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Abstract—Neuromorphic systems consist of a framework of
spiking neurons interconnected via plastic synaptic junctures. The
discovery of a two terminal passive nanoscale memristive device
has spurred great interest in the realization of memristive plastic
synapses in neural networks. In this work, a synapse structure
is presented that utilizes a pair of memristors, to implement
both positive and negative weights. The working scheme of this
synapse as an electrical interlink between neurons is explained,
and the relative timing of their spiking events is analyzed, which
leads to a modulation of the synaptic weight in accordance
with the spike-timing-dependent plasticity (STDP) rule. A digital
pulse width modulation technique is proposed to achieve these
variable changes to the synaptic weight. The synapse architecture
presented is shown to have high accuracy when used in neural
networks for classification tasks. Lastly, the energy requirement
of the system during various phases of operation is presented.

I. INTRODUCTION

The von Neumann architecture has been the traditional

choice for building computing systems. However, the pro-

cessing ability of these machines is limited by the memory

access speed. Such a limitation is popularly known as the von

Neumann bottleneck. Contrary to this architecture, the brain of

biological species comprises of a complex matrix of neurons

interconnected at junctures known as synapses that facilitate

communication between neurons [1]. The ability of the network

to modify the strengths of its synaptic connections is known as

learning. By virtue of learning, the network evolves to generate

more accurate (expected) outputs.

Neuromorphic systems are a hardware paradigm that aim to

mimic the structure and functionality of biological neural sys-

tems. Although numerous approaches to neuromorphic circuits

have been proposed, many using digital and analog CMOS

approaches, they do not provide an efficient way to realize

programmable synapses that are suitable for online learning.
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Recently, a two-terminal nanoscale device known as memristor

has been realized and shown to have adjustable electrical con-

ductivity [2]. This property enables it to be used as a synapse in

CMOS-memristor hybrid circuits [3]. While the non-volatility

of its conductance state and nanoscale dimensions enhance

the density and performance metrics of such realizations, its

programmability is specifically well suited for neural network

circuits. This work leverages these characteristics of memris-

tors to implement spike-timing-dependent plasticity (STDP),

a biological learning rule. The synapse is also implemented

in a Spiking Neural Network for classification tasks, yielding

accuracy of 96%, 84% and 73% for Iris, Wisconsin Breast

Cancer and Pima Indian Diabetes datasets respectively.

The remainder of the paper is organized as follows: Sec-

tion II provides the background information on STDP and

memristors. Section III presents the working scheme of the

twin memristor synapse. Section IV delineates the digital

control circuit realizing STDP in the synapse. Section V details

the design parameters that influence the learning behavior of

the synapse. Section VI exemplifies the impact of on-chip

STDP learning on the classification accuracy produced by

spiking neural networks. Section VII summarizes the energy

requirements of our synapse. Section VIII concludes the paper.

II. BACKGROUND

A. Spike-Timing-Dependent Plasticity

Spike-timing-dependent plasticity is a process in which

the synaptic strength of the connections between neurons is

adjusted as a function of temporal differences between neuron

spiking events. In this work, we refer to the neuron that

precedes a synapse as the pre-neuron and the succeeding one

as the post-neuron. In general, if the pre-neuron fire occurred

within a reasonable time window before the post-neuron fire

occurs, long term potentiation (LTP) takes place. Conversely,

if the pre-neuron fire occurs within a reasonable time window

after the post-neuron fire occurred, long term depression (LTD)

takes place. The largest change in synaptic weight occurs

when the difference in time between the pre- and post-neuron

fires is small and as this difference gets larger, the synaptic

weight change diminishes [4]. The STDP behavior captured in
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a piecewise exponential relation can be described by equation

1 and Fig. 1.

Δw(Δt) =

{
A+ exp(Δt/τ+) if Δt < 0

−A− exp(−Δt/τ−) if Δt ≥ 0
, (1)

where Δt is time difference between the post-neuron and pre-

neuron fire (Δt = tpre − tpost), Δw is the change in synaptic

weight, expressed as a percentage of a predefined maximum

weight (wmax). A+ and A− define the maximum synaptic

modification. τ+ and τ− are the time window over which

potentiation or depression may occur, respectively.

