Kahng, J. Li, and L. Wang. Improved flop tray-based design

implementation for power reduction. In 2016 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), Nov 2016.

[6] B. W. Ku, K. Chang, and S. K. Lim. Compact-2d: A physical design

methodology to build commercial-quality face-to-face-bonded 3d ics. In

Proceedings of the 2018 International Symposium on Physical Design,

ISPD ’18. ACM, 2018.

S. Panth, K. Samadi, Y. Du, and S. K. Lim. Design and cad methodologies

for low power gate-level monolithic 3d ics. In 2014 IEEE/ACM

International Symposium on Low Power Electronics and Design (ISLPED),

Aug 2014.

[8] S. A. Panth, K. Samadi, Y. Du, and S. K. Lim. Shrunk-2D: A Physical

Design Methodology to Build Commercial-Quality Monolithic 3D ICs.

IEEE Trans. on Computer-Aided Design of Int. Circuits and Systems,

2017.

X. Zhao and S. K. Lim. Through-silicon-via-induced obstacle-aware

clock tree synthesis for 3d ics. In 17th Asia and South Pacific Design

Automation Conference, 2012.

[4

=

[5

—

[7

—

[9

[