Fig. 1: Anti-Symmetric STDP modification function

B. Memristive Device and Model
In 1971, Leon O. Chua had postulated the fourth funda-

mental device that can implement any given charge-flux curve

[5]. This two terminal device was named a memristor since

it acts as a resistor with memory. Recent findings [2] confirm

the existence of passive devices that have properties similar to

those predicted by Chua.
Memristors are of particular interest in neuromorphic circuits

as synaptic weights can be encoded as memristance values.

Incremental memristance changes also prove vital for learning.

In this work, the memristor model used for simulation is based

on a hafnium oxide (HfO2) memristor designed and fabricated

at SUNY Polytechnic Institute [6]. The empirical compact

model [7] fits the experimental data from the HfO2 device.

The model is given by equations 2 and 3.

dM

dt
=

⎧⎪⎨
⎪⎩
−CLRS(

V (t)−Vtp

Vtp
)PLRSfLRS(M(t)), V (t) > Vtp

CHRS(
V (t)−Vtn

Vtn
)PHRSfHRS(M(t)), V (t) < Vtn

0, otherwise

,

(2)

where M is the memristance, dM
dt is the rate of change of mem-

ristance, CLRS and CHRS are fitting coefficients, incorporating

switching time, V(t) is the voltage applied to the memristor,

Vtp and Vtn are the switching thresholds, PLRS and PHRS are

the polynomial coefficients, controlling the nonlinearity of the

model.
Window functions fLRS(M(t)) and fHRS(M(t)) account

for the resistance saturation and are defined by equation 3.

f(M(t)) =

⎧⎪⎨
⎪⎩

1

1+exp
(

θLRSLRS−M(t)

βLRSΔr

) , V (t) > Vtp

1

1+exp
(

M(t)−θHRSHRS

βHRSΔr

) , V (t) < Vtn

, (3)

where β and θ are fitting parameters, Δr is the absolute

difference between the High Resistance State (HRS) and

Low Resistance State (LRS) values. Fig. 2a shows the circuit

symbol for the memristor. The pinched hysteresis curve of

current vs voltage is shown in Fig. 2b for both the model and

experimental data.

Fig. 2: (a) Memristor symbol (b) I-V characteristics of the

memristor used in this work [7]

C. Memristor Based Approach to Neuromorphic Systems

There are numerous projects dedicated to actualizing neuro-

morphic systems utilizing a memristive device as the synapse

[8]. The properties of memristive devices facilitates the real-

ization of several kinds of learning mechanisms seen in bio-

logical synapses such as Long Term Potentiation (LTP), Long
Term Depression (LTD), Spike-Timing-Dependent Plasticity
etc. Learning rules were demonstrated by applying Pulse Width

Modulated (PWM) signal on a TiO2 memristor in [3]. Time

Divison Multiplexing (TDM) approach on Ag/Si memristive

synapse also showed similar learning patterns in [9]. 1T1R

based HfO2 memristor implementation used pulse shape filters

in pre and post-neuron to achieve synaptic behavior in [10].

All of the aforementioned neuromorphic systems mentioned

in the literature rely on the analog shaping of the neuron spikes.

Accuracy of the learning behavior is hence dependent on

meticulous design of the precise spike shape and its generation

circuit. Such analog spikes are prone to the detrimental effects

of noise and also pose a significant challenge for high-fan out

conditions when the same analog signal has to be propagated

to a huge load across the chip.

In the following sections, a digital approach for STDP is

presented. Our approach utilizes digital pulses for performing

STDP, hence overcoming the need for meticulous analog spike

shaping. Such digital approach provides a precise control over

the weight change magnitude of the synapse during online

learning. Moreover, the synchronous approach adopted here

provides the flexibility to modify the magnitude of weight

change during the online learning process by changing the

clock frequency used. Additionally, digitizing the spike instead

of using analog spikes provides immunity to noise while

communicating signals across the chip.
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III. TWIN MEMRISTOR SYNAPSE

The twin memristor synapse presented in this work is derived

from [11]. It comprises of two memristors connected with

opposite polarity as shown in Fig. 3. This combination of

memristors (which forms the synapse) is interposed between

the pre-neuron and the post-neuron. While a pair of terminals

of the memristors are driven separately by the pre-neuron, the

other pair that connects to the post-neuron is shorted to form

the post-synaptic node.

Fig. 3: Schematic diagram of the twin memristor synapse with

synaptic control block of the pre-neuron.

The synapse operates in two phases: accumulation and

learning. The control circuit in the neuron provides appropriate

voltage levels to drive the memristors during each phase.

1) Accumulation: When the pre-neuron fires, the control

circuit drives opposite polarity voltages on the nodes Vp and

Vn, while the post-synaptic node is held to a virtual ground

by the post-neuron. The virtual ground is provided by the

integrator op amp of the post-neuron [11]. As shown in Fig. 3,

positive current flows through Mp while negative current flows

through Mn. These currents are summed at the post-synaptic

node and the summed current can be positive, negative or zero,

depending on the values of Mp and Mn. Hence, both positive

and negative weights can be realized using the twin memristor

without any additional circuitry. The weight of the synapse,

which is the effective conductance of the memristors, is:

Geff =
1

Mp
− 1

Mn
(4)

It may be noted that positive current through the synapse

leads to accumulation of charge in the post-neuron while

negative current causes the dissipation of charge from it.

2) Learning: In this phase, the synapse adjusts its weight

according to the STDP learning rule. The control circuit in the

pre-neuron drives the same voltage on both the pre-synaptic

terminals i.e., Vp = Vn. The post-synaptic node is driven by

the post-neuron. The polarity of the voltage across the synapse

is dependent on whether the synapse is being potentiated

or depressed. During potentiation, the synaptic weight must

increase. To achieve the increase, the control circuit provides

a negative voltage to the pre-synaptic memristor terminals

(Vp, Vn) while the post-synaptic node is held at a positive

voltage by a feedback from the post-neuron. This causes a

voltage difference across the memristors, which surpasses their

switching threshold. Since the memristors are connected with

reversed polarity, memristance of one of the memristor (Mp)

decreases, while that of the other (Mn) increases. This results

in an overall increase in effective conductance and synaptic

weight. The new conductance due to potentiation is given by:

Geff,pot =
1

Mp −ΔMp,pot
− 1

Mn +ΔMn,pot
(5)

Depression implies a decrease in the synaptic weight. In

this case, the voltages on Vp, Vn and the post-synaptic node

are reversed. Now, memristance of Mp increases, while that of

Mn decreases. This results in an overall decrease in effective

conductance and synaptic weight.
The amount of increase or decrease in the memristances

(ΔM ) in both the cases depends upon the timing of the firing

events of the pre and post-neurons; the further the fires are

separated in time, the smaller the change in memristance.

IV. STDP IN TWIN MEMRISTOR SYNAPSE

In this mixed signal neuromorphic system, analog voltage

accumulated in the neuron, upon reaching its threshold, is

sampled to produce a digital rectangular spike. Depending on

the relative timing of the spikes of pre and post-neuron, a

synapse is either potentiated or depressed. A voltage greater

than the threshold is applied across the memristor for different

periods of time. If the pre-neuron fire is further apart in time

from post-neuron fire, voltage across the memristor is applied

for smaller period of time and causes weaker potentiation or

depression. As the pre-neuron fire gets closer to the post-

neuron fire, voltage across the memristor is applied for longer

period of time, causing stronger potentiation or depression.
The proper circuit operation is ensured by the synaptic

control block of the pre-neuron. The schematic diagram for

the control circuit is shown in Fig. 3. The serial-in parallel-

out shift registers store the firing information of both pre and

post-neuron. This helps in tracking the temporal difference

in the firing events of these neurons. It also communicates

the firing events to the pulse generator block. It is a CMOS

combinational logic circuit that produces proper digital voltage

pulses for the twin memristors in the synapse, taking into

account the timings of the firing events of pre and post-

neuron. The control logic determines whether outputs to the

synapse should be turned on or off. If the synapse is neither

in accumulation phase, nor in learning phase, it is considered

idle. The outputs Vp and Vn are turned off during idle state,

so that there is no inadvertent accumulation or learning.
For simulations in Cadence Spectre, we have used the

memristor model discussed in Section II-B for the synapse

and the Integrate and Fire neuron shown in [11]. In addition

to accumulation and firing, the neuron also feeds its fire back

to the pre-neuron and drive the post-synaptic node during the

refractory period. During the refractory period, the neuron

accumulation path is cut off and hence it does not accumulate

charges. Instead, it provides a digital signal to the post-

synaptic node that stays at positive rail for half the refractory

period and goes to negative rail for the other half of the

refractory period. First half of the refractory period is used to

perform potentiation while the second half is used to perform

depression.

39



(a) One cycle gap between fires (b) No cycle gap between fires

Fig. 4: Waveforms for different LTP/LTD conditions. FPre

and FPost are the fires from pre and post-neuron respectively,

VPSN is the voltage at the post-synaptic node, which is driven

by the post-neuron, Vp and Vn are the waveforms generated

by the pulse generator block driving the memristors at the

synapse side, Vdiff is the voltage difference across the twin

memristors during the learning period only. As Vp and Vn are

same only during the learning period, we can consider the twin

memristors to be shorted on both ends and can find Vdiff .

The output control block and the pulse generator block is

explained with an example. Here we provide waveforms to

perform STDP with 2-clock cycle tracking ability. This essen-

tially means that the STDP circuit can account for temporal

differences of up to 2 clock cycles between the pre- and the

post-neurons’ firing events. For this scenario, there can be 4

different combinations of firing events: (1) Post-neuron fires

after 1 clock cycle delay of pre-neuron fire, (2) Post-neuron

fires before pre-neuron and there is one cycle gap between

them, (3) Post-neuron fires just after pre-neuron and lastly (4)

Post-neuron fires just before pre-neuron. Conditions 1 and 3

are potentiation events while conditions 2 and 4 are depression

events but the amount of change in conductances are different.

These scenarios can be best illustrated by the waveforms of

figure 4. The conditions 1 and 2 are represented by figure 4a

and conditions 3 and 4 by figure 4b.

If there is a pre-neuron fire, Vp goes to positive rail and

Vn goes to negative rail, causing a net current flow for

accumulation. The voltages across the memristors never go

above the switching threshold during the accumulation phase

and hence there is no change in memristances. Whenever there

is a post-neuron fire, the neuron drives VPSN to positive rail for

2 clock cycles and negative rail for next 2 clock cycles. These

also constitute the 4 cycle refractory period, during which the

neuron does not accumulate. This is the learning phase. During

the learning phase Vp and Vn are equal, as can be seen in figure

4. For conditions 1 and 3, which are LTP conditions, Vp and

Vn are driven to negative rail but for different amounts of time.

The voltage across the memristor crosses the negative threshold

and due to the opposite polarity connections of the memristors

Mp and Mn, the effective conductance increases according to

equation 5. When the fires are closer together, the voltage

across the memristor crosses the threshold for longer period

of time, causing a greater change in memristance (condition 3)

and hence a greater increase in conductance (synaptic weight).

Conditions 2 and 4 are LTD conditions, and now Vp and Vn

are driven to positive rail and opposite scenario occurs. The

digital logic circuitry used for the 2-cycle STDP shown here

realizes the following boolean functions for Vp and Vn,

Vp = FPost · (FPre t1 + FPre t2) + FPost t1 · FPre t2, (6)

Vn = FPost t2 · FPre t1 + FPost t3 · (FPre t1 + FPre t2),
(7)

where FPre t1, FPost t1, FPre t2, FPost t2, FPre t3 and

FPost t3 represents the 1,2,3 cycle delayed signals of FPre

and FPost respectively. These timing states are generated by

the shift register block shown in Fig. 3.

The output control block turns off the pulse generator output

to realize the idle state. It is another simple combinational logic

block implementing the following function

EN = Vp + Vn + FPre ·Refrac, (8)

where Refrac is the signal for refractory period.

Following similar approach, different versions of synapses

can be implemented, with each version capable of tracking

different number of cycles before and after a post-neuron fire.

The example discussed in Fig. 4 is defined as 2-cycle STDP.

V. DESIGN PARAMETERS AND STDP PERFORMANCE

In this section, the impact of memristor device properties and

design parameters are analyzed on a 5-cycle STDP architecture.

The memristor device parameters used for the simulation are

as follows: HRS = 50kΩ, LRS = 5kΩ, Vtp = 0.75V, Vtn =

-0.75V, tswp = tswn = 1μs. The parameters assumed resemble

the memristive device of [6]. For characterizing the conduc-

tance change, the maximum conductance was taken to be,

Gmax = 1
LRS − 1

HRS and change in conductance is expressed

in percentage of Gmax. Percentage change in conductance with

respect to the timing difference of fires is presented in Fig. 5a.

As it can be seen from the figure, as the fires are closer together,

the change in conductance increases non-linearly, which is

similar to the exponential STDP explained in section II-A.

The memristor device parameter and in turn the choice of

design parameter such as clock frequency affects the STDP

behavior of the twin memristor synapse. Using the same

switching time parameter, the clock frequency was increased

to analyze its effect on STDP curve. With a frequency of

100 MHz, the generated STDP curve shows a linear relation

(Fig. 5b). With a higher frequency, the width of the voltage

pulse applied to the twin memristor decreases. Hence there

is a small change in memristance and conductance. This can

also be inferred by looking closely at the synaptic conductance

equation.

Assume that initially the synapse has a weight of zero,

implying that both the memristors have equal memristance. So,

Mp = Mn = M . The change in memristance ΔM is assumed
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(a) Clock frequency of 25MHz (b) Clock frequency of 100MHz

Fig. 5: Effect of clock frequency on STDP behavior

equal for both Mp and Mn for simplicity. From equation 5,

for LTP, assuming ΔM < Mp,Mn and applying Binomial

expansion, we have

Geff =
2ΔM

M2
× [1 + (

ΔM

M
)2 + (

ΔM

M
)4 + ...] (9)

For small change in memristance, ΔM is small compared to

M . As a result, the ratio ΔM
M is very small and the term within

the bracket reduces to 1, making ΔGeff � 2ΔM
M2 . Thus Geff

(and ΔGeff ) linearly depends on ΔM .

According to the memristor model of equation 2 and ignor-

ing the window function for simplicity, ΔM depends linearly

on the pulse width of the voltage applied across the mem-

ristors, considering the voltage to be above threshold (Vth).

Hence, synaptic conductance changes linearly with smaller

pulse widths, causing the STDP curve to be linear for 100MHz

clock frequency. As the pulses become wider (lower clock

frequency), the non-linear terms in equation 9 become sig-

nificant. As a result, conductance changes non-linearly, which

can be approximated as an exponential change. The simplified

assumptions made here are sufficient to explain the the shift of

STDP behavior qualitatively for different clock frequencies.

Mismatch in switching time and threshold voltage of mem-

ristors due to process variation have been reported in the

literature [11], [6], [12]. Typically, HRS to LRS switching time

(tswn) is faster than LRS to HRS switching time (tswp) and

LRS to HRS transition threshold (Vtp) is higher than HRS

to LRS transition threshold (Vtn). The effects of variation is

shown in fig. 6, keeping other parameters same as the original

assumption. The results presented points to the immunity of

twin-memristor to threshold voltage variation. Switching time

variation starts affecting the STDP curve severely when the

mismatch reaches 50%, as the conductance starts to saturate.

Drastic conductance change of one device due to low switching

time dominates the overall conductance change and hence

this faster switching device dictates the observed (crippled)

STDP behavior in such a case. However, the anti-symmetric

STDP curve is always retained due to having two memristors

connected in opposite polarity.

VI. STDP IMPACT ON NEURAL NETWORK LEARNING

In order to demonstrate the consequence of STDP described

herein on a neural network, we consider three classification

tasks, namely Iris, Wisconsin Breast Cancer and Pima Indian

(a) Switching time variation (b) Threshold voltage variation

Fig. 6: Effect of process variation on STDP behavior of the

twin-memristor synapse.

Diabetes dataset taken from UCI machine learning repository

[13]. Iris dataset consists of 150 entries, each with four proper-

ties of Iris flower and three output labels. Breast Cancer dataset

contains 699 entries, each with 9 features. The Diabetes dataset

has 768 entries of patients, each covering 8 input features. Evo-

lutionary Optimization (EO) algorithm is applied to generate

the networks for each classification tasks, the details of which

can be found in [14]. EO starts off with a fixed number of

input and output neurons, but number of hidden neurons and

the synaptic connection between all the neurons can change

over generations. During each generation, every network of the

population is evaluated in simulation, and a score is assigned

to each network based on how well it performed on a particular

application. Better performing networks are selected to serve

as parent networks for the next generation. Parent networks are

then probabilistically recombined through a crossover process

and mutated, where mutations can update network structure

(e.g., adding or deleting a neuron or synapse) or parameters

(e.g., changing a synaptic delay or synaptic weight). The EO

method currently utilizes a high-level software simulation of

the memristive network during the evaluation of the network,

which allows us to design a network off-chip.

IRIS BREAST CANCER DIABETES
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Fig. 7: Accuracy for the best network chosen for each classi-

fication task with different cycles of STDP

For each classification task, 3 kinds of networks were

produced using EO, each having different cycle tracking ability.
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20 networks of each kind were trained and tested, with half of

the dataset used for training and the other half for testing. Fig.

7 shows the testing accuracy of the best performing networks

of each kind. In general, the more cycles are tracked, the

better the accuracy of the network is. One exception is the

Iris dataset, where there is only marginal improvement. This

can be attributed to the network size, which is really small

compared to the other two. Iris network has 4 input neurons and

3 output neuron, whereas Breast Cancer network has 27 input

neurons and 2 output neuron and Diabetes network has 24 input

neurons and 2 output neurons. Although the overall accuracy

of the network is dictated by numerous network metrics such

as number of neurons, synapses and feedback loops, results in

Fig. 7 lead us to the general conclusion that larger networks

have more room for accuracy improvement due to STDP.

Another point worth noting is the circuit overhead, which

increases for tracking more number of cycles. While there

is a significant increase in accuracy from the simple 1-cycle

tracking to 3-cycle tracking approach, the same cannot be said

for the 5-cycle tracking approach over 3-cycle tracking. In this

regard, the 3-cycle tracking approach can be a viable option for

designing networks considering the trade-off between circuit

overhead and classification accuracy.

VII. ENERGY ESTIMATES

In terms of energy requirements, analog version of synapse

consumes 1.9 mW for a system of synapses which gives 0.23

nJ to 0.23 mJ per synapse [15]. Pulses directly applied to the

memristive synapse gives energy value ranging from 11 pJ per

spike to 0.1 pJ per spike for memristance range of 1kΩ to

1MΩ [16]. Whereas another approach lists energy as 36.7 pJ

per spike for memristance range of 70Ω to 670Ω [17]. Energy

requirements for this implementation with different version of

synapses are presented in Table I.

TABLE I: Energy estimates of the proposed synapse

Number of
Cycles Tracked

Energy per
Spike (pJ)

Energy per
Spike (pJ)

Energy per
Spike (pJ)

Idle Accumulation Learning
1 cycle 0.07 1.45 2.58
3 cycle 0.20 1.68 3.41
5 cycle 0.32 1.76 3.76

As we track for more number of cycles, the circuit com-

plexity increases and consequently the energy requirement also

increases. The energy requirements listed in the table were

calculated based on the memristance range of 5kΩ and 50kΩ,

following the practical device of [6]. It is possible to achieve

even lower energy values with higher LRS and HRS values

(such as 500kΩ and 200MΩ, respectively [18]).

VIII. CONCLUSION

In this paper, a synapse consisting of a complementary

connection of two memristors has been proposed for use in

neuromorphic circuits with on-chip STDP based learning. It

has been shown that the learning behavior of this synapse

can be controlled by a set of circuit parameters that together

comprise the designer’s arsenal. Precise control over change in

weight of the synapse was achieved by the modulation of width

of the digital pulse applied across the synapse. This digital

approach was shown to have implications not only on energy

dissipation, but also on the learning pattern, resulting in varying

accuracy for different classification tasks.
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